用户名: 密码: 验证码:
ZnAl类水滑石吸附水中磷的特征和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以处理废水中的磷为目的,研制出不同沉淀反应时间的ZnAl类水滑石吸附剂,分析了该吸附剂对水中磷(磷酸根)的吸附特征和作用机制。
     本文采用尿素分解共沉淀法制备了一系列ZnAl类水滑石,考察了制备ZnAl类水滑石的沉淀反应时间对其结构和吸附磷性能的影响。研究结果表明,随着沉淀反应时间由12h增加至96h,制得的ZnAl化合物均具有典型的类水滑石层状晶体结构,但其中的Zn/Al摩尔比由2.06降至0.70,比表面积由14.12升至112.68m2.g-1,平均孔径由104.023nm降至59.552nm。样品中A13+比例升高引起的层板正电性增强以及样品比表面积的升高引起了ZnAl类水滑石对水中磷酸根的吸附性能总体上呈现随着其沉淀反应时间增加而逐渐增强的趋势。但是,当沉淀反应时间为24h时,得到的ZnAl类水滑石(ZnAl-24)由于其很高的可交换阴离子含量而具有较高的磷酸根吸附性能,其在25℃的饱和吸附量(以P计)约为34.5mg P·g-1,吸附过程主要以层间阴离子交换作用为主。沉淀反应时间为96h时,制得的ZnAl类水滑石(ZnAl-96)也具有很高的磷吸附性能,25℃的饱和吸附量约为25mgP·g-1。此外,不同沉淀反应时间制得的ZnAl类水滑石在不同温度(25℃、30℃、40℃、50℃、60℃)下测定的磷吸附等温线结果显示ZnAl-24表现为Langmuir型,ZnAl-96则表现为Freundlich型;两者吸附磷动力学方程均符合准二级。ZnAl-24吸附磷酸根的过程中△H0<0,属于放热反应;而ZnAl-96吸附磷酸根的过程中△H0>0,为吸热反应。pH值对ZnAl类水滑石中Zn2+和A13+的溶出变化影响不大,但对其吸附磷的性能影响较大。在酸性和中性条件下磷的吸附量较大,碱性条件下磷吸附量急剧减少。共存离子对ZnAl类水滑石吸附磷的性能均有不同程度抑制作用,并且随共存离子浓度的增加抑制作用增强,原因被认为是共存离子与磷酸根形成了竞争吸附。
     类水滑石吸附磷酸根后固液相的变化结果分析发现,载磷ZnAl类水滑石的XRD图谱并无明显变化,说明磷酸盐沉淀很少,表面沉淀在ZnAl类水滑石吸附磷酸根的过程中作用不大, FT-IR图谱分析说明吸附在类水滑石上的磷是以磷酸根的形态存在的。对比分析ZnAl类水滑石吸附磷酸根前后的固液组成,溶液pH值的变化和解吸实验结果,得出ZnAl-24对水中磷的吸附是以层间阴离子交换作用为主;而ZnAl-96是以表面物理化学吸附为主。
On the purpose of removing phosphorus from wastewater, ZnAl layered double hydroxides (LDH) with different precipitation time were developed and their phosphate adsorption characteristics and mechanisms were analyzed.
     A series of ZnAl LDH were prepared and the effect of reaction time of precipitation on the structure and phosphate adsorption capacity was studied. The results show that all the samples had a typical structure of LDH. With the reaction time extending from12h to96h, the Zn/Al molar ratio decreased from2.06to0.70, average pore size reduced from104.02to59.55nm and specific surface area increased from14.12to112.68m2·g-1.Phosphate adsorption capacity of the ZnAl was in general increased gradually with the reaction time extending, which can be attributed to the surface area rising as well as the increased positive charge of the LDHs layer caused by a higher proportion of Al. With a preparation time of24h, however, a high amount of exchangeable interlayer anions was seen, giving rise to a highest phosphate uptake of34.5mg P·g-1by the ZnAI-24. This reveals that ion exchange would have played an important role during the phosphate adsorption. When the preparation time was96h, the obtained LDH also had a high capacity of phosphate of25mg P·g-1at25℃. Isotherms of phosphate adsorption by ZnAI-24(LDH with a preparation time of24h) fit well with a Langmuir equation; whereas the isotherms with ZnAl-96(LDH with a preparation time of96h) had a good agreement with a Freundlich equation. The adsorption kinetics of both ZnAl fit well with pseudo-second-order models. For the phosphate adsorption on ZnAl-24, ΔH0is less than0suggesting an exodothemic process; as for ZnAl-96the adsorption is endothermic sinceΔH0is positive. pH level of the solution did not impose an markedly influence on the dissolution of ZnAl, but obviously affected the phosphate adsorption capacity. In alkaline environment, phosphate adsorption capacity of ZnAl decreased dramatically. All the coexisting ions investigated had noticeable inhibition on the phosphate adsorption on ZnAl, which was more obvious with the concentration of ions rose. The reason could be the competition of adsorption sites for phosphate and coexisting ions.
