用户名: 密码: 验证码:
松原市壅水坝正常蓄水位优化模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从系统工程角度出发,通过对松原市壅水坝项目建设的自然环境、社会环境影响分析,识别壅水坝项目建设的主要环境影响因子,采用主成分分析法对松原市综合生态指标体系进行优化和定量化研究;基于合理的工程假设,对松原市壅水坝正常蓄水位进行优化,建立不同决策形式下松原市壅水坝项目正常蓄水位优化模型,以连续函数的形式实现对正常蓄水位的优化求解,定量表征正常蓄水位、工程投资以及城市综合生态水平之间的关系。
     本研究在水利项目正常蓄水位优化方法研究领域取得了突破性进展,填补了运用数学模型优化蓄水位的研究空白,通过提供一系列经济、工程、环境等定量指标数据,为管理者制定更为合理、全面的决策提供支持。
     本研究的主要研究结论如下:
     (1)通过定性分析松原市壅水坝项目对自然和社会环境产生的影响,初步确定主要自然环境影响因子为:土地资源利用现状、主城区水面占有率、库区泥沙淤积量、库区水质和库区水温结构;社会环境影响因子为对上游哈达山水库的影响(即水库回水长度)以及松原市城市生态水平。
     (2)运用工程分析和环境评价等手段,通过对环境影响因子的敏感性研究,得出对松原市壅水坝项目正常蓄水位变化表现较敏感的环境影响因子为土地资源利用和主城区水面占有率;不敏感的影响因子为库区水温结构和水库回水长度;敏感性不确定的影响因子为库区泥沙淤积量和库区水质。
     (3)以松原市综合生态水平为研究目标,建立松原市综合生态指标体系并实现基于核心指标的优化。
     (4)运用运筹学方法实现基于不同决策条件下的正常蓄水位。研究表明:以工程投资费用最小为决策要求时,推荐正常蓄水位方案为131.4m,环境影响敏感因子为主城区水面占有率;以综合生态效益最大(松原市城市综合生态水平最高)为决策条件时,推荐正常蓄水位方案131.83m,环境影响敏感因子为库区泥沙淤积量;综合考虑工程投资费用和综合生态效益时,推荐正常蓄水位方案131.79m,环境影响敏感因子为城市综合生态水平。
This research from the view of system engineering, based on the natural environment, social environment impact analysis of the backwater dam construction project in Song Yuan City , and identify the main environment impact factors of backwater dam project construction; Using principal component analysis to optimized and research quantitatively of comprehensive ecological index system in Song Yuan City; Based on the rational engineering hypothesis, optimizing the normal impoundment level of backwater dam in Song Yuan City, and establish normal water level optimization model on different decision forms of backwater dam construction project in Song Yuan City, the form of a continuous function is to achieve the optimal solution of the normal water level, and characterized quantitatively the relationship among normal water level, project investment and level of the city's comprehensive ecology.
     This study have made breakthroughs in the field of the normal water level in the water project optimization methods, filling the blank of research on using the mathematical model optimized impoundment level. By providing a series of economic, engineering, environment etc as quantitative indices data, for managers to develop a more rational, comprehensive decision support.
     The main conclusions of this study are as follows:
     (1)Through the qualitative analysis backwater dam project in Song Yuan City on the natural and social environment impacts, preliminary confirming the main natural environmental influencing factor s are: land resources utilization, share of the main city water, reservoir sediment deposition, reservoir water quality and water reservoir structure; Social environment impact factors on the influence of Ha Da Mountain reservoir upstream (i.e. reservoir backwater length) and urban ecological level in Song Yuan City.
     (2)By methods such as engineering analysis and environmental evaluation, based on the sensitivity of the environmental impact factor, concluded that the environmental impact factors which are sensitive to the normal water level change of backwater dam in Song Yuan City are land resource utilization and Share of the main city water; the impact factors which are not sensitive are reservoir temperature structure and backwater reservoir length; sensitivity uncertain factors are reservoir silt accumulation and reservoir water.
     (3)Take comprehensive ecological level of Song Yuan City as the research target, setting Song Yuan City comprehensive ecological index system and realize the optimization based on the core index.
     (4)Using operations research methods realized the normal water level under the condition of different decisions. Research shows that: when the engineering investment costs required minimum for decision-making, the recommended scheme for normal water level is 131.4 m, the environmental impact sensitive factor is primarily urban water share; With the comprehensive ecological benefit are maximum(the comprehensive ecological level is the highest in Song Yuan City) as the conditions for decision-making, the recommended normal water level scheme is 131.83m.,the environmental impact sensitive factor is reservoir silt accumulation. When the engineering investment costs and comprehensive ecological benefit are comprehensively considered, the recommended normal water level scheme is 131.79m, the environmental impact sensitive factor is city comprehensive ecological level.
