用户名: 密码: 验证码:
基于改性含氰基聚合物的复合纳滤膜的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯腈具有很好的热稳定性和化学稳定性,适合作为制备复合纳滤膜的基
    膜。并且聚丙烯腈基膜上具有不饱和的-CN 基团,通过对其进行适当的改性,
    可以将-CN 基团在碱性环境下水解生成-COOH,它能在对对’-二氨基二苯甲
    烷(DDM)和均苯三甲酰氯(TMC)进行界面聚合反应时,与复合层形成具有
    化学键连接的复合纳滤膜。这个创新工作尚未见报道。
     本工作采用 L-S 相转化法,以 PAN 为原料、NMP 为溶剂、H3PO4和 PEG600
    为添加剂,用不同的制膜配方制备了超滤膜作为基膜。对以一定配比制备基膜,
    以一定浓度的 NaOH 溶液在不同温度下改性一定时间,再以一定浓度的 HCl 溶
    液在室温下改性,得到用于制备纳滤膜的改性基膜。最后根据 P.W.Morgan 的界
    面聚合原理,以经 NaOH 化学改性后的 PAN 超滤膜为基膜,以 DDM 和 TMC 为
    主要单体,经界面聚合反应,制备了聚对对’-二氨基二苯甲烷酰胺复合纳滤膜。
     用接触角测定仪表征了基膜和改性后基膜的表面亲水性,用 FTIR 研究了基
    膜改性和界面聚合后的成份变化,用 ESEM 研究了基膜、改性后的基膜和界面
    聚合后的复合膜的表面和断面的变化。并且表征了基膜、改性后的基膜和界面聚
    合后的复合膜的纯水通量、基膜和改性后的基膜对 BSA 溶液的截留性能和界面
    聚合后的复合膜对 MgSO4溶液的脱盐率。
     本工作采用计算机直接实验设计方法对 PAN基膜的制膜配方和PAN基膜改
    性配方进行优化设计,并采用 SAS 软件和 VB 软件对实验结果进行回归分析。
    结果分析可以量化,大大减少实验次数,这是一项有意义的创新工作。
     通过分析,得到针对基膜水通量、截留率和平均孔径的三个回归模型,可用
    这三个模型计算预测得到各项性能的优化配方,选择其中三项性能俱优者。研究
    了 PAN 浓度、添加剂种类和添加剂浓度、蒸发时间和溶剂选择对 PAN 基膜性能
    的影响。得到基膜对 BSA 溶液的截留率达 93 %以上,水通量在 100 L/m2·h 以
    上,平均孔径低于 40nm。
     得到针对改性后基膜的水通量、对 BSA 溶液渗透通量、对 BSA 截留率和膜
    表面的水接触角四个回归模型,可用这四个模型计算预测得到各项性能的优化配
    方,选择其中四项性能俱优者。讨论了 NaOH 溶液浓度、改性温度和改性时间
    对改性基膜性能的影响。改性后基膜的水通量达到 70 L/m2·h 以上,对 BSA 溶
    
    
    液的截留率达到 83%以上,水接触角 40 度左右。
     讨论了水相单体的选择、水相胺的浓度、酸接受剂的浓度、界面聚合时间、
    沥干时间和后处理时间对复合膜性能的影响。得到结果如下:选择伯胺 DDM 为
    水相单体,界面聚合时间 15s,沥干时间 60s,DDM 的浓度 0.1%,酸接受剂的
    浓度 0.1%~0.2%。复合膜在 0.3-0.8MPa 下,对 1g/L MgSO4 溶液的脱盐率达
    74.46%,水通量为 1-2 L/m2·h。
     从 FTIR 谱图可以证明 PAN 基膜的表面确实有部分-CN 基被改性成-
    COOH 基团。从 ESEM 电镜图和 FTIR 谱图证实了在改性的 PAN 基膜表面已经
    界面聚合上了一层致密的复合层。
Polyacrylonitrile(PAN) with excellent thermostability and chemical stability was
    suitable for preparing support membrane of composite nanofiltration(NF) membranes.
