用户名: 密码: 验证码:
柑橘光合特性研究及C_4光合途径的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光合作用是果树最重要的生理过程之一,果树干物质的90%-95%来源于光合作用的产物,通过光合作用形成的碳水化合物是果树产量,果实品质形成的主要物质基础。植物C_4光合代谢途径比C_3光合代谢途径有更高的光合效率和水分利用效率,尤其在逆境条件下,如高温、干旱或强光条件下。柑橘为亚热带常绿果树,光合速率远低于落叶果树,有一定的耐荫性,忌夏季高温和高光强。改善柑橘栽培条件是提高柑橘光合效率的有效方法;同时,作为典型的C_3植物,增加柑橘体内C_4光合代谢途径的表达,则更有利于提高柑橘光合效率。本文研究了不同栽培条件下不同种类的柑橘光合特性,以及柑橘各类绿色器官C_4途径的关键酶活性,主要内容和结果如下:
     1大棚栽培条件下不同砧木对温州蜜柑光合特性的影响。以体细胞杂种红橘+枳(Citrus reticuiata+Poncirus trifoliata)、Troyer枳橙(C.sinensis×P.trifoliata)、Swingle枳柚(C.paradisi×P.trifoliata)和枳(P.trifoliata)作砧木的‘国庆4号’温州蜜柑(C.unshiu cv.Guoqing No.4)幼树为试材,在塑料大棚盆栽条件下研究了4种砧木对幼树光合特性的影响,结果表明:不同砧木上的温州蜜柑幼树的Pn日变化规律相似,均表现出双峰曲线,主峰出现在上午10∶00,次峰出现在13∶00以后;综合Pn、Tr、WUE、CE和AQY等可以看出Troyer枳橙砧幼树光合效率最弱,枳砧幼树最强,红橘+枳和Swingle枳柚介于两者之间;比叶重、可溶性蛋白质和光合色素含量等生理指标结果显示,枳砧表现最优光合特性,其他3种砧木差异不明显;在大棚条件下Pn与Gs、RH和Tr呈正相关,与Ci呈负相关。
     2田间条件下温州蜜柑的光合特性。以枳作砧木的‘国庆4号’温州蜜柑为试材,对外围叶片和内膛叶片的光合作用进行了系统研究。结果表明,6-10月,外围春梢叶片Pn日变化规律呈双峰曲线,首峰出现在上午9∶00,次峰出现在下午14∶00-15∶00,次峰值小于首峰值。11月为单峰曲线,最大值出现在上午10∶00。内膛叶Pn的日变化规律在8月为单峰曲线,最大值出现在中午12∶00,6、7、9-11月则为锯齿型曲线。外围叶的Pn显著高于内膛叶,均存在明显的季节变化规律,且趋势一致,6月最高,日变化最高值和平均值分别为8.8和4.2μmol m~(-2) s~(-1);7月下降,8-9月上升,并在9月再次出现高峰,之后随着气温下降,Pn下降至11月的最低值,分别为2.55和1.65μmol m~(-2) s~(-1)。7月AQY日变化进程为中午降低型,而CE为单峰曲线型,中午达到最高值。通过对不同叶位、结果枝与营养枝叶片光合特性测定分析结果表明:枝条中上部叶片的Pn高于其它节位叶片,结果枝叶片的光合特性强于营养枝。相关分析结果说明,田间条件下,影响温州蜜柑Pn的主要因子是PAR,Ta,Gs,Ci,和VPD。
     3柑橘绿色组织中C_4循环途径关键酶活性。以‘HB柚’(C.grandis cv.HiradoBuntan),‘红肉脐橙’(C.sinensis cv.Cara Cara)和‘国庆4号’温州蜜柑为试材,检测了叶片不同生育期和不同绿色组织(果皮、嫩茎和叶脉)的C_4途径酶的活性。结果表明:柑橘叶片在不同的发育时期均存在不同活性强度的C_4途径酶。PEPC活性呈先下降后上升的趋势,最大值出现在4月20日;PPDK的活性变化规律则相反,先上升后下降,5月1日最大;NADP-ME活性则整体呈下降趋势,全年中,‘HB柚’的NADP-ME活性显著高于‘国庆4号’温州蜜柑和‘红肉脐橙’;3个柑橘品种的NADP-MDH活性总体呈下降趋势。柑橘果皮,嫩茎和叶脉的C_4途径酶活性显著高于叶片,但低于C_4植物玉米或与其相当。不同组织中PEPC和NADP-ME活性大小顺序为果皮>叶脉>嫩茎>叶,PPDK活性为嫩茎>果皮>叶片>叶脉,NADP-MDH活性为叶脉>嫩茎>果皮>叶。这些结果说明,柑橘体内可能存在有限C_4微循环,尤其是非叶组织中的高C_4途径酶活性不容忽视。
     4不同类型柑橘品种的光合特性。以田间栽培条件下的‘能晚’(C.Sinensis cv.Lanelate)(橙类)、‘星路比’(C.paradisi cv.Star Ruby)(葡萄柚类)、‘日辉’(C.reticulata×C.grandis cv.Sunburst)(杂柑类)和‘江西无核’(C.reticulata cv.Jiangxiseedless Ponkan)(宽皮柑橘类)为试材,研究比较了不同类型柑橘品种的光合特性。结果表明:晴天和多云天气条件下,均以‘江西无核’Pn最高,分别为8.8和7.6μmolm~(-2) s~(-1),‘能晚’最低,分别为和5.4和5.2μmol m~(-2) s~(-1),‘星路比’和‘日辉’介于二者之间;阴天条件下各类柑橘之间Pn差异不明显。晴天条件下,除‘能晚’的Pn日变化规律呈单峰曲线型以外,其它3个品种的Pn日变化规律均呈双峰曲线型,有轻度“午休”现象。多云天气条件下,除‘能晚’表现为单峰曲线外,其它3个品种的Pn日变化进程均表现为锯齿型。阴天天气条件下,4个柑橘品种的Pn日变化规律模式均为单峰曲线,最大值出现在上午11∶00。4个柑橘品种的光补偿点为2.7-10.2μmol m~(-2)s~(-1),光饱和点为1088-1139μmol m~(-2) s~(-1),暗呼吸速率为0.0104-0.3313μmol m~(-2) s~(-1),AQY为0.023-0.0405,CO_2补偿点为64.3-69.0μmol mol~(-1),CO_2饱和点为788-142lμmolmol~(-1),光合速率为5.8-10.4μmol m~(-2) s~(-1),光呼吸速率为0.90-1.01μmol m~(-2) s~(-1),羧化速率为0.0139-0.0172,光合最适温度为26.4℃-30.4℃。由以上结果得出:柑橘具有明显的C_3植物的光合特征。另外,在柑橘体内也能检测到低活性的C_4途径酶(PEPC,PPDK,NADP-ME,NADP-MDH),说明在柑橘体内可能存在有限的C_4循环途径。
Photosynthesis is the most valuable physiology reaction for fruit trees; almost 90%-95%dry material is formed through photosynthesis. Carbohydrogen came from photosynthesis is the basic material to form quality and quantity in fruit. The C_4 pathway photosynthesis is more efficiency than C_3 pathway, especially under stressful conditions, such as high temperature, drought and high photosynthetic active radiation(PAR). Citrus, as a evergreen fruit tree grown in semi-tropical, possessing a far lower net photosynthetic rate (Pn) than hardwood fruit tree and is shade tolerance. It is well known that exposing citrus trees to high temperatures and high PAR in summer could lead to reductions in Pn. Improving cultivation level is a good method to improve Pn for citrus; at the same time, as a typical C_3 plant, improving C_4 pathway photosynthesis in citrus will increase Pn more quickly. We studied the photosynthesis of different kinds of citrus planted in different environment and the C_4 pathway enzymes in different citrus' green tissue, the main contents and results are as follow:
     1, Effects of different rootstocks on Satsuma Mandarin in photosynthesis under greenhouse condition. It was conducted with Guoqing No.4 Satsuma Mandarin three-year-old young tree whose rootstocks were Trifoliate [P. trifoliata], sexual hybrid Troyer Citrange[C. sinensis×P, trifoliata], Swingle Citrumelo[C. paradisi×P. trifoliata] and somatic hybrid Red tangerine+Trifoliate [C. reticuiata+P. trifoliata]. Studyed on the effects of rootstocks on the Pn through potted experiment in the green house, Results showed that: The diurnal variation of Pn in young tree with different rootstocks was seminar and presented bimodal carve; the first peak occurred at 10: 00, the second peak occurred after 13: 00 and the value was lower than the first one. With the analysis of Pn, transpiration rate(Tr), water use efficiency(WUE), apparent quantum yield(AQY) and carboxylation efficiency(CE), the results were the young tree--Troyer Citrange had a weaker photosynthesis, Trifoliate's photosynthesis was the best, red Tangerin+Trifoliate and Swingle Citrumelo was between the above two; Trifoliate had a higher physiological value in soluble protein, specific leaf weight and photosynthetic pigment; the other three didn't have remarkable difference. Under protected condition, Pn had obvious positive relationship with stomatal conductance(Gs)、Tr and relative humidity(RH), Pn had obvious negative relationship with intercellular CO_2 concentration(Ci).