引文
[1]唐会燕.浅谈水利水电工程建设对环境影响问题[EB/J].中国论文下载中心, 2010年1月29日. http://www.studa.net/shuili/100129/15212545.html.
    [2] World Commission on Dams. Dams and Development: a New Framework for Decision- Making [M]. Earthscan, London, 2000.
    [3] Petts G E. Impounded Rivers: Perspectives for Ecological Management [M]. New York: Wiley, Chichester, 1984.
    [4] Poff L N, Allan D J, Bain M B, et al. The natural flow regime: a paradigm for conservation and restoration of river ecosytems [J]. Bioscience, 1997, 47 (11): 769-784.
    [5] Poff L N, and Hart D D. How dams vary and why it matters for the emerging science of dam removal [J]. Bioscience, 2002, 52 (8), 659-668.
    [6] Ward J V. The Ecology of Regulated Streams [M]. New York: Plenum Press, 1979.
    [7] Cernea M M. The Economics of Involuntary Resettlement: Questions and Challenges[M]. Washington, DC: World Bank, 1999.
    [8] Giordano M F, Giordano M A, and Wolf A T. International resource conflict and mitigation [J]. Journal of Peace Research, 2005, 42 (1): 47-65.
    [9] Holling C S. Adaptive Environmental Assessment and Management [M]. London: John Wiley and Sons, 1978.
    [10] Tetteh I K, Frempong E, and Awuah E. An analysis of the environmental health impact of the Barekese Dam in Kumasi, Ghana [J]. Journal of Environmental Management, 2004, 72 (3): 189-194.
    [11] Mumba M, and Thompson J R. Hydrological and ecological impacts of dams on the Kafue Flats floodplain system, southern Zambia [J]. Physics and Chemistry of the Earth, 2005, 30 (6-7): 442-447.
    [12] Ashraf M, Kahlown M A, and Ashfaq A. Impact of small dams on agriculture and groundwater development: A case study from Pakistan [J]. Agricultural water r Management, 2007, 92 (1-2): 90-98.
    [13] Dai S B, Yang S L, and Cai A M. Impacts of dams on the sediment flux of the Pearl River, southern China [J]. Catena, 2008, 76 (1): 36-43.
    [14] Jackson S, and Sleigh A. Resettlement for China’s Three Gorges Dam: socio-economic impact and institutional tensions [J]. Communist and Post-Communist Studies, 2000, 33 (2): 223-241.
    [15] Tilt B, Braun Y, and He D. Social impacts of large dam projects: A comparison of international case studies and implications for best practice [J]. Journal of Environmental Management, 2009, 90 (S3): S249-S257.
    [16] Lewis L Y, Bohlen C, and Wilson S. Dams, dam removal and river restoration: a hedonic property value analysis [J]. Contemporary Economic Policy, 2008, 26 (2): 175-186.
    [17] Brovencher B, Sarakinos H, and Meyer T. Does small dam removal affect local property values? An empirical analysis [J]. Contemporary Economic Policy, 2008, 26 (2): 187-197.
    [18] Robbins J, and Lewis L. Demolish it and they will come: dam removal and the ex-postmeasurement of fisheries benefits [J]. Journal of the American Water Resources Association, 2008, 44 (6).
    [19] Maine State Planning Office, 2004. Draft Maine River Restoration User Guide,    [20] Johnson S E, and Graber B E. Enlisting the social sciences in decisions about dam removal[J]. Bioscience,2002, 52 (8): 731-738.
    [21]许榕,王童远,曹广林等.环境影响评价因子的筛选[J].环境科学与技术, 2003, 26(1):29-30,44.
    [22]王娟,林德锋.建设项目环境影响评价因子的筛选[J].中国环境管理, 2003, 22(6):63-64.
    [23]刘大义,许和贵.综合指数判别法筛选建设项目环境影响评价因子[J].北方环境, 2005, 30(1):88-89,94.
    [24]钱七虎,陈晓强.利用地下空间建设“花园城市”[J].地下空间, 2003, 23(3):302-305.
    [25]马交国,杨永春.生态城市理论研究综述[J].兰州大学学报(社会科学版),2004,32(5):108-117.
    [26]黄光宇,陈勇.生态城市理论与规划设计方法[M].北京:科学出版社,2008,8.
    [27]沈清基.城市生态与城市环境[M].上海:同济大学出版社,1998.
    [28] Roseland M. Dimensions of the Future: An Ecocity Overview, Eco-city Dimensions [M]. New Society Publishers, 1997, 1-12.
    [29]宋永昌,戚仁海,由文辉等.生态城市的指标体系与评价方法[J].城市环境与城市生态,1999,12(5):16-19.
