用户名: 密码: 验证码:
DBM/rhBMP-2/CPC复合材料修复大段长骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的骨缺损修复是当前骨科临床上常见的难题,长期以来,人们寻求一种良好的人工替代材料用来修复骨缺损,但结果不理想。本实验制备脱钙骨基质颗粒(DBM)/磷酸钙骨水泥(CPC)/重组人骨形成蛋白-2(rhBMP-2)的复合材料,探讨其力学性能、结构特征和生物相容性,找出该复合材料的最佳配方。进一步观察复合材料植入骨缺损内的超微结构、X线及组织学特征,评价该材料修复大段长骨缺损的能力和降解性能,为临床应用和批量化生产提供依据。
     方法:(1)预制兔DBM,用吸附法将rhBMP-2与DBM复合后,按DBM :复合材料的质量比为分别是0.1,0.2,0.3,0.4,0.5,0.6,0.7的配方与CPC复合,制备的复合材料含rhBMP-2的量约1.2×106 mg/ m3。(2)将DBM质量比为分别是0.1,0.2,0.3,0.4复合材料行体外抗压强度测定和扫描电镜(SEM)观察,探讨其力学性能、结构特征,找出该复合材料的最佳配方。(3)通过毒性实验、凝血实验、溶血实验、热原实验和肌肉植入实验评价材料的生物相容性。(4)将DBM质量比为0.2的柱状复合材料植入兔股骨髁部0.5cm缺损,术后6、12、24周处死取材进行组织学和扫描电镜观察,评价其成骨性能。(5)将质量比为0.2和0.3的柱状复合材料植入兔1.5cm长桡骨缺损和股骨髁部缺损,术后6、12、24、36周观察X线征象、组织学形态及超微结构,评价其修复大段长骨缺损的能力和降解性能。
     结果:(1)DBM的质量比在0.2~0.4的范围内,复合材料中存在较多100μm以上的不规则裂隙。DBM的质量比≤0.1时,材料内部的大部分间隙<100μm。DBM的质量比≥0.5时,DBM和CPC丧失结合及塑型能力。随DBM质量比的增加,材料抗压极限强度递减,质量比为0.1,0.2,0.3,0.4的抗压极限强度分别为(8.12±0.79)MPa,(5.46±1.13)MPa,(5.13±1.18)MPa,(1.49±0.61)MPa。各组数据经方差分析,有统计学差异(P<0.05),其中质量比为0.2,0.3两组比较无统计学差异(P>0.05),而(1.49±0.61)MPa小于人体松质骨的平均抗压强度。(2)复合材料具有良好的生物相容性。(3)组织学和扫描电镜观察见:复合材料植入股骨髁部缺损后第6周复合材料-骨界面模糊,宿骨发出纤维连续通过界面,编织骨样结构开始向材料内部长入。第12周血管和成骨细胞在复合材料内部形成。第24周骨缺损已修复,形成骨性连接,材料大部分被新骨替代。(4)将复合材料植入兔1.5cm长桡骨缺损,X线示:第6周复合材料-骨界面模糊,周围有骨痂再生。第12周骨痂生长丰富,材料-骨界面消失,材料被降解失去原有外形。第24周材料被降解更明显,髓腔开始再通。第36周材料被新骨替代,髓腔再通。组织学检查也支持此结果。复合材料植入兔股骨髁部缺损,X线示:第6周~24周,材料逐渐被降解,密度逐渐降低。扫描电镜观察结果也得出同样的结论。
     结论:随着DBM质量比的增加,孔隙越丰富而材料力学强度逐渐降低。DBM质量比为0.2~0.3的复合材料可用于修复低承重部位松质骨的骨缺损。复合材料具有良好的生物相容性,植入骨缺损内可以促进细胞、血管、新骨的长入、易降解和被自体骨替代,能够用于修复大段骨缺损。
OBJECTIVE: It is common to be met in orthopedic clinic that the bone defects haven’t ideal methods to repair at present.Scientist seek a kind of perfect and artificial bone substitute for repair of bone defects in long times, but the effect is not perfect. The aim of the present experiment is to prepare the composite material of decalcified bone matrix(DBM) impregnated calcium phosphate cement(CPC) with recombinant human bone morphogenetic protein-2(rhBMP-2), to analyze the mechanical, microstructure and biocompatibility properties of composite material, and to investigate the best component proportion of this compositions. More of the present experiment is to study the ultramicrostructure, radiographic and histological properties of composition implanted in bone defect, to evaluate the efficacy of the composite materials in healing of the bone segmental defect of long bone and to analyze the biodegradable properties for the use in clinic and the batch of production.