     2, Photosynthesis of Satsuma Mandarin under nature condition. The photosynthesis of sunlit and shaded leaves in 'Guoqing No.4' Satsuma Mandarin whose rootstocks were Trifoliate was studied under nature condition. The results showed that, the diurnal variation of Pn in sunlit leaves from June to October presented bimodal curve, the first peak occurred at 9: 00, the second peak occurred at 14: 00-15: 00 and the value was lower than the first one. The diurnal variation of Pn present one peak curve in November and the maximum value occurred at 10: 00. In August, the diurnal variation of Pn showed one peak curve with the most value at 12: 00 and presented indention curve in June, July and from September to November. The sunlit leave showed higher Pn than shaded leaves. The sunlit and shaded leaves presented the similar seasonal variation, the maximum occurred at June, it were 8.8 and 4.2μmol m~(-2) s~(-1) respectively, and decreased in July, then increased from August to September and came to the second maximum value in September. After that, with a progressive decline in temperature, Pn decreased quickly and came to the minimum value in November, it were 2.55 and 1.65μmol m~(-2) s~(-1). In July, diurnal variation of AQY presented a midday depression pattern and CE showed one peak curve. The Pn at middle leaves was higher than at based and apical ones. After studied the photosynthetic of different types of shoot, the fruit-beating shoot have a better photosynthetic than nutritive shoot. Analysis all results, the main factors effected Pn of Satsuma Mandarin under nature condition is PAR, Ta, Gs and VPD.
     3, Activity of C_4 pathway enzymes in different tissues of citrus. Hirado Buntan pummelo(C. grandis cv. Hirado Buntan), Cara cara navel orange(C. sinensis cv. Cara Cara) and Guoqing No.4 Satsuma Mandarin were used as experimental material. The activity of C_4 pathway enzymes in citrus leaf at different time in different tissues, such as pericarp, fresh shoot and vein, were been assayed. The results showed that: There were C_4 pathway enzymes activities at different time in leaf. The activity of PEPC declined at first and then increased and the maximum value occured in April 20; The activity of PPDK increased firstly and then declined, the maximum value occurred in May 1; The activity of NADP-ME declined all the time, Hirado Buntan pummelo showed significant higher NADP-ME activity than Cara cara navel orange and Guoqing No.4 Satsuma Mandarin all the time; The activity of NADP-MDH declined all the time too. The activity of C_4 pathway key enzyme in pericarp, stem and fresh shoot were significant higher than in citrus leaf and lower or equals to in maize leaf. From higher to lower, the activity of PEPC and NADP-ME in different tisse was in pericarp, stem, fresh shoot and leaf, activity of PPDK was fresh shoot, pericarp, leaf and stem, activity of NADP-MDH was stem, fresh shoot, pericarp and leaf. It implied there be a C_4 pathway photosynthesis in citrus, especially in pericarp, stem and fresh shoot, the high activity of C_4 enzymes were very important.
     4, Photosynthesis in different kinds of citrus(cultivar). The photosynthesis of Lanelate navel orange(C. Sinensis cv. Lanelate), Star Ruby Grapefuit(C. Paradisi cv. Star Ruby), Sunburst tangelo(C. Reticulata×C. Grandis cv. Sunburst) and Jiangxi seedless Pnkan(C. Reticulata cv. Jiangxi seedless Ponkan) under nature condition were studied. The results showed that: in sunny and cloudy day, Jiangxi seedless Pnkan had the maximum Pn value, it were 8.8 and 7.6μmol m~(-2) s~(-1), and Lanelate navel orange had the minimum Pn value, it were 5.4 and 5.2μmol m~(-2) s~(-1), Star Ruby and Sunburst tangelo were between the above two; In overcast day, Pn among four kinds of citrus didn't show obvious difference. In sunny day, diurnal variation of Pn presented one peak curve in Lanelate navel orange and two peak curves in others, presented light "midday depression". In cloudy day, diurnal variation of Pn showed one peak curves in Lanelate navel orange and indention curve in others. In overcast day, all citrus presented one peak curve in diurnal variation of Pn and the maximum value occurred at 11: 00. Light compensation point in four kinds of citrus were 2.7-10.2μmol m~(-2) s~(-1), light saturation point were 1088-1139μmol m~(-2) s~(-1), dark respiration rate were 0.0104-0.3313μmol m~(-2) s~(-1), AQY were 0.023-0.0405, CO_2 compensation point were 64.3-69μmol m~(-2) s~(-1), CO_2 saturation point were 788-1421μmol m~(-2) s~(-1), photosynthetic capacity were 5.8-10.4μmol m~(-2) s~(-1), photorespiratory rate were 0.90-1.01μmol m~(-2) s~(-1), CE were 0.0139-0.0172 and the best temperature for Pn were 26.4℃-30.4℃. From those results, we can concluded that citrus possessed obvious characteristic of C_3 pathway photosynthesis, at the same time, we also found very lower activity of C_4 pathway enzymes (PEPC, PPDK, NADP-ME, NADP-MDH), it implied there maybe exists a limited C_4-microcycle photosynthesis in citrus.
