用户名: 密码: 验证码:
钙磷玻璃体系药物缓释材料制备及体外模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨组织的取代,药物的控制释放载体作为一种新的生物材料成为了现今的研究热点。本文对掺入锶的钙磷生物微晶玻璃作为药物缓释材料的制备、性能和生物降解进行了研究。以CaO-P_2O_5-Na_2O为基础玻璃,钙磷摩尔比为1.25,通过掺入SrO制得CPSN微晶玻璃;并与传统熔融法制备的CaO-P_2O_5-Na_2O生物微晶玻璃体系进行了对比研究。CPSN生物微晶玻璃分别采用传统熔融法和溶胶凝胶法制得。
     采用XRD测定不同条件下制备的玻璃、微晶玻璃和降解产物的相组成,利用SEM观察生物玻璃的晶化情况以及降解不同天数后样品表面的形貌。通过三点弯曲法测定生物玻璃的弯曲强度。玻璃体系的生物降解性表征试验在pH值为7.4的PBS缓冲液中,恒温37oC进行。而溶解于PBS溶液中不同天数的Ca2+浓度由原子吸收分光光度计来测得。
     实验结果表明采用传统熔融法制得的CPSN生物微晶玻璃的主晶相为具有生物相容性的β-Ca2P2O7 (β-DCP)和少量的Ca3(PO4)以及易溶性的Na2CaP2O7。样品致密,仅有极少的微孔,其弯曲强度为40~50MPa。将样品浸渍于PBS溶液中后,溶液中的钙离子浓度在3~7天呈现上升趋势,之后开始降低。样品在降解一段时间后表面产生了新的物质,经XRD分析为类羟基磷灰石和锶羟基磷灰石。在降解26天后的样品表面可观察到一层由细晶的类羟基磷灰石相和锶羟基磷灰石相所组成的致密的矿化层。
     用溶胶凝胶法制得的CPSN生物微晶玻璃的主晶相为β-Ca_2P_2O_7 (β-DCP)和NaCaPO_4。与传统熔融法制得的玻璃相比,溶胶凝胶法所制得的样品晶粒比较小,比表面积大,这有利于微晶玻璃的生物降解。将样品浸渍于PBS溶液中3天后,溶液中的钙离子浓度达到峰值,紧接着出现了一个剧烈的降低,在浸渍11天时达到最低。随着时间的继续推移,离子浓度曲线再次出现起伏,这表明此法制得的生物玻璃具有可持续降解的特性。从SEM照片中可观察到降解一段时间后,样品表面沉积了一层锶羟基磷灰石矿化层。此法制得的微晶玻璃的弯曲强度较低,只有19~24MPa。
Replacements of biological tissues, controlled drug delivery represents new development of biomaterials research. The purpose of this study was to investigate that the Sr containing calcium phosphate glass-ceramic as a potential biomaterial for drug delivery. The glass-ceramic system was selected based on CaO-P_2O_5-Na_2O and an inert metal oxide SrO, with CaO/P_2O_5 molar ratio=1.25. Also, CaO-P_2O_5-Na_2O glass-ceramic system prepared by melting-sintering method was investigated as comparable system. The CPSN (CaO-P_2O_5-SrO-Na_2O) glass-ceramic was prepared by melting-sintering way and sol-gel way, respectively. In order to evaluate the degradation of the glass-ceramic prepared, degradation studies were carried out after dipped in in PBS-HCl solution for 26 days at 37℃, pH 7.4, which was close to that found in human. Concentration of Ca~(2+) in the PBS-HCl solution was tested by Atomic Absorption Spectrometer with different days.
     Using XRD analysis, biocompatibleβ-Ca2P2O7 (β-DCP) phase and small amount of Ca3(PO4) and Na2CaP2O7 were clearly identified from the CPSN glass-ceramic prepared by melting-sintering method. The compact is densified successfully with few closed pores. By soaking in PBS solution, the concentration of calcium ion increased from 3 days to 7 days and then a decrease was observed until 16 days. Some new phases—hydroxyapatite-like (HA-like) and Sr-hydroxyapatite (Sr-HA) as dominant phases detected by XRD—were formed on the surface of the glass-ceramic samples during degradation. At the meantime, formation of mineralized layer with high density which consisted of HA-like and Sr-HA containing random oriented fine crystals was observed by SEM. The average strength of CPSN glass-ceramic sample determined by 3-point bending method was 40~50MPa.