     METHODS:(1) The rabbit DBM were prepared beforehand. The rhBMP-2 and DBM were mixed with adsorption. The mixture was added into CPC material at the proportion of DBM weight being 0.1, 0.2, 0.3, 0.4, 0.5, 0.6and 0.7, with the proportion of rhBMP-2 being 1.2×106 mg/ m3. (2) With the proportion of DBM being 0.1, 0.2, 0.3 and 0.4, the composition were solidified and examined by biomechanics and scanning electron microscope(SEM).The mechanical and microstructure properties of composite material were analyzed for investigating the best component proportion of the compositions. (3) By study of systemic reaction of animals’body for implanting the composition, the biocompatibility was evaluated. By exvivio test of haemocytolysis, pyrogen reaction and disturbance of blood coagulation was caused by implants, the biocompatibility was analyzed. The biocompatibility was verified by view of adverse cellular reactions in the interface region between implants and muscle. (4) Rabbits underwent femur condyles osteotomies with creation of a 0.5 cm cylindrical defect and the defect was filled with implants of composite material with the proportion of DBM being 0.2.They were killed at 6,12 or 24 weeks, regenerated bone was studied by scanning electron microscope and histology. (5) Rabbits underwent osteotomies with creation of a 1.5 cm radial defect and a 0.5 cm femur condyles defect. The defect was filled with cylindrical implants of composite material with the proportion of DBM being 0.2 or 0.3. The efficacy of the composition in healing of the bone segmental defect of long bone was valuated by radiographic evaluation and histology. The biodegradable property of the composition was studied by radiographic evaluation and ultramicrostructure properties.
     RESULTS: (1) There were many irregular gaps of more than 100μm in the composite materials, when the proportion of DBM was from 0.2 to 0.4. Most of gaps’diameters were less than 100μm when the proportion of DBM was no more than 0.1. The DBM and CPC couldn’t be consolidated when the proportion of DBM was no less than 0.5. The compressive strength of the compositions was progressively decreased, in accordance with the increase of proportions of DBM. With the proportion of DBM being 0.1, 0.2, 0.3 and 0.4, the ultimate compressive strength was (8.12±0.79), (5.46±1.13), (5.13±1.18), (1.49±0.61). A significant difference (P<0.05) was found in the statistical comparison of the different groups with regard to the composition’s ultimate compressive strength, except between 0.2 and 0.3. But the mean value of human cancellous bone’s compressive strength was strikingly higher than 1.493 MPa. (2) The composition has a perfect biodegradable property. (3) At 6 weeks after femur condyles osteotomies, a significant difference in the interface region between implants and bone was not viewed by histology and scanning electron microscope. It was viewed by histology and scanning electron microscope that the interface region between implants and bone was filled with osteoid substance with colonization inside the materials by new bone formed. At 12 weeks, Histology showed formation of blood vessel and osteoblasts inside the materials. At 24 weeks, the defect in femur condyles were almost completely repaired by bone tissues, most of implants was resorbed and replaced by new bone. (4) At 6 weeks after radial osteotomies, a significant difference in the interface region between implants and bone was not observed on radiographs. Radiographs displayed new bone formation around the implants. At 12 weeks, radiographs showed an increase of new bone amount around implants. The interface region was not seen, on radiographs, and the profile of implants was changed with absorption of materials particle. At 24 weeks, radiographs showed the resorption amount of implants are increase and the uniformly radiopaque segment filled with implants became partly radioparent. At 36 weeks, radiographs showed that most of implants were replaced by the bone tissues and the radiopaque segment almostly became radioparent. The study by histology supported a coincident conclusion. From 6 to 24weeks, in femur condyles osteotomies group, radiographs showed that with absorption of materials particle, the significant decrease in the size and density of implants. The same things were observed by scanning electron microscope.