引文
1.曹慧,许雪峰,韩振海,王孝威,郭图强.水分胁迫下抗旱性不同的两种苹果属植物光合特性的变化.园艺学报,2004,31(3):285~290
    2.潘晓云,曹琴东,王根轩,杨晓燕.扁桃与桃光合作用特征的比较研究.园艺学报,2002,29(5):403~407
    3.陈履荣,陈志辉,杨天仪.藤稔葡萄部份栽培生理特性研究.园艺学报,1997,24(4):383~384
    4.陈献勇,廖镜西.水分胁迫对果梅光合色素和光合作用的影响.福建农业大学学报,2000,29(1):30~39
    5.陈绪清,张晓东,梁荣奇,张立全,杨凤萍,曹鸣庆.玉米C_4型PEPC基因的分子克隆及其在小麦的转基因研究.科学通报,2004,49(19):1976~1982
    6.陈玉海,孙伯筠,李雄.苹果梨树冠光能利用的研究.内蒙古农牧学院学报,1999,20(1):56~59
    7.陈志辉,张良诚,吴光林,张上隆.水分胁迫对柑桔光合作用的影响.浙江农业大学学报,1992,18(2):113~118
    8.陈志辉,张良诚.柑桔光合作用对环境温度的适应.浙江大学学报,1994a,20:389~392
    9.陈志辉,张良诚.温州蜜柑叶片光合效率的日变化.植物生理学报,1994b,20(3):263~271
    10.邓伯勋,章文才,陈冬玲.大棚栽培对脐橙光合作用的影响.华中农业大学学报,1995,14(5):481~487
    11.段伟,李新国,孟庆伟,赵世杰.低温下的植物光抑制机理.西北植物学报,2003,23(6):1017~1023
    12.樊卫国,李迎春.梨属4个重要种的光合特性及水分利用率.西南农业学报,2006,19(6):1144~1146
    13.范晶,赵惠勋,李敏.比叶重与光合能力的关系.东北林业大学学报,2003,31(5):37~39
    14.符军,王军,高建社.几个猕猴桃品种净光合速率和蒸腾速率与环境因素的关系.西北植物学报,1998,18(1):90~96
    15.易干军,姜小文,霍合强,张秋明,周碧容.关溪蜜柚光合特性的研究.园艺学报,2003,30(5):519~524
    16.高仪,王文江,都荣庭.核桃光合特征的研究.园艺学报,1993,20(4):319~323
    17.郭继英,严大义,王秉昆,郭勇,程桂红.巨峰群葡萄光合特性的研究.北京农业科学,1994,12(4):30~32
    18.郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,1996,32(1):1~8
    19.郭文武,邓秀新.原生质体融合与遗传改良.果树科学,1996,13(1):49~55
    20.郭延平,张良诚,洪双松.温州蜜柑叶片光合作用的光抑制.园艺学报,1999,26(5):281~286
    21.郝乃斌,谭克辉,那青松.C_3植物绿色器官PEPCase活性的比较研究.植物学报,1991,33(9):692~697.
    22.何洁,刘鸿先.低温与植物的光合作用.植物生理学通讯,986,(2):1~6
    23.何天富,柑橘学.北京:中国农业出版社,1999,219~222
    24.贺东祥,沈允钢.几种常绿植物光合特性的季节变化.植物生理学报,1995,21(1):761~764
    25.胡利明,夏仁学,周开兵,黄仁华,王明元,谭美莲.不同砧木对温州蜜柑光合特性的影响.园艺学报,2006,33(5):937~941
    26.胡美君,郭延平,沈允钢,张良诚.柑橘属光合作用的环境调节.应用生态学报,2006,17(3):535~540
    27.胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响.园艺学报,2001,28(1):41~46
    28.胡绪岚,张上隆.国外果树光合作用研究进展.园艺学文摘,1983,(5):1~9
    29.黄从林,张大鹏.葡萄叶片光合速率日间降低内外因调控的研究.园艺学报,1996,23(2):128~132
    30.黄卫东,吴兰坤,战吉成.中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节.中国农业科学,2004,37(12):1981~1985
    31.贾梯.矮化砧苹果树叶片构造及光合作用的研究.北京农学院学报,1995,2:23~28
    32.姜卫兵,高光林,戴美松,韩浩章,汪良驹.盐胁迫对不同砧穗组合梨幼树光合日变化的影响.园艺学报,2003,30(6):653~657
    33.姜卫兵,俞开锦,高光林,马凯.梨不同砧穗组合光合特性.园艺学报,2002,29(6):569~570
    34.焦德茂,季本华.光氧化条件下两个水稻品种光合电子传递和光合酶活性的变化.作物学报,1996,22(1):43~49
    35.匡廷云,卢从明,李良壁.作物光能利用效率与调控.济南:山东科学技术出版社,2004
    36.邝龙桂,汪足仙.中华猕猴桃光合特性研究.果树科学.199l,8(2):107~108
    37.李保国,王永惠.增施N肥和环剥对枣树光合速率的影响.河北农业大学学报,1991,14(3):34~37
    38.李保国.枣树叶片的光合速率与叶绿素含量的关系的研究.河北林学院学报,1991,(2):79~83
    39.李勃,张力思,刘庆忠,刘成连.砧木对甜樱桃幼树生长量及光合特性的影响.园艺学报,2006,33(1):115~117
    40.李合生.植物生理生化实验原理和技术.北京:中国高等教育出版社,2000,134~137,184~185
    41.李建华,罗国光.巨峰葡萄叶片生长动态与光合特性的研究.园艺学报,1996,23(3):213~217
    42.李六林,杨佩芳,田彩芳,崔汝光,高万敏.树莓光合特性的研究.园艺学报,2003,30(3):314~316
    43.李荣富,梁艳荣,胡晓红,王淑莉,蒋亲贤,郭喜平,梁莉.抗寒矮化砧对金红苹果生理特性的影响.华北农学报,2003,18(4):69~71
    44.李卫华,郝乃斌,戈巧英.C_3植物中C_4途径的研究进展.植物学通报,1999,16(2):97~106
    45.李卫华,卢庆陶,郝乃斌.大豆叶片C_4循环途径酶.植物学报,2001,43(8):805~808
    46.李宪利,高东升,夏宁.赤霉素设施条件下桃幼果期淀粉代谢酶活性影响的研究.山东农业大学学报,1997,28(2):146~150
    47.李小梅,邓秀新,邓伯勋.柑桔体细胞杂种的光合特性研究.2000,19(6):585~588
    48.李延,刘星辉,庄卫民.缺镁对龙眼光合作用的影响.园艺学报,2001,28(2):101~106
    49.廖镜思,刘殊,陈清西.龙眼光合特性及其影响因子的研究.园艺学报,1996,23(1):1~7