     Analyses of solid and liquid phases during phosphate adsorption show that the variation of XRD patterns of LDH was negligible, which indicates that surface precipitation of phosphate did not contribute much to the total phosphate removal. FT-IR spectra confirm phosphate ions on the phosphated LDH. By comparing the composition of solid and liquid phases and pH during the phosphate adsorption, and the results from desorption assays, it is suggested that phosphate uptake on ZnAl-24is mainly due to ion exchange between the interlayer anions and phosphate ions while the phosphate uptake on ZnAI-96is largely attributed to physico-chemical adsorption.
引文
[1]边令喜.机械力化学法Mg-Al类水滑石的制备[D].大连交通大学,2011.
    [2]程翔.类水滑石吸附和蓝铁石沉淀回收污水中磷的研究[D].哈尔滨工业大学,2010.
    [3]崔晓慧,郑建华.尿素分解水热合成Ni-Al类水滑石的研究[J].安徽化工,2008,34(1):29-34.
    [4]董庆洁,邵仕香,李乃娘,等.无机水合氧化物对磷酸根的吸附行为[J].海湖盐与化工,2006,35(3):22-24.
    [5]郭杰.诱导结晶法处理含磷废水[D].湖南大学,2006.
    [6]郭雄华,侯万国,王书瑞,等Mg-Zn-Al-Fe型类水滑石纳米颗粒的制备及表征[J].山东大学学报(理学版),2003,38(1):89-92.
    [7]郝晓地,张向平,曹亚莉.对强化生物除磷机理与工艺认识误区的剖析[J].中国给水排水,2008,24(6):1-5.
    [8]贾春晓.元素组成对类水滑石晶体结构的影响研究[J].山东师范大学学报(自然科学版),2004,19(3):37-41.
    [9]贾晓燕.废水除磷技术的研究进展[J].重庆环境科学,2003,25(12):191-192.
    [10]荆肇乾,吕锡武.污水处理中磷回收理论与技术[J].安全与环境工程,2005,12(1):29-32.
    [11]李凯荣,郝德彪,魏作胜,等.水滑石无机阴离子交换剂的合成与表征[J].离子交换与吸附,2011,27(3):219-228.
    [12]李丽芳,侯万国,焦燕妮,等Zn-Al类水滑石结构正电荷对内禀电离平衡常数的影响[J].物理化学学报,2004,20(5):459-462.
    [13]林明,潘涌璋.鸟粪石沉淀法回收高浓度含磷废水中磷的研究[J].工业用水与废水,2011,42(6):28-32.
    [14]刘炳华,朱海燕,张惠良,等.以水滑石及类水滑石为前体制备的Ni、Mg、Al混合氧化物的合成和表征[J].无机化学学报,2005,21(6):852-858.
    [15]刘宗耀,刘方.生物除磷的研究进展[J].广州化工,2010,38(12):76-80.
    [16]秦玉香,胡明,李永丹,等NiAl类水滑石-皂石层状复合材料的制备及结构表征[J].无机化学学报,2005,21(8):1181-1185.
    [17]邱维,张智.城市污水化学除磷的探讨[J].重庆环境科学,2002,24(2):81-84.
    [18]苏延磊,侯万国,孙德军,等Mg-Fe-LDHs纳米颗粒的合成及其阴离子交换容量的研究[J].高等学校化学学报,1999,20(7):1012-1016.
    [19]孙德智,黄新瑞,程翔,等Zn-Al类水滑石吸附污泥脱水液中磷的研究[J].北京林业大学学报,2009,31(2):128-132.
    [20]孙文杰,余宗莲,关艳艳,等.垂直流人工湿地净化污水的研究进展[J].安全与环境工程,2011,18(1):25-44.
    [21]王广伟,邱立平,张守彬.废水除磷及磷回收研究进展[J].水处理技术,2010,36(3):17-22.
    [22]王然登,彭永臻,无昌永,等.强化生物除磷体系中颗粒污泥的形成及机理探讨[J].化工学报,2011,62(1):214-219.
    [23]王荣斌,李军,张宁,等.污水生物除磷技术研究进展[J].环境工程,2007,25(1):84-88.
    [24]王诗生,李德鹏,盛广宏,等.鸟粪石沉淀法污泥中磷回收研究进展[J].安徽工业大学学报(自然科学版),2012,29(1):33-37.
    [25]王文超,张华,张欣.化学除磷在城市污水处理中的应用[J].水科学与工程技术,2008 1(1):14-16.