    Furthermore, PAN support membrane had unsaturated nitrile group that can hydrolyze
    and be transferred into carboxyl group under alkalescent condition through proper
    modification. Interfacial polymerization took place on the membrane surface where
    there were the nitrile groups, P P'-Diamino-diphenylmethane(DDM) and trimesoyl
    chloride(TMC). Consequently, composite NF membrane with chemical bonds would
    be formed.
     In this work support membrane of composite nanofiltration membrane was
    prepared with PAN as polymer materials, N-methylpyrrolidone (NMP) as solvent,
    Polyethylene glycol 600 (PEG600) or phosphoric acid (H3PO4) as additive by means
    of L-S phase inversion method. Support membranes with a certain preparation
    conditions and proportion of concentration of PAN, concentration of NMP and
    concentration of H3PO4 were modified with certain concentration of sodium
    hydroxide (NaOH) within certain time and with certain concentration of hydrochloric
    acid (HCl) within certain time. Composite nanofiltration membrane was prepared
    with DDM and TMC as monomers by means of interfacial polymerization according
    to P.W.Morgan’s interfacial polymerization theory.
     The hydrophilicity of support membrane and modified support membrane was studied by the
    determination of contact angle of the membranes. Infrared spectrum (FTIR) was used to study the
    component change of modified support membrane and composite nanofiltration membrane. The
    microstructure of support membrane, modified support membrane and composite nanofiltration
    membrane was observed using by environmental scanning electric microscope (ESEM). Water
    flux of support membrane, modified support membrane and composite nanofiltration membrane,
    rejection for bovine serum albumin (BSA) of support membrane and modified support membrane,
    
    
    desalination for magnesium sulfate (MgSO4) of composite nanofiltration membrane were also
    characterized in this work.
     In this work Random-arranged experimental design with aid of computer was used to
    optimize the preparation conditions of support membrane and modified support membrane. And
    experimental data were calculated and regression analyzed with Statistical Analysis System (SAS)
    software and Visual Basic (VB) software.
     The models for water flux, rejection for BSA and average pore size of support membrane
    were obtained to predict the character of membrane with different preparation conditions.
    Additionally, the effects of concentration of PAN, the evaporation time of nascent membrane, kind
    of additive and concentration of additive were studied. As a result, support membrane was
    prepared with rejection for BSA over 93 %, water flux about 100 L/m2·h, average pore size about
    40nm.
     The models for water flux, rejection for BSA, flux of BSA and contact angle of the modified
    membrane were obtained to predict the character of membrane with different modification
    conditions. And the effects of concentration of NaOH, modification temperature and modification
    time were discussed. In conclusion, support membrane was modified with rejection for BSA about
    83%, water flux about 70 L/m2·h, contact angle of the modified membrane about 40。.
     The effects of kind of monomer in water phase, concentration of DDM, concentration
    of TMC, interfacial polymerization time, draining time and post-treatment time were
    studied. And composite nanofiltration membrane was prepared with 0.1% of DDM,
    0.2% of TMC, interfacial polymerization time 15s, draining time and post-treatment
    time 60s, which showed the character of water flux 1-2 L/m2·h and rejection for MgSO4
    74.46% at 0.3-0.8MPa.
     The FTIR spectra for modified membrane confirmed that some nitrile group of the support
    membrane had been transformed to carboxyl (-COOH). Furthermore, the composite film which
    had polymerized on the modified membrane was confirmed by the FTIR spectr
引文
[1] Raman L P,Cheryan M,Rajagopalan N.Consider nanofiltration for membrane
     separation.Chemical Engineering Progress ,1994 ,March:68-74.
    [2] 邵刚.膜法水处理技术及工程实例.北京:化学工业出版社,2002.
    [3] 夏冰,董声华,金秀龙,等.荷电纳滤膜的研制.水处理技术,1992,18(2):75-83.
    [4] 俞三传,高从堦,鲁学仁,等.磺化聚醚砜复合半渗透膜的研制.膜科学与技术,1995,
     - 19 -
    
    
    福州大学硕士学位论文
     15(2):31-38.
    [5] 邢丹敏,张伟,孙同升,等.复合纳滤膜的性能研究.第二届全国膜与膜过程学术报
     告会.杭州:1996.
    [6] 刘淑秀,姚仕仁,郑大威,等.纳滤膜及其表面活性剂分离特性的研究.膜科学与技
     术,1997,17(2):20-23.