    50.林植芳,詹姆士阿勒林格.光、温度、水蒸汽压亏缺及二氧化碳对番木瓜光合作用的影响.植物生理学报,1982,8(4):363~371
    51.刘成连,战吉兵,原永兵,于翠彬,于龙飞.水杨酸对苹果叶片光合作用的影响.园艺学报,1999,26(4):261~262
    52.刘东焕,赵世伟,张佐双,刘玉军.温室条件下不同品种山茶的光合特性.园艺学报,2003,30(1):65~68
    53.刘国琴,樊卫国,何嵩涛,刘进平.16个柑桔品种的光合特性.种子,2003,(5):12~14
    54.刘平,温险良.外源GA对枣树~(14)C一光合产物向果实分配的影响.河北农业大学学报,2002,2(4):34~40
    55.刘殊,廖镜思,陈清西.龙眼光合作用对环境温度的响应.福建农业大学学报, 1997,26(4):407~410
    56.刘廷松,李桂芬.设施栽培条件下葡萄盛花期的光合特性.园艺学报,2003,30(5):568~570
    57.刘旭峰,樊秀芳.猕猴桃幼树光合特性的研究.园艺学报,1993,20(4):329~333
    58.娄义龙,刘振业,刘贞琦.烟草光合作用的遗传研究Ⅳ.叶绿素含量的遗传及其与产量的关系.贵州农学院学报,1994,13(2):1~7
    59.路丙社,白志英,崔建州,李春友,李会平.干旱胁迫对阿月浑子叶片光合作用的影响.河北农业大学学报,2004,27(1):43~47
    60.路丙社,白志英,董源,梁海永.阿月浑子光合特性及其影响因子的研究.园艺学报,1999,26(5):287~290
    61.吕均良.枇杷的光合作用特性.果树科学,1992,9(2):110~112
    62.罗红艺.C_3植物、C_4植物和CAM植物的比较.高等函授学报,2001,14(5):35~38
    63.罗华建,刘星辉.水分胁迫对枇杷光合特性的影响.果树科学,1999,16(2):126~130
    64.牟云官.几种落叶果树光合特性的探索.园艺学报,1986,13(3):157~162
    65.那松青.C_3植物中PEPC及其有关酶活性研究.[硕士学位论文].北京:中国科学院植物研究所,1986
    66.聂磊,李淑仪,廖新荣.沙田柚叶绿素荧光特性及其叶片矿质元素含量的关系.果树科学,1999,16(4):284~288
    67.欧毅,王进,谢永红,戴正林.不同砧木对李叶片光合效能和生理生化指标的影响.两南农业大学学报,2006,28(3):428~431
    68.彭方仁,黄宝龙.密植板栗树光合作用的研究.浙江林学院学报,1997,24(2):151~154
    69.彭永宏,章文才.猕猴桃的光合作用.园艺学报,1994,21(2):151~157
    70.彭子模,阵冬丽,祝长青.浅谈光合作用在农业生产上的应用.生物学通报,2000,3(4):8~10
    71.阮勇凌,张良诚,吴光林,张上隆.水分胁迫对温州蜜柑光合特性的影响.园艺学报,1988,15(2):93~98
    72.陶俊,陈鹏,余旭东.银杏光合特性的研究.园艺学报,1999,26(3):157~160
    73.陶俊.银杏光合特性的研究.园艺学报,1999,26(3):157~160
    74.汪良驹,姜卫兵,高光林,韩浩章,邝易玲,梁生琴.幼年梨树品种光合作用的研究.园艺学报,2005,32(4):571~577
    75.王白坡.田间条件下砂梨光合作用的研究.园艺学报,1987,14(2):97~101
    76.王春清,祖容,张贤泽.葡萄幼树若干光合特性的研究.园艺学报,1989,16(4):279~285
    77.王红霞,张志华,玄立春.果树光合作用研究进展.河北农业大学学报,2003,26(1):49~52
    78.王华田,程鹏飞.光照对板栗生长发育及光合作用的影响.经济林研究,1995,13(2):13~16
    79.王建林,胡书根,王中奎.西藏光核桃与栽培桃光合特性比较研究.园艺学报,1997,24(2):197~198
    80.王强,卢从明,张其德,郝乃斌,戈巧英,董凤琴,白克智,匡廷云.超高产杂交稻两优培九的光合作用、光抑制和C_4途径酶特性.中国科学:C辑,2002,32(6):481~487
    81.王文江,刘永居,王永蕙.大磨盘柿树光合特性的研究.园艺学报,1993,20(2):105~110
    82.王志强,何方,牛良.设施栽培油桃光合特性研究.园艺学报,2000,27(4):245~250
    83.王中英,解思敏,杨佩芳.矮砧苹果树光合速率变化研究.华北农学报,1990,5(3):89~93
    84.王中英,牛铁泉.根外施肥对苹果树光合速率的影响.园艺学报,1994,21(4):398~400
    85.魏爱丽,王志敏,翟志席,龚元石.土壤干旱对小麦旗叶和穗器官C_4光合酶活性的影响.中国农业科学,2003,36(5):508~512
    86.魏书銮,于继洲.核桃叶片的叶绿素含量与光合速率的研究.北京农业科学,1994,12(5):31~33
    87.温商霖,刘英军.葡萄田间光合作用的研究.园艺学报,1989,16(3):168~171
    88.文晓鹏,罗充,樊卫国.板栗光合生理研究Ⅰ.板栗品种的光合性能及影响因子.贵州农学院学报,1994,13(2):39~44
    89.吴光英.杂种豫白桃与亲术品种光合速率比较研究问报.中国果树,1983,(3):42~43
    90.吴可红,庄伊美,谢志南.不同砧木碰柑光合速率的研究.福建林学院学报,1991,11(2):209~214
    91.夏仁学,史学鹏.叶龄及树冠不同部位光强对黄花梨光合速率的影响.武汉植物学研究,1989,7(2):163~166
    92.肖慈木,王丹,范昭明.砧木影响梁平柚树体生长的生理生化特性研究.中国南方果树1996,25(2):14~16
    93.谢建国,李嘉瑞,赵江.猕猴桃若干光合特性研究.北方园艺,1999,2:26~ 28
    94.谢深喜,吴月娥,彭波涛.梨树叶片光光合特性研究.湖南农业大学学报,1996,22(2):134~138
    95.徐建国.柑橘优良品种及无公害栽培技术.北京:中国农业出版社,2003
    96.徐坤,邹琦.生姜光合作用再探.山东农业大学学报(自然科学版),2000(2):147~150
    97.徐晓玲,王志敏,张俊平.灌浆期热胁迫对小麦不同绿色器官光合性能的影响.植物学报:英文版,2001,43(6):571~577
    98.许大全.光合作用“午睡”现象的生态、生理与生化.植物生理学通讯,1990,(6):5~10
    99.许大全.光合作用效率.上海:上海科学出版社,2002
    100.杨建民,王中英.短枝型与普通型苹果叶片光合特性比较研究.中国农业科学,1994,2(4):31~36.