     Conclusions: Along with the increase of proportions of DBM, the porosity of compositions is more plenty, contrarily the compressive strength of compositions is descended accordingly. Compositions with DBM proportion of 0.2 ~ 0.3 could be used in repairing cancellous bone’s gap where do need to bear lower load. The composition has a perfect biodegradable property. The composite materials implanted in bone segment defect can stimulate the growth of osteoblast, blood vessel and new bones. The materials can be replaced by autogenous bone for its biodegradable property.
引文
[1]黄波,范清宇.自制磷酸钙骨水泥对顺铂缓释作用的动物体内实验.现代肿瘤,2006,14(8): 1007-1009.
    [2]范清宇,马保安,周勇,等.插入式微波天线阵列诱导高温原位灭活治疗肢体恶性或侵袭性骨肿瘤.第四军医大学学报,1999,20(12): 1024-1028.
    [3]范清宇,马保安,周勇,等.骨盆环区域骨肿瘤的外科治疗.第四军医大学学报,1999,20(12):1017-1023.
    [4]徐莘香,李印良,刘建国,等.瘤体骨切除灭活再植治疗四肢长骨巨细胞瘤.中华骨科杂志,1997,17(7):438-443.
    [5]徐万鹏,杨荣利.骨盆环肿瘤的诊断与治疗.中华骨科杂志,1999,19(11):700-720.
    [6]周勇,范清宇,蒋维中,等.异体脱钙骨基质颗粒骨水泥骨形态发生蛋白复合材料的成骨诱导活性.第四军医大学学报,1999,20(12):1085-1087.
    [7]周勇,范清宇,蔡和平.异体脱钙骨基质骨粒复合骨水泥结构特征及其生物力学性能[J].第四军医大学学报,1999,20(3):233-235.
    [8] Sasano Y,Mizoguchi I, Kagayama M. BMPs induce endochondral ossification in rats when implanted ectopically within a carrier made of fibrous glass membrane. Anat Rec, 1997,274(4):472-478.
    [9] Ripamoti U, Duncas N, Van B, et al. Recombinant transforming growth factor-beta l induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein-1 (bone morphogenetic protein-7) to initiate rapid bone formation.J Bone Miner Res, 1997,12(10):1584-1595.
    [10] Motoki D S, Mulliken J B. The healing of bone and cartilage.[J]. Clin Plast Surg, 1990, 17(3):527-544.
    [11]Urist MR. Bone: formation by autoinduction.[J].Science, 1965, 150(698):893-899.
    [12] Urist MR, Delange RJ, Finerman GAM. Bone cell differentiation and growth factors.Science, 1983, 220(4598): 680- 686 .
    [13] Urist, M. R.,Chang JJ, Lietze A, et al. Preparation and bioassay of bone morphogenetic protein and polypeptide fragments.[J].Methods Enzymology, 1987,146:294-312.
    [14] Jerosch J, Muchow H, Clahsen H. Stability of human bone cortex following various preservation and sterilization methods.[J]. Z Orthop Ihre Grenzgeb, 1991, 129(4): 295-301.
    [15] Wolfinbarger L J, Zhang Y, Adam B L, et al. A comprehensive study of physical parameters, biomechanical properties and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. II. Mechanical properties and correlation with physical parameters. [J] Spine, 1994,19(3):284-295.
    [16] Guo M Z, Xia Z S, Lin L B. The mechanical and biological properties of demineralized cortical bone allografts in animals.[J] Bone Joint Surg (Br), 1991,73(5):791-794.
    [17] Zhang Y, Homsi D, Gates K,et al. A comprehensive study of physical parameters, biomechanical properties and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. IV. Effect of gamma irradiation on mechanical and material properties. [J] Spine, 1994,19(3): 304-308.