     Biocompatibleβ-Ca2P2O7 (β-DCP) and NaCaPO4 phase were clearly identified from the CPSN glass-ceramics prepared by sol-gel method, using XRD analysis. The size of the granules was smaller in this glass-ceramic, which is different from one prepared by melting-sintering way. By soaking 3 days in PBS solution, the concentration of calcium ion reached peak value and then a severe decrease was observed until 11 days. With time increased, fluctuation of ion concentration curve was observed. It demonstrated that persistent degradation occurred on this glass-ceramic. And the Sr-HA mineralized layer was formed on the surface of the glass-ceramic samples during degradation. The bending strength of this CPSN glass-ceramic sample appeared a decrease, was about 19~24MPa.
引文
[1] Alekha K, Greggrey C, Therapeutic applications of implantable drug delivery systems, Pharmacol Toxicol Methods, 1998, 40(1): 1~12
    [2] Klemm K W, Antibiotic bead chains, Clin Orthop, 1993, 295: 63~76
    [3] Henry S L, Galloway K P, Local antibacterial therapy for the management of orthopaedic infections, Pharmacokinetic considerations, Clin Pharmacokinet, 1995, 29: 36~45
    [4] Neut D, Belt H, Stokroos I, et al, Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery, Antimicrob Chemother, 2001, 47: 885~891
    [5]俞玮,周勇,植入式药物缓释系统在骨缺损修复中的研究进展,现代康复, 2001,5(9):56~57
    [6]杨莽,张彩霞,陈德敏,磷酸钙骨水泥药物缓释载体研究进展,国外医学生物医学工程分册,2002,25(1):8~11
    [7]王德平,周萘,多孔微晶玻璃作为缓释药物载体的体外实验研究,中国修复重建外科杂志,2002,16(5):322~324
    [8]陈希德,杨连甲,杨维东,组织工程与基因工程联合应用于骨缺损修复的研究,现代康复,2001,5(5):59~60
    [9]孙明林,胡蕴玉,张瑞萍,磷酸钙骨水泥/骨形态发生蛋白复合人工骨修复骨缺损的实验研究,现代康复,2001,5(5):32
    [10]尤瑞金,骨科植入式药物缓释系统研究进展,临床骨科杂志, 2002,5(4): 313~316
    [11]吴宏斌,植入式药物缓释系统在骨科的研究和应用,《国外医学》创伤与外科基本问题分册,1996,17(4):223~226
    [12] Baker A S, Greenham L W, Release of gentamicin from acrylic bone cement, Elution and diffusion studies, Bone Joint Surg, 1988, 70(10): 1551~1557
    [13] Roeder B, Van Gils C C, Maling S, Antibiotic beads in the treatment of diabetic pedal osteomyelitis, Foot Ankle Surg, 2000, 39(2): 124~130
    [14]张朝,杨增华,陈瑞等,庆大霉素珠链治疗慢性骨髓炎疗效分析,四川医学,2000,21(3):232~233
    [15] Calhoun J H, Anger D M, Ledbetter B R, et al, The Ilizarov fixator and polymethyl-methacrylate-antibiotic beads for the treatment of infected deformities, Clin Orthop, 1993, 295: 13~22
    [16]孙诚,张贵祥,郭庆林,骨水泥中表阿霉素的释放及活性研究,实用放射学杂志,1997,13(5):260~262
    [17] Eiff C, Bettin D, Proctor R A, et al, Recovery of small colony variants of Staphlococcus following gentamicin bead palacement for osteomyelitis, Clinic Infect Discovery, 1997, 25(6): 1250~1251
    [18] Kwasny O, Bockhorn G, Vecsei V, The use of gentamicin collagen floss in the treatment of infections in trauma surgery, Orthopedics, 1994, 17(5): 421~425
    [19] Petri W H, Schaberg S J, The effects of antibiotic supplemented bone allografts on contaminated, partially avulsive fractures of the cine ulna, Oral Maxillofac Surg, 1984, 42: 699~704
    [20]栗向东,胡蕴玉,庆大霉素重组合异种骨复合体防治开放性骨折骨缺损感染的实验研究,中华骨科杂志,1999,19(12):730~734
    [21]任国宝,以盐酸脱钙骨为载体的药物体内外释放的研究,组织移植通讯,1995,2(2):67~69
    [22] Athanasion K A, Singhal A R, Agrawal C M, et al, In vitro degradation and release characteristics of biodegradable implants containing trypsin inhibitor, Clin Orthop, 1995, 315: 272~281
    [23] Hioske I, Giqcdaaw K, Bofopw L, et al, Bone repair with DL-polylactide, Otolaryngol Head Neck Surg, 2001, 116(4): 756~763