    101.杨建民,张国良,张林平.李幼树光合特性的研究.园艺学报,1997,24(4):381~382
    102.杨江山,常永义,种培芳.3个樱桃品种光合特性比较研究.园艺学报,2005,32(5):773~777
    103.杨玲,许海滨.水分胁迫对佛手叶片叶绿体的影响.中国农学通报,2001,17(1):20~22
    104.尹利德.三个李品种幼树光合特性的研究.[硕士学位论文],武汉:华中农业大学图书馆,2004
    105.游恺哲.喷灌对番荔枝光合作用的影响.园艺学报,1999,26(6):400~401
    106.俞开锦.影响梨树光合作用的环境和树体因素分析.[硕士学位论文],南京:南京农业大学图书馆,2002
    107.袁琳,许大全.外源赤霉素GA_3对大豆光合作用的促进和叶片内源赤霉素GA_3的水平.植物生理与分子生物学学报,2002,28(4):317~320
    108.曾长立,王晓明,张福锁,王兴仁.浅析C_3植物和C_4植物对大气中CO_2浓度升高条件下的反应.江汉大学学报,2001,18(3):7~14
    109.战吉成,黄卫东,王志龙,王利军.葡萄幼苗对弱光环境的形态和生长反应.中国农学通报,2002,18(2):1~2,17
    110.张盹明,王继和,马全林.干旱沙区2种梨树光合特性的研究.西北植物学报,2001,21(1):94~100
    111.张方,迟伟,金成哲,王强,张其德,吴乃虎.高梁C_4型磷酸烯醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育.科学通报,2003,48(14):1542~1546
    112.张放,张良诚,李三玉.柑桔开花、幼果期的异常高温胁迫对叶片光合作用的影响.园艺学报,1995,22(1):11~15
    113.张国良,安连荣,代焕琴,王海光,柴晓波.柿树光合特性的研究.河北农业大学学报,2000,23(3):51~54
    114.张建光,刘玉芳,施瑞德.不同砧木上苹果品种光合特性比较研究.河北农业大学学报,2004,27(5):31~33
    115.张绍玲,杨庆山,马香莲,孟月娥.苹果短枝型品种光合特性研究.果树科学,1991,8(3):129~134
    116.张振贤,艾希珍,张福馒.蔬菜作物光合作用研究进展.园艺学报,2001,28(增):627~632
    117.张志华,高议,王文江,郗荣庭.核桃光合特性的研究.园艺学报,1993,20(4):319~323
    118.张治安,李亚东,徐展.4种不同类型越桔叶片光合作用温度特性的比较研究.吉林农业大学学报,1999,21(4):16~19
    119.赵大中,罗先实,鲁俊良,吴望春,罗方荣.柑橘砧木矮化预选指标的解剖学研究.果树科学,1995,12(4):219~223
    120.赵军营,王利军,牛铁泉,李绍华.苹果幼苗部分根系水分胁迫对光合作用主要参数的影响.果树学报,2005,5:446~449
    121.赵英琪,王乃江,赵智渊.稀土铈对大扁杏光合作用和抗旱性影响的研究.西北植物学报,1999,19(5):54~58
    122.赵宗方,凌裕平,吴建华,张建文.梨树的光合特性.果树学报,1993,10(3):154~156
    123.郑凤英,彭少麟.植物生理生态指标对大气CO_2浓度倍增响应的整合分析.植物学报,2001,43(11):1101~1109
    124.郑国生,邹琦.不同天气条件下田间大豆光合作用日变化的研究.中国农业科学,1993,26(1):44~50
    125.周开兵,郭文武,夏仁学,胡利明,黄仁华.两种柑橘体细胞杂种砧木利用价值和砧穗互生化机制的探讨.园艺学报,2004a,31(4):432~437
    126.周开兵,郭文武,夏仁学,王贵元,沈婷.柑橘体细胞杂种砧木对脐橙幼树生长及根和叶中抗氧化酶系活性的影响.植物生理学通讯,2004b,40(5):450~455
    127.朱林,温秀云,李文武.中国野生种毛葡萄光合特性的研究.园艺学报,1994,21(1):31~34
    128. Aoyagi K, Bassham J A. Pyruvate orthophosphate dikinase of C_3 seeds and leaves as compared to the enzyme from maize. Plant Physiol, 1984, 75:387~392
    129.Avery D J, Priestley C A, Treharne K J.Integration of assimilation and carbohydrate utilization in apple. Photosynthesis and Plant Development. 1989, 221-231
    130.Badger M R, Price G D. The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Pyhsiol Plant Mol Biol, 1994,45: 369-392
    131.Barber J, Anderson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci, 1992, 17: 61-66
    132.Beaujean A, Issakidis-Bourguet E, Catterou M, Dubois F, Sangwan R S, Sangwan-Norreel B S. Integration and expression of sorghum C4 phosphoenolpyruvate carboxylase and chloroplastic NADP+-malate dehydrogenase separately or together in C3 potato plants. Plant Sci, 2001, 160: 1199-1210
    133.Bernacchi C J, Singsaas E L, Pimentel C, Portis A R, Long S P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ, 2001, 24: 253-259
    134.Bower J P, Wolstenholme B N, De Jager J M. Incoming solar radiation and internal water status as stress factors in avocado, Persea Americana (Mill.) cv. Edranol. Crop Prod, 1978, 7: 129-134
    135.Boyer J S. Leaf enlargement and metabolic rates in corn, soybean and sunflower at various leaf water potentials. Plant Physiol, 1970, 46: 233-235
    136.Bravd B A, Palgi A, Lurie S. Changing ribulose diphosphate carboxylase/oxygenase activity in ripening tomato fruit. Plant Physiol, 1977,160: 309-312
    137.Brown R H, Bouton J H. Physiology and genetics of interspecific hybrids between phytosynthetic types. Annu Rev Plant Physiol Plant Mol Bio, 1993, 44: 435-456
    138.Brown R H, Bassett C L, Cameron R G, Evans R T, Bouton J H, Black C C, Steinberg L O, Denino M J. Photosynthesis of F1 hybrids between C4 and C3 -C4 species of Flaveria. Plant Physiol, 1986,182: 211-217
    139.Camilo L. Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets. Sci Hortic, 2002, 96: 115-125
    140.Casati P, Lara M and Andreo C. Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submerged aquatic species. Plant Physiol, 2000, 123: 1611 -1622
    141.Castle W S, Tucker D P, Krezdorn A H. Rootstocks for Florida Citrus. Institute of Food and Agricultural Sciences/University of Florida, 1989, 2: 17-19
    142.Chartzoulakis K, Patakas A, Kofidis G, Bosabalidis A, Nastou A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hortic, 2002, 95: 39-50
    143.Chen J W, Zhang S L, Zhang L C, Zhao Z Z, Xu J G. Fruit photosynthesis and assimilate translocation and partitioning: their characteristics and role in sugar accumulation in developing Citrus unshiu fruit. Acta Botanica Sinica, 2002, 44: 158-163
    144.Cohen S, Moreshet S, Guillou L L, Simon J C, Cohen M. Responses of citrus trees to modified radiation regime in semi-arid conditions. J Exp Bot, 1997, 48: 35-44
    145.Dejong T M. CO2 assimilation characteristics of five prunus tree fruit species. J Ameri Soc Hort Sci, 1983, 108: 303-307
    146.Duffus C M, Rosie R. Some enzyme activities associated with the chlorophyll containing layers of the immature barley pericarp. Planta, 1973, 114: 219-226
    147.Edwards G E, Walker D A. C3, C4: mechanisms, and cellular and environmental regulation of photosynthesis. Oxford, Blackwell Scientific Publications, 1983, 542
    148.El-Sharkawy M A, Cock J H. Water use efficiency of cassava. L.: effects of air humidity and water stress on gs and gas exchange. Crop Sci, 1984, 24: 497-502
    149.Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Ecologia, 1989,78:9-19
    150.Farquhar G D, Von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149: 78-90