    [26]谢鲜梅,贾莹,吴旭,等ZnFe类水滑石制备过程研究[J].太原理上大学学报,2012,43(2):163-167.
    [27]谢鲜梅.类水滑石化合物的制备、性能及应用研究[D].太原理工大学,2006.
    [28]熊飞,李文朝,潘继征,等.人工湿地脱氮除磷的效果与机理研究进展[J].湿地科学,2005,3(3):228-234.
    [29]徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展[J].工业水处理,2003,23(5):1 8-20.
    [30]闫春燕,伊文涛.层状双氢氧化物的合成及其对硼酸根的吸附[J].化工环保,2010,30(2):172-175.
    [31]杨宏,周清水,李若征,等.废水中磷的去除及其回收研究进展[J].北京工业大学学报,2006,32(10):935-952.
    [32]杨飘萍,宿美平,杨胥微,等.尿素法合成高结晶度类水滑石[J].无机化学学报,2003,19(5):485-490.
    [33].尹军,王建辉,工雪峰,等.污水生物除磷若干影响因素分析[J].环境工程学报,2007,1(4):6-1].
    [34]张波,郑遗凡,廖江芬,等Mg/Zn/Al类水滑石的热分解和水化性能研究[J].化学通报,2006,5:351-354.
    [35]张春阳,刘建广,工爱华.结晶法除磷技术的发展与应用[J].节能技术,2006,24(135):63-69.
    [36]张慧,齐荣,刘丽娜,等.镁铁双羟基复合金属氧化物的可控合成及晶而生长特征研究[J].化学物理学报,2003,16(1):45-50.
    [37]张璇.污水处理厂污泥中磷回收的研究进展[J].安徽农业利·学,2012,40(4):2168-2171.
    [38]朱燕.二元和三元金属氧化物的溶液燃烧法制备、表征和性能研究[D].安徽师范大学,2011.
    [39]Akira Ookubo, Kenta Ooi, HiromuHayashi. Preparation and phosphate ion-exchange properties of a hydrotalcite-like compound[J]. Langmuir1993,9(1):1418-1422.
    [40]Badreddine M., Legrouri A., Barroug A.,et al. Ion exchange of different phosphate ions into the zinc-aluminium-chloride layered double hydroxide[J].Materials Letters,1999,38(1):391-395.
    [41]Badreddine M., Khaldi M., Legrouri A., et al.Chloride-hydrogenophosphate ion exchange into the zinc aluminum chloride layered double hydroxide[J].Materials Chemistry and Physics,1998,52(1): 235-239.
    [42]Cai P., Zheng H.,WangC.. Competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO3 layered double hydroxides[J].Journal of Hazardous Materials,2012, 213-214(1):100-108.
    [43]CarjaG.,Y.Kameshima, Ciobanu G., et al. New hybrid nanostructures based on oxacillin-hydrotalcit e- like anionic clays and their textural properties[J].Micron 2009,40(1): 147-150.
    [44]Cheng X., Huang X., Wang X., et al.Phosphate adsorption from sewage sludge filtrate using zinc-aluminum layered double hydroxides[J] Journal of Hazardous Materials,2009,169(1-3): 958-964.
    [45]Cheng X.,Ye J., Sun D., et al. Influence of Synthesis Temperature on Phosphate Adsorption by Zn-Al Layered Double Hydroxides in Excess Sludge Liquor[J].Chinese Journal of Chemical Engineering,2011,19(3):391-396.
    [46]ChitrakarR., S. Tezuka, Sonoda A., et al.Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides[J].Journal of Colloid and Interface Science,2005,290(1):45-51.
    [47]ChubarN.I., Kanibolotskyy V. A., Strelko V.V., et al. Adsorption of phosphate ions on novel inorganic ion exchangers[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005,255(1-3):55-63.
    [48]Das J., Patra B. S., Baliarsingh N., et al. Adsorption of phosphate by layered double hydroxides in aqueous solutions[J].Applied Clay Science,2006,32(3-4):252-260.
    [49]Jing Fangli, Yuanyuan Zhang, ShizhongLuo, et al.Nano-size MZnAl (M=Cu, Co, Ni) metal oxides obtained by combining hydrothermalsynthesis with urea homogeneous precipitation procedures.Applied Clay Science,2010,48(1):203-207.
    [50]Frost, R. L., A. W. Musumeci, Kloprogge J. T., et al. Raman spectroscopy of hydrotalcites with phosphate in the interlayer:implications for the removal of phosphate from water[J]. Journal of Raman Spectroscopy,2006,37(7):733-741.