    [18] Mizuno M, Shindo M,Kobayashi D,et al. Osteogenesis by bone marrow stromal cells maintained on typeΙcollagen matrix in vivo.[J].Bone,1997, 20 (2):101-107.
    [19] Kirker-Head CA, Gerhert TN, Schelling SH, et al. Long-term healing of bone using recombinant human bone morphogenetic protein2. [J]. Clin Orthop Relat Res, 1995, (318): 222-230.
    [20]Yang-Jo Seol, Jue-Yeon Lee, Yoon-Jeong Park, et al. Chitosan sponges as tissue engineering scaffolds for bone formation.[J] Biotechnology Letters, 2004,26(13): 1037-1041.
    [21]Zhang Li, Li Yubao,Yang Aiping, et al. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. Journal ofMaterials Science: Materials in Medicine, 2005, 16(3): 213-219.
    [22]潘朝晖,范清宇,蔡和平,等.壳聚糖对自制磷酸钙骨水泥性能的影响.第四军医大学学报, 2005,15(5):263-266.
    [23] Jue-Yeon Lee, Yang-Jo Seol, Kyoung-Hwa Kim, et al. Transforming Growth Factor (TGF)-βΙ.Releasing Tricalcium Phosphate/Chitosan Microgranules as Bone Substitutes. Pharmaceutical Research, 2004, 21 (10):1790-1796.
    [24] Paige KT, Cima LG, Yaremchuk MJ, et al. De novo cartilage generation using calcium alginate-chondrocyte constructs.[J] Plast Reconstr Surg. 1996, 97(1):168-180.
    [25] Lane JM, Bostrom MP. Bone grafting and new composites biosynthetic graft materials. [J].Instr Course Lect. 1998, (47):525-534.
    [26] Damien E, Hing K, Saeed S, et al. A Preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo. [J]. J Biomed Mater Res, 2003, 66(2):241-246.
    [27]Lemons JE. Ceramics: past, present, and future. [J]. Bone, 1996, 19(1):S121-S128.
    [28] Blokhuis TJ, Termaat MF, den Boer FC, et al. Properties of calcium phosphate ceramics in relation to their in vivo behavior. [J]. J Trauma, 2000: 48(1): 179-186.
    [29] Kivrak A, Tas AL. Synthesis of calcium hydroxyapatite-tricalcium phosphate composite bioceramic powder and their sintering behavior. [J]. J Am Ceram Soc, 1998,81(2): 2245-2252.
    [30] Hyakuna K, Yamamuro T, Kotoura Y, et al. Surface reactions of calcium phosphate ceramics to various solutions. J Biomed Mater Res, 1990: 24: 471-488.
    [31] Bosetti M, Cannas M. The effect of bioactive glasses on bone marrow stromal cells differentiation. [J]. Biomaterials,2005,26(18): 3873-3879.
    [32] Service RF. Tissue engineering build new bone. [J]. Science, 2000, 289 (5484): 1498-1500.
    [33] Sims CD, Butler PE, CaoYL, et al. Tissue engineered neocartilage using plasma derived ploy mer substrates and chondrocytes. [J].Plast Reconstr Surg,l998,101(6):1580-1587.
    [34] Ishaugsl ,Cranegm , Gurleka ,et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly (DL-lacticcoglycolic acid) foams implanted into the rat mesentery.[J].J Biomed Mater Res,1997,36(1):1-8.
    [35] Garraway R. An assesanent of the osteoinductive potential of commercial demineralized freeze-dried bone in the murine thigh muscle implanation model. J Periodontol, 1998,69(12):1325-1336.
    [36] Urist MR, Mikulski A,J. A soluble bone morphogenetic protein extracted from bone matrix with a mixed aqueous and nonaqueous solvent. Proc Soc Exp Biol Med, 1979, 162(1):48-53.
    [37] Winn SR, Randolph G,Uludag H, et al. Establishing an immortalized human osteoprecursor cell line: OPC1 [J].JBone Miner Res, 1999, 14(10): 1721-1733.
    [38] Talwar R, Di Silvio L, Huqhes FJ, et al. Effects of carrier release kinetics on bone morphogenetic protein-2-induced periodontal regeneration in vivo. [J]. Clin Periodontol, 2001, 28(4):340-347.