    151.Ferree D C, Scurlock D M, Schmid J C. Root pruning reduces photosynthesis transpiration, growth and fruiting of container-grown French-American hybrid grapevienes. Hortscience, 1999,34(6): 1064-1067
    152.Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot, 2002, 89: 183 - 189
    153.Fujll J A, Kennedy R A. Seasonal changes in the photosynthetic rate in apple trees. A comparision between fruiting and nonfruiting trees. Plant Physiol, 1985, 78(3) : 519-524
    154.Fukayama H, Tsuchida H, Agarie S. Significant accumulation of C4 2specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol, 2001, 127: 1136-1146
    155.Gehlen J, Panstruga R, Smets H, Merkelbach S, Kleines M, Porsch P, Fladung M, Becker I, Rademacher T, Hausler R E, Hirsch H J. Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plan Mol Biol, 1996, 32: 831-848
    156.Graham J H, Syvertsen J P. Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol, 1985, 101: 667-676
    157.Grozov D N, Shishkanu G V. Photosynthesis by apple trees on a dwarfing rootstock. Sadovodstvo, Vinogradarstvo Vinodelie Moldavii. 1972,(12): 10-13
    158.Guo W W, Cheng Y J, Deng X X. Regeneration and molecular characterization of intergeneric somatic hybrids between Citrus reticulata and Poncirus trifoliata. Plant Cell Rep, 2000, 20: 829-834
    159.Gupta S K. Light /dark modulation of phosphenolpyruvate carboxylase genes in Flaveria trinercia (C4) and F pringlei (C3). Photosynth Res, 1994, 42: 133- 143
    160.Hagidimitriou M, Pontikis C A. Seasonal changes in CO2 assimilation in leaves of five major Greek olive cultivars. Sci Hortic, 2005, 104: 11 -24
    161.Harrell D C, Williams L E. Effect of trunk girdling and gibberellin (GA3) application on leaf net CO2 assimilation rate of two seadlings grape rieties. Plant physiol (supplement), 1985, 77 (4): 61-69
    162.Harris M J, Heath R L. Ozone sensitivity in sweet corn (Zea mays L.) plants: A possible relationship to water balance. Plant Physiol, 1981, 68: 885-890
    163.Hata S, Matsuoka M. Immunological studies on pyruvate orthophosphate dikinase in C3 plants. Plant Cell Physiol, 1987, 28(4): 635-641
    164.Hatch M D, Burnell J N. Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiol, 1990, 93: 825-828
    165.Hatch M D, Slack C R. Photosynthesis by sugar-cane leaves: A new carbpoxylation reaction and the pathway of sugar formation. Biochem J, 1966, 101: 103 - 111
    166.Hatch M D. The C4 pathway of photosynthesis: Mechanism and funcion. In: Burris R H, Black C C eds., CO2 Metabolism and Plant Productivity. Baltimore, Unviersity Park Press, 1976:59-81
    167.Hedley C L, Harvey D M, Keely R J. Role of PEP carboxylase during seed development in Pisum sativum. Nature, 1975, 258: 352-354
    168.Hermsns J. Relationshipe of phosphoenolpyruvate carboxylase genes in Flaveria trinercia (C4) and F. pringlei (C3). Mol Gen Genet, 1990, 224: 459-468
    169.Hibberd J M, Quick W P. Characteristcs of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature, 2002, 415: 451-454
    170.Hirasawa T, Iida Y, Ishihara K. Dominant factors in reduction of photosynthetic rate affected by air humidity and leaf water potential in rice plants. Jap J Crop Sci, 1989, 58: 383-389
    171.Honda H, Akagi H, Shimada H. An isozyme of the NADP malic enzyme of a CAM plant, Aloe arborescens, with variation on conservative amino acid residues. Gene, 2000, 243: 85-92
    172.Hsiao T C. Plant-atmosphere interactions, vapor transpiration, and irrigation scheduling. Acta Horticulturae, 1990, 278: 55-66
    173.Hudspeth R L, Grula J W, Dai Z, Edwards G E and Ku M S B. Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco. Effects on biochemistry and physiology. Plant Physiol, 1992, 98: 458-464
    174.Imaizumi N, Samejima M, Ishihara K. Characteristics of photosynthetic carbon metabolism of spikelets in rice. Photosynth Res, 1997, 52: 75-82
    175.Imaizumi N, Usuda H, Nakamoto H. Changes in the rate of photosynthesis during grain filling and enzymtatic activeties associated with the photosynthesis carbon metabolism in rice panicles. Plant Cell Physiol, 1990, 31: 835-843
    176.Ishimaru K, Ichikawa H, Matsuoka M, Ohsugi R. Analysis of a C4 maize pyruvate, orthophosphate dikinase expressed in C3 transgenic Arabidopsis plants. Plant Sci, 1997, 129: 57-64
    177.Ishimaru K, Ohkawa Y, Ishige T. Elevated pyruvate, orthophosphate dikinase (PPDK) activity alters carbon metabolism in C3 transgenic potatoes with a C4 maize PPDK gene. Plant Physiol, 1998, 103: 340-346
    178.Izui K, Ishijima S, Yamaguchi Y, Katagiri F, Murata T, Shigesada K, Sugiyama T, Katsuki H. Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. Nucleic Acids Res, 1986,14(4): 1615-1628
    179.Jenkins C L D, Furbank R T and Hatch M D. Mechanism of C4 photosynthesis. A model describing the inorganic carbon pool in bundle sheath cells. Plant Physiol, 1989,91: 1372-1381
    180Jesko T, Vizarova G. Change of free endogenous cytokines during transitorily increased photosynthetic rate initiated by formation of the first two whorls of nodal roots in Zea mays L. Photosynthetica, 1980, 14: 83-85
    181 .Jiao D M and Ku M S B. The characteristics of photosynthetic CO2 exchange of the F1 hybrids between C3-C4 intermediate and C4 species in Flaveria. Acta Photophysiological Sinica (in Chinese), 1991, 17(3): 225-231
    182. Jifon J P, Syvertsen J P. Effects of moderate shade on citrus leaf gas exchange, fruit yield, and quality. Proceeding Florida State Horticulture Society, 2001, 114: 177- 181.