    [7] 鲁学仁,高从堦,张建飞,等.PVDF 荷电膜制备与性能的研究.膜科学与技术.1994,
     14(2):22-25.
    [8] 鲁学仁,高从堦,王更珍.丙烯酸-丙烯共聚物盐荷电膜的制备和性能的研究.水处理
     技术,1997,23(1):1-5.
    [9] Raman L P,Cheryan M,Rajagopalan N.Consider nanofiltration for membrane
     separations.Chemical Engineering Progress,1994,March:68~74.
    [10] 蹇锡高,张守海,黛英,等.新型磺化聚醚砜酮复合纳滤膜.膜科学与技术.2001.21
     (1):11-14.
    [11] 于品早,周冠生,陈小良.三醋酸纤维素中空纤维纳滤膜的研制.膜科学与技术.2001.21
     (6):1-4.
    [12] 高田耕一.高分子论文集,1988,45(1):47-53.
    [13] 刘国良.条状 1520#CA-CTA 低压反渗透膜,全国电渗析技术交流会论文(1980).
    [14] J-Y Lai, F-C.Lin,C-C Wang,D-M Wang.Effect of nonsolvent additives on the
     porosity and morphology of asymmetric TPX membranes . Journal of Membrane
     Science.1996, 118:49–61.
    [15] P.Radovanovic,S.W. Thiel,S.T. Hwang.Formation of asymmetric polysulfone
     membranes by immersion precipitation.Part II.The effects of casting solution and gelation
     bath compositions on membrane structure and skin formation.Journal of Membrane
     Science.1992,65:231–246.
    [16] I. Pinnau,W.J.Koros,Structures and gas separation properties of asymmetric polysulfone
     membranes made by dry, wet and dry/wet phase inversion, J.Appl.Polym. Sci,1991,
     43:1491–1502.
    [17] I.Pinnau,W.J.Koros,A qualitative skin layer formation mechanism for membranes made
     by dry/set phase inversion.J.Polym. Sci, Polym.Phys.1993,31:410–427.
    [18] H. Kawakami,M Mikawa, S.Nagaoka,Gas permeability and selectivity through
     asymmetric polyimide membranes.J. Appl.Polym. Sci.1996, 62:965–971.
    [19] H.Kawakami,M.Mikawa,S.Nagaoka,Formation of surface skin layer of asymmetric
     polyimide membranes and their gas transport properties.J.Membr.Sci.1997,137:
     241–250.
    [20] S.C.Pesek,W.J.Koros,Aqueous quenched asymmetric polysulfone membranes prepared
     by dry/wet phase separation.J.Membr.Sci.1993, 81:71–88.
    [21] In-Chul Kim, Kew-Ho Lee , Tae-Moon Tak . Preparation and characterization of
     integrallyskinned uncharged polyetherimide asymmetric nanofiltration membrane[J].
     - 20 -
    
    
    基于改性含氰基聚合物的复合纳滤膜的制备研究
     Journal of Membrane Science.2001,183:235–247.
    [22] W.Richard Bowen_,Teodora A.Doneva,H.B.Yin.Polysulfone — sulfonated poly(ether
     ether) ketone blend membranes systematic synthesis and characterization.Journal of
     Membrane Science.2001,181:253–263.
    [23] Liu,J.Teo,W.K,Chew,C.H,Gan, L.M.Nanofiltration membranes prepared by
     direct microemulsion copolymerization using poly(ethylene oxide) macromonomer as a
     polymerizable surfactant.Journal of Applied Polymer Science.2000,77:2785-2794.
    [24] 高从堦等.荷电的反渗透膜和超滤膜.水处理技术.1987.13(5):140-145.
    [25] Miyama H,Fujii N,Kuwano A,Nagaoka S,Mori Y,Noishiki Y.J Biomed Mater Res,
     1986,20:895.
    [26] Miyama H,Tanaka K,Nosaka Y,Fujii N,Tanzsawa H,Nagaoka S.J Appl Polym Sci,
     1988,36:925.
    [27] 邵刚.膜法水处理技术及工程实例.北京:化学工业出版社.2002.
    [28] J E Cadotte,R W Schaffenbery,R J Peterson,Proc.Int.Mem br Conf on the 25 th
     Anniversary of Membrane Research in Canada,NRCC 1986:203.