    [39] Uludag H, D'Augusta D, Palmer R, et al. Characterization of rhBMP-2 pharmacokinetics implanted with biomaterial carriers in the rat ectopic model. [J]. J Biomed Mater Res, 1999, 46(2):193-202.
    [40] Omura S, Mizuki N, Kawabe R et al. A carrier for clinical use of recombinant human BMP-2: dehydrothermally cross-linked composite of fibrillar and denatured atelocollagen sponge. [J]. Int J Oral Maxillofac Surg, 1998, 27(2):129-134.
    [41] SasanoY, Mizoguchi I, Kagayama M. BMPs induce endochondral ossification in rats when implanted ectopically within a carrier made of fibrous glass membrane. [J]. Anat Rec, 1997, 274(4):472-478.
    [42] Minamide A, Kawakami M, Hashizume H, et al. Evaluation of carriers of bone morphogenetic protein for spinal fusion. [J]. Spine, 2001, 26(8):933-939.
    [43] Ripamoti U, Duncas N, Van B et al. Recombinant transforming growth factor-betal induces endochondral bone in the baboon and synergizes with recombinantosteogenic protein-1 (bone morphogenetic protein-7) to initiate rapid bone formation J Bone Miner Res, 1997, 12 (10):1584-1595.
    [44] Lindholm TC, Lindholm TS, Marttinen A, et al. Bovine bone morphogenetic protein (bBMP/NCP)-induced repair of skull trephine defects in pigs. [J]. Clin Orthop Relat Res, 1994, (301):263-270.
    [45]赵建华,廖维宏,王远亮,等.消旋聚乳酸/羟基磷灰石/脱钙骨基质的制备及其体外降解特性研究[J].中国修复重建外科杂志.2003, 17(1):61-64.
    [46] Vehof J W, Mahmood J, Takita H, et al. Ectopic bone formation in titanium mesh loaded with bone morphogenetic protein and coated with calcium phosphate. [J]. Plast Reconstr Surg. 2001,108(2), 434-443.
    [47] Vchof J W, Haus M T, de Ruijter A E, et a1. Bone formation in transforming growth factor beta-l loaded titanium fiber mesh implants[J]. Clin Oral Implants Res, 2002, l3( l):94-l02
    [48]何爱珊,廖威明,李佛保等. HA梯度涂层复合BMP人工股骨柄的研究.中华骨科杂志2005,25(7):400-403.
    [49] Zellin G, Linde A. Importance of delivery system for growth-stimulatory factors in combination with osteopromotive membranes. An experimental study using rhBMP-2 in rat mandibular defects. [J].J Biomed Mater Res, 1997, 35(2):181-190.
    [50]Saito N ,Okata T , Moriuchi H,et al. Biodegradaldepoly-D, L-lacticacid- polyethylenegly colblockcopoly-mers as a BMP delivery system for inducing bone [J].J Bone Joint Surg Am, 2001, 83, (2):592-598.
    [51] Oldham JB, Lu I, Zhu X, et a1. Biological activity of rhBMP-2 released from PLGA microspheres.[J].J Biomech Eng ,2000,122 (3):289-292.
    [52] Hu YY, Zhang C, Liu R, et al. Repair of radius defect with bone-morphogenetic protein loaded hydroxyapatite/collagen-poly (L-lactic acid) composite.[J]. Chin-J-Traumatol, 2003, 6(2): 67-74.
    [53]戴毅敏,陈新梅,毛天球,等.基因重组人骨形成蛋白—2与珊瑚/聚乳酸复合异位诱导成骨的实验研究[J].口腔医学纵横杂志.2002, 18(1):14-15.
    [54] Meraw SJ, Reeve CM, Lohse CM, et a1.Treatment of peri-implant defects with combination growth factor:cement[J].J Periodontol, 2000, 71(1):8-13.
    [55] Giffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities[J].science ,2002 ,295 (5557):1009-1014.
    [56] Hench LL, Polak JM. Third-generation biomedical materials [J].Science, 2002,295 (5557):1014-1017.