    183. Jifon J P, Syvertsen J P. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol, 2003, 23: 119-127
    184.Kappel K, Hore J. Effect of shade on photosynthesis specific leaf weight and morphology of young peach trees. J Amer Soc Hort Sci, 1983, 108(4): 541 -544
    185.Karpilov Y S. The distribution of radioactivity in carbon 14 among the products of photosynthesis in maize. Proceedings of the Kazan Agricultural Institute, 1960, 41: 15-24
    186.Kelly G J, Latzko E. Chloroplast phosphogructokinase. Plant Physiol, 1977, 60: 290-294
    187.Khairi M M A, Hall A E. Temperature and humidity effects on net photosynthesis and transpiration of citrus. Plant Physiol, 1976, 36: 29-34
    188.Khanna R, Sinha S K. Change in the predominance from C4 to C3 pathway following anthesis in sorghum. Biochem Bioph Res Co, 1973, 52: 121 -124
    189.Kisaki T, Hirabayashi S, Yano N. Effect of the age of tobacco leaves on photosynthesis and photorespiration. Plant Cell Physiol, 1973, 14(3): 505-514
    190.Kobayashi S. Responses of citrus leaf photosynthesis, chlorophall luorescence, macronutrient and carbohydrate content stoelevated CO2. J Plant Physiol, 2001, 168(10): 1307-1316
    191.Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, Sentoku N, Tanifuji S, Uchimiya H, Toki S. Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35 S promoter. Transgenic Res, 1994, 3: 287-296
    192.Koizumi N, Sato F, Terano Y, Yamada Y. Sequence analysis of cDNA encoding phosphoenolpyruvate carboxylase from cultured tobacco cells. Plant Mol Bio, 1991, 17(3): 535-539
    193.Kortschak H P, Hartt C E, Burr G D. Carbon dioxide fixation in sugarcane leaves. Plant Physiol, 1965, 40: 209-213
    194.Krause G H. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Plant Physiol, 1988, 74: 566-574
    195.Kriedemann P E. Smart R E. Effects of irradiance, temperature, and leaf water potential on photosynthesis of vine leaves. Photosynthetica, 1971, 5: 6-15
    196.Ku M S B, Agarie S, Nomure M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76-80
    197.Lakso A N, Seeley E J. Environmentally induced responses of apple tree photosynthesis. Hortscience, 1978, 13: 646-650 198.Lakso A N. Aspects of canopy photosynthesis and productivity in apple tree. Acta Horticulturae, 1991, (114): 100-109
    199.Latzko E, Kelly G J. The many-faced function of PEPCase in C3 plants. Physiol Veg, 1983,21:805-815
    200.Lep iniec L, Keryer E, Philippe H. Sorghum phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution. Plant Mol Biol, 1993, 21: 487-502
    201.Li S I, Genard M, Bussi C, Huguet, J G, Habib R, Besset J, Laurent R. Fruit quality and leaf photosybthesis in response to microenvironment modification aroud individual fruit by covering the fruit with plastic in nectarine and peach trees. J Hort Sci Biotech, 2001,76(1): 50
    202.Long S P, Humphries S, Falkowski P G. Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45: 633-662
    203.Magnin N C, Cooley B A, Reiskind J B, Bowes G. Regulation and localization of key enzymes during the induction of Kranz-less, C4 photosynthesis in Hydrilla verticillate. Plant Physiol, 1997, 115: 1681 -1689
    204.Matos M C, Rebelo E, Lauriano J, Semedo J, Marques N, Campos P S, Matos A, Vieira-Da-Silva J. CO2 assimilation and water relations of almond tree (Pruuns amygdals Batsch) cultivars grown under field conditions. Photosynthetica, 2004, 42: 473-476
    205.Matsuoka M, Furbank R T, Fukayama H. Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 297-314
    206.Matsuoka M, Minami E. Complete structure of gene for phosphoenolpyruvate carboxylase from maize. Eur J Biochem, 1989, 181: 593-598
    207.Matsuoka M, Ozeki Y, Yamamoto N. Primary structure of maize pyruvate, orthophosphate dikinase as deduced from cDNA sequence. J Biol Chem, 1988, 26(23): 11080-11083
    208.Matsuoka M. Structure, genetic mapping, and expression of the gene for pyruvate, orthophosphate dikinase from maize. J Biol Chem, 1990, 265(28): 16772-16777
    209.Meyer A O, Kelly G J, Latzko E. Pyruvate orthophosphate dikinase from the immature grain of cereal grasses. Plant Physiology, 1982, 69: 7-10
    210.Moss D N, Musgrave P B. Photosynthesis and crop production. Adv Agron, 1971, 23: 317-336
    211.Nath N, Mishra S D. Stimulation of ribulose-1, 5-bisphosphate carboxylase activity in barley flag leaf by plant growth regulators. Photosynthetica, 1990, 24: 266-269
    212.Neales T F, Incoll L D. The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: a review of the hypothesis. Bot Rev, 1968, 34 : 107-125
    213.Nii N, Kuroiwa T. Auatomical changes including chloplanst structure in peach leaves under different light conditions. J Horti Sci, 1988, 67(1): 37-45
    214.Ono S, Daito H. Effect of environmental factors in the field on photosynthetic activity. 93. Bulletin of the Shikoku Agricultural Experiment Station. 1978, (32):1 -11
    215.Peet M M, Bravo A, Wallace D H. Photosynthesis, stomatal resistance and enzyme activities in relation to yield of field grown dry bean varieties. Crop Sci, 1977, 17: 2287-293
    216.Portis A R. Regulation of ribulose 1, 5-biphosphate carboxylase/ oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 415-437
    217.Pyankov V, Voznesenskaya E V, Kuz'min AN, Ku M S B, Ganko E, Franceschi V R, Black C C, Edwards G E. Occurrence of C3 and C4 photosynthesis in cotyledons and leaves of Salsola species (Chenopodiaceae). Photosynth Res, 2000, 63: 69-84
    218.Rao I M. The role of phosphorus in photosynthesis. In: Pessarakli M Eds., Handbook of Photosynthesis. New York, Marcel Dekker Inc, 1997, 173-194