    [24] Benoit M A, Mousset B, Delloye C, et al, Antibiotic loaded plaster of Paris implants coated with poly lactid-co-glycolide as a controlled release delivery system for treatment of bone infections, International Orthop, 1997, 21(6): 403~408
    [25]齐欣,刘建国,黄岚峰,等,生物可降解活性材料修复兔桡骨缺损的实验研究,中国修复重建外科,2001,15(4):202~205
    [26] Kelly J, David L, Tim A, et al, Elution characteristics of tobramycin from polycaprolatone in a rabbit model, Clin. Orthop, 2001, 394: 418~426
    [27]张文明,戴伯川,磷酸钙骨水泥作为药物缓释载体的研究进展,福建医科大学学报,2002,36(3):340~342
    [28] Otsuka M, Yoneoka K, Matsuda Y, et al, Oestradiol release from self-setting apatitic bone cement responsive to plasma-calcium level in ovariectomized rats, and its physicochemical mechanism, Pharm acol, 1997, 49(12): 1182~1188
    [29] Yu D, Wong J, Matsuda Y, et al, Self-setting hydroxyapatite cement:a novel skeletal drug delivery system for antibiotics, Pharm Science, 1992, 81(6): 529~531
    [30] Kamegai A, Shimamura N, Naitou K, et al, Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as a delivery system, Journal of Biomedical Materials Research, 1994, 4(4): 291~307
    [31] Ongpipattanakul B, Nguyen T, Zioncheck T F et al, Development of tricalcium phosphate/amylopectin paste combined with recombinant human transforming growth factor beta 1 as a bone defect filler, Journal of Biomedical Materials Research, 1997, 36(3): 295~305
    [32] Uchida A, Shinto Y, Araki N, et al, Slow release of anticancer drug from porous calcium hydroxyapatite ceramic, Orthop Research, 1992, 10(3): 440~445
    [33]游洪波,陈安民,孙淑珍,阿霉素-多孔磷酸三钙陶瓷缓释体系的研制及体内释药试验,中国修复重建外科杂志,2001,15(1):12~14
    [34]陈安民,王泰仪,孙淑珍,等,利福平—陶瓷人工骨核治疗骨结核的实验研究与临床应用,中华骨科杂志,1992,12(1):18~22
    [35] Hench L L, Bioactive glass and glass-ceramics, Journal of Materials Science. Forum, 1999, 293: 37~64
    [36] Domingues Z R, Cortés M E, Gomes T A, et al, Bioactive glass as a drug delivery system of tetracycline and tetracycline associated withβ-cyclodextrin, Biomaterials, 2004, 25: 327~333
    [37] Kokubo T, Ito S, Shigematsu M, et al, Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application, Journal of Materials Science, 1985, 20: 2001~2004
    [38] Ziegler J, Mayr-Wohlfahrt U, Kessler S, et al, Adsorption and release properties of growth factors from biodegradable implants, Journal of Biomedical Materials Research, 2002, 59: 422~428
    [39]王德平,黄文旵,陈天丹,多孔微晶玻璃作为药物载体材料的制备及其体外释药研究,无机材料学报,2001,16(6):1195~1198
    [40]王德平,黄文旵,玻璃基生物医用材料的研究进展,材料导报,2002,16(5):36~39
    [41] Sivakumar M, Panduranga-Rao K, Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite gelatin composite microspheres, Biomaterials, 2002, 23(15): 3175~3181
    [42] Sanchez E, Baro M, Soriano I, et al, In vivo-in vitro study of biodegradable and osteointegrable gentamicin bone implants, Pharm Biopharm, 2001, 52(2): 151~158
    [43] Queiroz A C, Santos J D, Monteir F J, Development of a system to adsorb drugs onto calcium phosphate materials, Materials Science: Materials in Medicine, 2005, 16: 641~646
    [44] Fujibayashi S, Neo M, Kim H M, et al, A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O-CaO-SiO2 glasses, Biomaterials, 2003, 24: 1349~1356
    [45]和峰,刘昌胜,骨修复用生物玻璃研究进展,玻璃与搪瓷,2004,32(4):55
    [46] Wilson J, Low S J, Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey, Biomaterials, 1992, 3: 123~129
    [47] Hench L L, Bioceramics, Am. Ceram. Soc., 1998, 81: 1705~1728
    [48] Hench L L, Wilson J, An Introduction to Bioceramics, World Scientific: London, 1993: 1~24