    [57] Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering [J].J Biomed Mater Res, 2001, 55 (2):141-150.
    [58] Prokop A. Bioartificial pancreas: materials, devices, function, and limitations.[J] . Diabetes Technol Ther, 2001,3(3):431-449.
    [59] Suzuki Y, Tanihara M, Suzuki K, et al. Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. [J]. J Biomed Mater Res,2000, 50(3):405-409.
    [60] Huang W , Anvari B,Torres J H ,et al. Temporal effects of cell adhelion on mechanical characteristics of the single chondrocyte [J].J Orthop Res, 2003, 21 (1): 88-95.
    [61] Burdick JA, Mason MN, Hinman AD, et al. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization [J]. J Control Release, 2002, 83(1):53-63.
    [62] LeGeros RZ. Properties of osteoconductive biomaterials: Calcium phosphates[J]. Clin Orthop Relat Res, 2002, 1(1):81-98.
    [63]陈希哲,杨连甲.生物陶瓷与骨组织工程.国外医学生物医学工程分册,2000 ,23(1): 6-10.
    [64] Roy DM, Linnehan SK. Hydroxyapatite funned from coral skeletal Carbonate by hydrothennal exchange. Nature, 1974, 247(438): 220-222.
    [65] Liu CS, Wang W, Shen W.Evaluation of the biocompatibility of a non ceramic hydroxyapatite.[J]. J Endon,1997,23:490-493.
    [66]滕海军,周跃.磷酸钙骨水泥在椎体成形术中的实验研究.中国矫形外科杂志, 2004,12 (11): 839-841.
    [67] Clokie CM,Moghadam H,Jackson MT. Closure of critical sized defects with allogenic and alloplastic bone substitutes. [J] Craniofac Surg. 2002, 13(1):111-123.
    [68] Moghadam HG,Sandor GK, Holmes HH,et al. Histomorphometric evaluation of bone regeneration using allogeneic and alloplastic bone substitutes.[J]Oral Maxillofac Surg. 2004 , 62(2): 202-213.
    [69] Blokhuis TJ, Termaat MF, den Boer FC, et al. Properties of calcium phosphate ceramics in relation to their in vivo behavior.[J].J Trauma 2000: 48(1):179-186.
    [70] Bagambisa FB, Joos U, Schilli W. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J Biomed Mater Res, 1993; 27(8): 1047-1055.
    [71] Blokhuis TJ, Termaat MF, den Boer FC, et al. Properties of calcium phosphate ceramics in relation to their in vivo behavior. J Trauma 2000: 48(1):179-186.
    [72] Alam I, Asahina I, Ohmamiuda K, et al. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes. J Biomed Mater Res, 2001; 54(1): 129-138.
    [73] Boo JS, Yamada Y, Okazaki Y, et al. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg, 2002; 13(2): 231-243.
    [74] dos Santos LA, Carrodeguas RG, Boschi AO, et al. Fiber-enriched double-setting calcium phosphate bone cement. J Biomed Mater Res A, 2003, 65(2):244-250.
    [75] Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 2001, 55(3):304-312.
    [76]丛锐,王全平,胡蕴玉,等.脱钙骨基质/磷酸钙复合骨水泥诱导活性观察.中国矫形外科杂志, 2003, 11(3-4): 220-222.
    [77] Ohura K, Hamanishi C, Tanaka S, et al. Healing of segmental bone defect in rats induced by a beta-TCP-MCPM cement combinated with rhBMP-2[J].J Biomed MaterRes, 1999, 44(2) : l68-l75.
    [78] Ruhe PQ, Henriette C K-D, Joop G C W, et a1.Bone inductiveproperties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. [J]. Biomaterials, 2004, 25 (11):2123-3132.
    [79] Ohura K, Hamanishi C, Tanaka S, et al. Healing of segmental bone defect in rats induced by a beta-TCP-MCPM cement combinated with rhBMP-2. [J]. J Biomed Mater Res, 1999, 44(2):168-175.