    219.Raschke k, Resemann A. The midday depression of CO2 assimilation in leaves of Arbutus unedo L: diurnal changes in photosynthetic capacity related to changes in temperature and humidity. Planta, 1986, 168: 546-558
    220.Reinfelder J R, Kraepiel A M, Morel F M. Unicellular C4 photosynthesis in a marine diatom. Nature, 2000, 407(6807): 996-969
    221.Reiskind J B, Berg R H, Salvucci M E. Immunogold localization of primary carboxylases in leaves of aquatic and a C3-C4 intermediate species. Plant Sci, 1989, 61:43-52
    222.Richard P M, Michele C M. Seasonal changes in specific leaf weight, net photosynthesis, and chlorophyll content of peach leaves as affected by light penetration and canopy position. J Amer Hort Sci, 1983, 108:600-605
    223 .Richard T S, Robert A K, Deborah J. Photosynthetic enzyme activities and localization in Mollugo verticillata populations differing in the levels of C3 and C4 cycle operation. Plant Physiol, 1979, 64: 293-299
    224.Rikishi K, Oquro H, Samejima M. C4-like plants derived from a cross [Atriplex rosea (C4) × Atriplex. Putula (C3)] × Atriplex rosea. Jap J Breed, 1988, 38: 397-408
    225.Rom C R, D C Ferree. Time and severity of summer pruning influences on young peach tree net photosynthesi:transpiration and dry-weight distribution. J Amer Soc Hort Sci, 1985, 110(3): 455-461
    226.Rosche E, Westhoff P. Primary structure of pyruvate, orthophosphate dikinase in the dicotyledonous C4 plant Flaveria trinervia. FEBS Lett, 1990, 273: 116-121
    227.Rothermel B A, Nelson T. Primary structure of the maize NADPH-dependent malic enzyme. J Biol Chem, 1989,264(33): 19587-19592
    228.Roy C R, Robert F C. Rootstocks for Fruit Crops. New York: A Wiley-interscience publication, 1987, 374-378
    229.Roy H. Rubisco assembly: a modle system for studying the mechanism of chaperonin actio. Plant cell, 1989, 1(11): 1035-1042
    230.Sams C E, Flore J A. The influence of age, position and environmental variables on net photosynthetic rate of sour cherry leaves. J Amer Soc Hort Sci, 1982, 107(2): 339-344
    231.Sheriff A, Meyer H, Riedel E, Schmitt JM, Lapke C. The influence of plant pyruvate, orthophosphate dikinase on a C3, plant with respect to the intracellular location of the enzyme. Plant Sci, 1998, 136 (1): 43-57
    232.Singal H R, Sheoran I S, Singh R. In vitro enzyme activities and products of 14CO2 assimilation in flag leaf and ear parts of wheat (Triticum aestivum L.). Photosynth Res, 1986,8: 113-122
    233.Suzuki S, Murai N, Burnell J N, Arai M. Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloa panicoides. Plant Physiol, 2000, 124: 163 - 172
    234.Syversten J P, Light acclimation in citrus leaves. II. CO2 assimilation and light, water, and nitrogen use efficiency. J Amer Soc Hort Sci, 1984, 109: 812-817
    235.Tadashi H, Theodore C H. Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crops Res, 1999, 62: 53-62
    236.Takeuchi Y, Akagi H, Kamasawa N. Aberrant, chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependentmalic enzyme. Planta, 2000, 211: 265-274
    237.Tanabe M, Izui K, Toriyama K. Production and analysis oftransgenic C3-C4 intermediate Moricandiate arvensis expressing a maize C4 phosphoenolpytuvate carboxylase gene. Plant Biotechnology, 2000, 17 (2): 93-99
    238.Teese P. Intraspecigic variation for CO2 compensation point and differential growth among variants in a C3-C4 intermediate plant. Ecologia, 1995, 102: 371-376
    239.Thomas D S, Turner D W. Banana (Musa sp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Sci Hort, 2001, 90:93 - 108
    240.Thomas H, Stoddart J L, Stoddart J L. Leaf senescence. Ann Rev Plant Physiol, 1980, 31:83-111
    241.Ting I P, Osmond C B. Photosynthetic phosphoenolpyruvate carbocylass charactertics of alloenzymes from leaves of C3 and C4 plant. Plant Physiol, 1973, 51: 439-447
    242.Tsuchida H, Tamai T, Fukayama H, Agarie S, Nomura M, Onodera H, Ono K, Nishizawa Y, Lee BH, Hirose S, oki S, Ku M S B, Matsuoka M, Miyao M. High level expresion of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell physiol, 2001, 42: 138-145
    243.Ueno O. Photosynthetic characteristics of an amphibious plant, Eleocharis vivpara: Expression of C3 and C4 modes in contrasting enviromnet. Proc Natl Acad Sci USA, 1988, 85: 6733-6737
    244.Voznesenskaya E V, Franceschi V R, Kiirats O, Freitag H, Edwards G E. Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature, 2001, 414(6863): 543-546
    245.Vozneseskaya E V, Franceschi V R, Kiirats O, Artyusheva E G, Freitag H, Edwards G. Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J, 2002, 31: 649-662
    246.Warren C R, Chen Z L, Chen Z L. Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants? Aust J of Plant Physiol, 2002 ,27: 407-416
    247. Watson R L, Landsberg J J, Thorpe M R. Photosynthetic characteristics of the leaves of 'Golden Delicious' apple. Plant Cell Environ,1978, 1: 51-55
    248.Wood B W. Fruiting affects photosynthesis and senescence of pecan. J Amer Soc Hort Sci, 1988, 113(3): 432-436
    249.Woodrow I E, Berry J A. Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu Rev Plant Physiol Plant Mol Biol, 1988, 39: 533-594
    250.Wunsche J N, Palmer J W, Greer D H. Effect of crop load on fruiting and gas exchange characteristics of Braeburn/M26 apple trees at fall canopy. J Amer soc Hort Sci, 2000, 125(1): 93-99
    251.Xu D Q, Chen X M, Zhang L X, Wang R F, Hesketh J D. Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient soybean mutant. Photosynthetica, 1993,29: 103-112
    252.Zelitch I. Pathways of carbon fixation in green plants. Annu Rev Plant Physio, 1975, 144: 123-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700