    [29] R J Peterson.Composise reverse osmosis and nanofiltration membranes.Journal of
     Membrane Science.1993.83:81-150.
    [30] M Kurihara, Y H im esh im a.Polymer J.1991,25(5):513-520.
    [31] K Ikeda,etal.Abstr Int Congr Membr Processes Tokyo,1987:6-17.
    [32] H Ohya, Maku(Membrane),1985,10:101.
    [33] R J Peterson.Composise reverse osmosis and nanofiltration membranes.Journal of
     Membrane Science.1993,83:81-150.
    [34] 鲁学仁,高从堦等.膜科学与技术,1994,14(2):22.
    [35] 梁雪梅,陆晓峰,刘光全,等.界面缩聚法制备聚芳酯复合纳滤膜的研究Ⅰ基膜的制
     备.华东理工大学学报,1999,25:297-301.
    [36] 梁雪梅,陆晓峰,刘光全,等.界面缩聚法制备聚芳酯复合纳滤膜的研究Ⅱ界面缩聚
     对复合纳滤膜的影响.华东理工大学学报,1999,25:394-397.
    [37] 陆晓峰,施柳青,卞晓锴.NF 系列复合纳滤膜的制备及结构性能的研究.膜科学与
     技术,2001,21:11-15.
    [38] 蹇锡高,张守海,戴英等.新型磺化聚醚砜酮复合纳滤膜.膜科学与技术.2001,21:
     11-14.
    [39] 俞三传,金可勇,潘巧明等.聚哌嗪酰胺复合纳滤膜研制.膜科学与技术.2001,21:
     1-3.
    [40] NAM-WUN OH,JONGGEON JEGAL,KEW-HO LEE.Preparation and Characterization
     of Nanofiltration Composite Membranes Using Polyacrylonitrile(PAN) Ⅰ preparation and
     Modification of PAN Supports.Journal of Applied Polymer Science,2001,80:
     1854-1862.
     - 21 -
    
    
    福州大学硕士学位论文
    [41] NAM-WUN OH,JONGGEON JEGAL,KEW-HO LEE.Preparation and Characterization
     of Nanofiltration Composite Membranes Using Polyacrylonitrile(PAN) Ⅱ preparation and
     Characterization of Polyamide Composite Membrane.Journal of Applied Polymer
     Science,2001,80:2729-2738.
    [42] S. Bequet a,T.Abenoza a,P.Aptel a,J-M.Espenan b,J-C. Remigy a,A. R i c a
     r d a.New composite membrane for water softening.Desalination.2000,131:299-305.
    [43] Deepak A.Musale,Ashwani Kumar.Effects of surface crosslinking on sieving
     characteristics of chitosan:poly(acrylonitrile) composite nanofiltration membranes.Separa-
     tion and Purification Technology.2000,21:27–38.
    [44] Jegal, Jonggeon,Oh,Nam-Wun,Park,Duck-Soon,Lee, Kew-Ho.Characteristics of
     the nanofiltration composite membranes based on PVA and sodium alginate. Journal of
     Applied Polymer Science.Mar 2001,79:2471-2479.
    [45] Sforca,M.L.Nunes,S.P.Peinemann,K.-V.Composite nanofiltration membranes
     prepared by in situ polycondensation of amines in a poly(ethylene oxide-b-amide)
     layer.Journal of Membrane Science.1997,135:179-186.
    [46] Raman L P,Cheryan M,Rajagopalan N.Consider nanofiltration for membrane
     separations.Chemical Engineering Progress,1994,March:68-74.
    [47] Winston H W S.Sirkar K K,eds.Membrane handbook.New York:Van Mostrand
     Reinhold,1992.
    [48] Vrijenhoek,Eric M.;Waypa,John J.Arsenic removal from drinking water by a loose
     nanofiltration membrane.Desalination,2000,130:265-277.
    [49] Mavrov,V.;Chmiel,H.;Belieres,E.Spent process water desalination and organic
     removal by membranes for water reuse in the food industry.Desalination.2001,138:
     65-74.
    [50] Khalik,Agus;Praptowidodo,V.S.Nanofiltration for drinking water production from deep
     well water.Desalination.2000,132:287-292.