    [80]康鹏德,裴福兴,王坤正.磷酸钙骨水泥/rhBMP-2修复犬股骨头软骨下骨缺损重建力学性能的实验研究.中国矫形外科杂志,2004, 12(2l-22): 1696-1700.
    [81]孙明林,胡蕴玉.磷酸钙骨水泥作为骨形成蛋白载体修复节段性骨缺损及相关研究[J].中华骨科杂志, 2003, 23(2): 114-120.
    [82] Okubo Y, Bessho K, Fujimura K, et al. Osteogenesis by recombinant human bone morphogenetic protein-2 at skeletal sites.[J] Clin Orthop Relat Res,2000,(375):295-301.
    [83] Hedberq EL, Tang A, Crowther RS, et al. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites.[J].Control Release, 2002, 84 (3) :137 -150.
    [84] Lu L, Yaszemski MJ, Mikos AG. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. [J]. J Bone Joint surg Am ,2001,1(2) :S82-91.
    [85]熊志力,孟繁浩,李遇伯,等.[J]生命的化学,2004,24(1):44-46.
    [86] Blom E J, Klein-N J, Klein CP, et al. Transforming growth factor-beta1 incorporated during setting in calcium phosphate cement stimulates bone cell differentiation in vitro. [J]. J Biomed. Mater. Res,2000, 50(1): 67-74.
    [87] Blom E J, Klein-N J, Wolke J G C, et al. Transforming growth factor-β1 incorporation in anα-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties.[J].Biomaterials, 2002, 23(4):1261-1268.
    [88] Chow LC.Development of self-setting calcium phosphate cements.J Ceram Soci Jap,1991, 9(9):954-957.
    [89] Constaniz BR, Ison IC, Fulmer MT, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science, 1995, 26(7): l796-l799.
    [90] Pacaccio DJ, Stern S F. Demineralized bone matrix: basic science and clinical applications. [J]Clin-Podiatr-Med-Surg-North-Am. 2005, 22(4): 599-606.
    [91] Tien-Min G. Chu, Stuart J. Warden, Charles H, et a1.Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2.[J]Biomaterials, 2007, 28(3):459–467.
    [92] Yoshitake Takahashi, Masaya Yamamoto, Yasuhiko Tabata. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin andβ-tricalcium phosphate. [J] Biomaterials, 2005, 26(23): 4856–4865.
    [93]潘朝晖,范清宇.明胶对自固化磷酸钙骨水泥性能的影响.医学研究生学报,2005, l8(8):696-699.
    [94] Wang X, Ma J, Wang Y, et al. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials, 2001, 22 (16): 2247-2255.
    [95] Hockin-Xu H K, Quinn J B. Calcium phosphate cement containing resorbable fibles for short–term reinforcement and macroporosity. Biomaterials, 2002, 23 (1):193-202.
    [96]靳安民,姚伟涛.新型可注射性磷酸钙骨水泥对松质骨成骨作用的实验研究.中国脊柱脊髓杂志. 2005, 15(1): 38-41.
    [97] Zuk PA,Zhu M,Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. [J]. Tissue Eng, 2001, 7(2) : 211-228.
    [98]裴雪涛.成体干细胞分化的可塑性及其在组织工程的应用.中国修复重建外科杂志,2004,18(2):81.
    [99] Breitbait AS, Grande DA, Kwssler R,et al. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. [J].Plant Reconstr Surg, l998, 102 (3) :567-574.
    [100] Yudoh K, Matsuno H, Nakazawa F, et al. Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. [J]. J Bone Miner Res, 2001, 16(8):1453-1464.
    [101]朱六龙,戴克戎,汤亭亭,等.骨形成蛋自-2基因转染人骨髓间质干细胞诱导异位成骨的实验研究.中国修复重建外科杂志,2003,17(2):131一135.
    [102] Riccio V, Ragine FD, Marrone G, et al. Culture of human embryonic osteoblasts: a new in vitro model for biocompatibility studies[J].Clin orthop ,1994 ,308 (1) :73-78.
    [103] Caplan AI. Mesenchymal stem cells.[J].J Orthop Res ,1991 ,9 (5):641-650.