    [49] Fillo O P, La Torre G P, Hench L L, Effect of crystallization on apatite-layer formation of bioactive glass 45S5, Journal of Biomedical Materials Research, 1996, 30: 509~514
    [50] Marghussian V K, Mesgar A S M, Effects of composition on crystallization behavior and mechanical properties of bioactive glass-ceramics in the MgO-CaO-SiO2-P2O5 system, Ceramics International, 2000, 26: 415~420
    [51] Vogel W, Holand W, Development, structure, properties and application of glass-ceramics for medicine, Non-crystal Solids, 1990, 123: 349~353
    [52] Nagase M, Abe Y, Chigira M, et al, Toxicity of silica containing calcium phosphate glasses demonstrated in mice, Biomaterials, 1992, 13: 172~175
    [53] Toshihiro K, Yoshihiro A, Calcium phosphate invert glasses with soda and titania, Journal of Non-Crystalline Solids, 1999, 243: 70~74
    [54] Dias A G, Skakle J M S, Gibson I R, et al, In situ thermal and structural characterization of bioactive calcium phosphate glass ceramics containing TiO2 and MgO oxides: High temperature–XRD studies, Journal of Non-Crystalline Solids, 2005, 351: 810~817
    [55] TO?I? M B, DIMITRIJEVI? R ?, MITROVI? M M, The crystallization of calcium phosphate glass with the ratio [CaO]/[P2O5]<1. Journal of Materials Science. 2003.38: 1983~1994
    [56] Gross K A, Berzina L, Cimdins R, et al, Calcium phosphate bioceramics research in Latvia, Ceramics International, 1999, 25: 231~237
    [57] Ijiri S, Nakamura T, Fujisawa Y, et al, Ectopic bone induction in porous apatite-wollastonite containing glass ceramic combined with bone morphogenetic protein, Journal of Biomedical Materials Research, 1997, 35: 421~432
    [58]李延报,沈鸽,程逵等,生物医用钙磷酸盐微晶玻璃,材料科学与工程,2001,19(1):124
    [59] Lee Y K, Song J, Lee S B, et al, Proliferation, differentiation, and calcification of preosteoblast-like MC3T3-E1 cells cultured onto noncrystalline calcium phosphate glass, Journal of Biomedical Materials Research Part A, 2004, 69A(1): 188~195
    [60] Toshihiro K, Masanori S, Masayuki N, et al, Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses, Biomaterials, 1999, 20: 1415~1420
    [61] Toshiaki K, Takao Y, Takashi N, et al, Transmission electron microscopy observations at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios, Biomaterials, 1995, 16: 1101~1107
    [62] Dias A G, Lopes M A, Gibson I R, et al, In vitro degradation studies of calcium phosphate glass ceramics prepared by controlled crystallization, Journal of Non-Crystalline Solids, 2003, 330: 81~89
    [63]李峰,赵信义,含锶磷酸钙骨水泥体内降解性能,生物医学工程与临床,2006,10(7):210~213
    [64]朱恩群,香港发明新型生物活性骨水泥,医疗卫生设备,2005,26(1):4
    [65]程金树,李宏,汤李缨,等,微晶玻璃,北京:化学工业出版社,2005,111
    [66] Livage J, Barboux P, Vandenborre M T, et al, Sol-gel synthesis of phosphates, Journal of Non-Crystalline Solids, 1992, 18(147~148): 18~23
    [67] Daniela C, Jonathan C K, Mark E S, et al, Synthesis and structural characterization of P2O5–CaO–Na2O sol–gel materials, Journal of Non-Crystalline Solids, 2006, 12(93): 1~9
    [68] Liu D M, Troczynski T, Hakimi D, Effect of hydrolysis on the phase evolution of water-based sol-gel hydroxyapatite and its application to bioactive coatings, Journal of Materials Science: Materials in Medicine, 2002, 13: 657~665
    [69]袁媛,刘昌胜,溶胶-凝胶法制备纳米羟基磷灰石,中国医学科学院学报,2002,24(2):129~133
    [70]王德平,于睿,黄文旵,生理模拟液中的磷酸钙微晶玻璃的表面变化,硅酸盐学报,2004,32(11):1441~1444

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700