    [51]He H.M., Kang H.L., Yang X.J.,et al. High adsorption selectivity of ZnAl layered double hydroxides and the calcined materials toward phosphate[J].Journal of Colloid and Interface Science,2010,343(1):225-231.
    [52]Hibino, T., H. Ohya. Synthesis of crystalline layered double hydroxides:Precipitation by using urea hydrolysis and subsequent hydrothermal reactions in aqueous solutions[J].Applied Clay Science, 2009,45(3):123-132.
    [53]Inamuddin, Khan S.A., Siddiqui W.A. et al. Synthesis, characterization and ion-exchange properties of a new and novel'organic-inorganic' hybrid cation-exchanger:Nylon-6,6, Zr(IV) phosphate[J].Talanta,2007,71(2):841-847.
    [54]Islam, M.,PatelR.. Synthesis and physicochemical characterization of Zn/AI chloride layered double hydroxide and evaluation of its nitrate removal efficiency[J].Desalination,2010,256(1-3): 120-128.
    [55]Kameda T., Uchida M. Synthesis of Hydrotalcite from Seawater and Its Application to Phosphorus Removal[J]. Phosphorus, Sulfur, and Silicon and the Related Elements,2002,177(6-7):1503-1506.
    [56]Khaldi M., Bafreddine M, Legrouri A.,et al. Preparation of a well-ordered layered nanocomposite from zinc-aluminum-chloride layered double hydroxide and hydrogenophosphate by ion exchange[J].Materials Research Bulletin,1998,32(12):1835-1843.
    [57]Koilraj, P., S. Kannan. Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation[J].Journal of Colloid and Interface Science,2010,341(2):289-297.
    [58]Kong, X.G., Shi S.X., Han J.B., et al. Preparation of Glycy-1-Tyrosine intercalated layered double hydroxide film and its in vitro release behavior[J].Chemical Engineering Journal,2010,157(2-3): 598-604.
    [59]Kuzawa, K., Jung Y.J., Kiso Y., et al.Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent[J].Chemosphere,2006,62(1):45-52.
    [60]Lazaridis., N. K.Sorption Removal of Anions and Cations in Single Batch Systems by Uncalcined and Calcined Mg-Al-CO3 Hydrotalcite[J].Water, Air, and Soil Pollution,2003,146(1):127-139.
    [61]Leppajarvi T., Malinen I., Kangas J., et al. Utilization of Pisat temperature-dependency in modelling adsorption on zeolites[J].Chemical Engineering Science,2012,69(1):503-513.
    [62]Ulibarri M.A., Pavlovic I., Barriga C.,et al. Adsorption of anionic species on hydrotalcite-like compounds effect of interlayer anion and crystallinity[J].Applied Clay Science,2001,18(1):17-27.
    [63]Morse G.K., Perry R.,Lester J.N. The life-cycle environmental impact of key detergent builder systems in the EU[J].The Science of the Total Environment.1995,166(1):179-192.
    [64]Ramesh Chitrakar, SatokoTezuka, AkinariSonoda, et al. Adsorption of phosphate from seawater on calcinedMgMn-layered double hydroxides[J].Journal of Colloid and Interface Science,2005,290: 45-51.
    [65]Shin H.S., Kim M.J.,Nam S.Y., et al. Phosphorus removal by hydrotalcitelike compounds (HTLcs)[J].Water Science and Technology,1996,34(1):161-168.
    [66]Triantafyllidis K.S., Peleka E.N., Komvokis V.G., et al. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents[J].Journal of Colloid and Interface Science,2010,342(2): 427-436.
    [67]Ulibarri M.A., Pavlovic T., Hermosfn M.C.,et al.Hydrotalcite-like compounds as potential sorbents of phenols from water[J].Applied Clay Science,1995,10(1):131-145.
    [68]Violante A., Pucci M., Cozzolion V., et al. Sorption/desorption of arscnate on/from Mg-Al layered double hydroxides:Influence of phosphate[J].Journal of Colloid and Interface Science, 2009,333(1):63-70.
    [69]Yang W.S., Kim Y., Liu Paul K.T.,et al. A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide[J]. Chemical Engineering Science, 2002,57(1):2945-2953.
    [70]Yoshimi Seida, Yoshio Nakano. Removal of phosphate by layered double hydroxides containing iron[J].Water Research,2002,36(1):1306-1312.
    [71]Yuan, S., Li Y., Zhang Q.H., et al. ZnO nanorods decorated calcined Mg-Al layered double hydroxides as photocatalysts with a high adsorptive capacity[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,348(1-3):76-81.
    [72]Zhou, J. Z., Xu Z. P., Qiao S.Z., et al.Triphosphate removal processes over ternary CaMgAl-layered double hydroxides[J].Applied Clay Science,2011,54(3-4):196-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700