    [104] Isogai N,Landis W,Kim TH, et al. Formation of phalanges and small joints by tissue-engineering.J Bone Joint Surg(Am),1999,81(3):306-316.
    [105]杨志明.组织工程的发展趋势.[J].中国修复重建外科杂志,2003, 17(2):81-82.
    [106] Kadiyala S,Young RG,Thiede MA,et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. [J].Cell Transplant, 1997, 6 (2):125-134.
    [107] Yoshikawa T, Ohgushi H, Tamai S. Immediate bone forming capability of prefabricated osteogenic hydroxyapatite.[J].J BiomedMater Res, 1996, 32(3):341-348.
    [108] Noski T, Yoshikawa T, Dohi Y, et al. Recombinant human bone morphogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. [J]. Artif Organs, 2001, 25(3):201-208.
    [109]徐洪璋,余斌,陈滨,等.胎儿骨髓间充质干细胞复合PLGA支架的形态学观察[J].中华创伤骨科杂志, 2004, 6(2), 187-189.
    [110]杨志明,黄富国,秦延武,等.生物衍生组织工程骨植骨的初步临床应用. [J].中国修复重建外科杂志, 2002, 16 (5):311-314.
    [111]沈兵,谢富林,谢清芳,等.自体髂骨与组织工程骨植骨的临床应用对比研究. [J].中国修复重建外科杂志, 2002, 16 (6): 429-431.
    [112]张长青,袁霆,曾炳芳,等.富血小板血浆促进骨缺损修复的实验研究.[J].中国修复重建外科杂志,2003, 17(5):355-358.
    [113] StreetJ, BaoM, deGuzmanL, et al.Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.[J].Proc Natl Acad Sci USA, 2002, 99(15):9656一9661.
    [114] Wu X, Rabkin Aikawa E, Guleserian K J, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. [J].Am J Physiol Heart Circ Physiol, 2004, 287 (2):H480一H487.
    [115] Murphy WL, Peters MC, Kohn DH, et al Sustained release of vascular endolhelial growth factor from mineralized poly(lactide-co-gly-colide) scaffolds for tissue engineering[J].Biomaterials, 2000, 21(24):2521一2527.
    [116] Murphy WL, Simmons CA, Kaigler D, et al. Bone regeneration via a mineral substrate and induced angiogenesis. [J]. J Dent Res, 2004, 83 (3):204-210.
    [117]赵廷宝,范清宇,周勇等.脱钙骨颗粒骨水泥骨形成蛋白复合材料配方优化研究.中华医学杂志,2001,81(22):1374-1376.
    [118]赵廷宝,范清宇,张殿忠,等.人脱钙骨基质颗粒的制备及应注意的问题.滨州医学院学报,2001, 24(1):6-7.
    [119]王传军,陈统一,张键,等.自固化磷酸钙人工骨(CPC)载药妥布霉素体外抗菌活性评价[J].中国临床医学, 2004, 11 (5): 794-797.
    [120]赵玮钦,陈苏民,王涛等.不同复性方法制备的rhBMP-2m诱导异位成骨活性比较[J].第四军医大学学报,2007,28(7): 619-623.
    [121]胡运生,范清宇,马保安等.磷酸钙/纤维蛋白胶复合支架材料的结构及力学性能分析. [J].功能材料,2006, 37 (4): 607-610.
    [122]吕荣,徐心智,王军.塑料包埋不脱钙大块骨组织切片及染色[J].临床与实验病理学杂志,2002,18(3):342.
    [123]任民,周勇,蔡和平,等.不同配方CPC/DBM/rhBMP-2复合材料的抗压性能和超微结构特征[J].第四军医大学学报,2007,28(24):2228-2231.
    [124]王敏,韩金祥.重组人骨形态发生蛋白-7与脱钙骨基质复合物双重骨诱导作用的生物学评价[J].生物技术通讯,2004,15(2):146-148.
    [125]戴红莲,闰玉华,李世普,等.α磷酸三钙-磷酸四钙生物骨水泥的研究.材料科学与工程, 2002,20(3): 331-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700