    [51] Kettunen,Riitta;Keskitalo,Pertti.Combination of membrane technology and limestone
     filtration to control drinking water quality.Desalination.2000,131:271-283.
    [52] Oh, J.I;Yamamoto,K.;Kitawaki, H.;Nakao, S.;Sugawara,T.;Rahman,
     M.M.;Rahman,M.H.Application of low-pressure nanofiltration coupled with a bicycle
     pump for the treatment of arsenic-contaminated groundwater.Desalination,2000,132:
     307-314.
    [53] Boussahel,R.;Bouland,S.;Moussaoui,K.M.;Montiel,A. Removal of pesticide
     residues in water using the nanofiltration process.Desalination.2000.132: 205-209.
    [54] Glucina,K.;Alvarez,A.;Laine,J.M.Assessment of an integrated membrane system
     for surface water treatment. Desalination.2000,132:73-82.
    [55] Afonso , M.DYanez , R.B . Nanofiltration of wastewater from the fishmeal
     industry.Desalination.2001,139:429.
     - 22 -
    
    
    基于改性含氰基聚合物的复合纳滤膜的制备研究
    [56] Mavrov,V;Belieres,E.Reduction of water consumption and wastewater quantities in the
     food industry by water recycling using membrane processes.Desalination. 2000,131:
     75-86.
    [57] Van der Bruggen,B De Vreese,I Vandecasteele,C.Water reclamation in the textile
     industry: Nanofiltration of dye baths for wool dyeing.Industrial and Engineering Chemistry
     Research.2001,40: 3973-3978.
    [58] Koyuncu,I Kural,E Topacik,D Pilot scale nanofiltration membrane separation for
     waste management in textile industry.Water Science and Technology.2001,43:233-240
    [59] 方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001.
    [60] 方开泰.均匀设计与均匀设计表.北京:科学出版社,1994.
    [61] 胡良平.现代统计学与 SAS 应用.北京:军事医学科学出版社,2002.
    [62] 林维宣.试验设计方法.大连海事大学出版社.1995.
    [63] 高齐圣,隋树林,孟宪德.均匀设计在橡胶配方研究中的应用.橡胶工业.1996,43:
     583~586.
    [64] 曾云龙.均匀设计在制备药物中的应用.桂林医学院学报.1997,10(4):519~520.
    [65] 刘杨,钱新民,高培基.应用均匀设计方法改进光合细菌类胡萝卜素生.山东大学学
     报.1994,19(2): 224~229.
    [66] 张学中.计算机直接试验设计.数理统计与管理,1995,14:43-46.
    [67] 宋玉军,刘福安,杨勇等.用直接实验设计方法优化聚砜超滤膜制膜工艺.纺织科学
     研究,1999,3:13-17.
    [68] 吴开芬,王静荣,王正军等.高通量聚丙烯腈超滤膜的研究.膜科学与技术,1999,
     19(3):48-50.
    [69] 王兰娟,张才菁.聚丙烯腈超滤膜铸膜液配方的优选试验.石油大学学报(自然科学
     版),1997,21:67-69.
    [70] Stoiko Perov,Penka Petkova.Preparation of polyacrylonitrile ultrafiltration membranes
     from polymer solutions containing glycerol.Journal of Membrane Science,1991,64:
     183-187.
    [71] 何昌生.聚丙烯腈超滤膜表面结构的初步探讨.水处理技术,1987,13:260-266.
    [72] 张旺玺.聚丙烯腈纤维的改性.合成技术及应用,1998,15:27-31.
    [73] 王保国,蒋维钧.聚丙烯腈中空纤维超滤膜.水处理技术,1995,21:11-14.
    [74] DEEPAK A.MUSALE,ASHWANI KUMAR.Solvent and pH Resistance of Surface
     Crosslinked Chitosan/Poly(acrylonitrile) Composite Nanofiltration Membranes.Journal of
     Applied Polymer Science,2000,77:1782-1793.
    [75] Deepak A.Musale,Ashwani Kumar.Effects of surface crosslinking on sieving charact-
     eristics of chitosan/poly(acrylonitrile) composite nanofiltration membranes.Separation and
     Purification Technology,2000,21:27–38.
    [76] 董大均.SAS-统计分析软件应用指南.北京:电子工业出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700