    [30]盛学良,彭补拙,王华等.生态城市建设的基本思路及其指标体系的评价标准[J].环境导报,2001,(1):5-8.
    [31]郭秀锐,杨居荣,毛显强等.生态城市建设及其指标体系[J].城市发展研究,2001,8(6):54-58.
    [32]张坤民,温宗国.城市生态可持续发展指标的进展[J].城市环境与城市生态,2001,14(6):1-4.
    [33]刘则渊,姜照华.现代生态城市建设标准与评价指标体系探讨[J].科学与科学技术管理,2001,22(4):61-63.
    [34]焦胜,曾光明,何理等.生态城市指标体系的不确定性研究[J].湖南大学学报:自然科学版,2004,31(1):75-78.
    [35]姜旭.生态城市建设水平评价和措施研究[D].吉林大学,2005.
    [36]李锋,刘旭升,胡聃等.生态市评价指标体系与方法——以江苏大丰市为例[J].应用生态学报,2007,18(9):2006-2012.
    [37]陈静文.面向生态城市建设的城市生态系统评价[D].同济大学,2007.
    [38]贾正长,郑丽波,王莹等.基于GIS的生态城市建设空间决策支持系统[J].地理空间信息,2008,6(6):76.
    [39]孙世军,严晓飞,崔朋等.基于BP人工神经网络的小城镇生态规划研究[J].经济地理,2010,30(9):1473-1477.
    [40]褚祝杰,陈伟.黑龙江省建设生态省的模糊综合评价[J].干旱区资源与环境,2008,22(3):37-41.
    [41]宁伟,罗前进.哈尔滨市生态城市指标体系的构建与评价[J].资源开发与市场,2009,25(4):314-316.
    [42]张昕,林本忠.煤炭资源型城市生态城市化发展模式研究[J].中国矿业,2009(11):45-47.
    [43]张彦民.关于吉林省松原市生态市建设的研究[D].北京:中国农业科学院,2007.
    [44]原文林,黄强,吴泽宁.模糊物元模型在水库正常蓄水位优选中的应用[J].人民黄河,2010,32(6):95-97.
    [45] Kumar D N, and Reddy M J. Multipurpose reservoir operation using particle swarm optimization [J]. Journal of Water Resource Planning and Management, 2007, 133(3): 192-201.
    [46]侯才水,刘华斌.多目标模糊决策在某水库正常蓄水位选择中的应用[J].水利科技,2007 (1):45-46,49.
    [47]王丽学,王玉林,胡冰等.董船营水利枢纽正常蓄水位确定研究[J].安徽农业科学,2007,35(12):3757-3768.
    [48]侯冰玉.多准则评价法在水电站正常蓄水位选择中的应用[J].广西水利水电, 2008,(4):8-13.
    [49] Afzali R, Mousavi S J, and Ghaheri A. Reliability-Based simulation-optimization model for multireservoir hydropower systems operations: Khersan experience [J]. Journal of Water Resource Planning and Management, 2008, 134(1): 24-33.
    [50] Regulwar D G, and Raj P A. Development of 3-D optimal surface for operation policies of a multi-reservoir in fuzzy environment using genetic algorithm for river basin development and management [J]. Water resources management, 2008, 22(5): 595-610.
    [51]张绍波,曲万春.应用灰色关联分析法优化选择水库正常蓄水位[J].辽宁师范大学学报(自然科学版),1999,22(3) :252-255.
    [52]曾勇红,姜铁兵,权先璋.灰色系统理论在水库止常蓄水位方案选择中的应用[J].水电自动化与大坝监测.2003,(1):57-59.
    [53]路金喜.水库正常蓄水位方案选择的灰色层次分析方法及应用[J].水电能源科学,1999,17(2):48-52.
    [54]孙惠兰,哀聆钊.模糊优选水电站正常蓄水位学[J].水电能源科,1996,(3): 160-164.
    [55]谢秋菊,钱自立.应用灰色模糊综合评价方法优选水库正常蓄水位方案[J].水利水运工程学报,2006,3(1):59-62.
    [56]常小明.新疆下坂地水库正常蓄水位方案的选择[J].陕西水力发电,2000,16(3):17-22.
    [57]薛飞.环境敏感因素对电站正常蓄水位选择的影响[J].东北水利水电,2008,11(26):1-2,71.
    [58]戴力群.红花水利枢纽正常蓄水位的选择[J].人民珠江,2000,6:35-37.
    [59]丁承富,刘丹雅.皂市水利枢纽正常蓄水位选择研究[J].湖南水利水电,2002,4:18-19.
    [60] Yang F J, Lien S Y, Ho T F, et al. Dam modification designs for raising reservoir water level—case study of Tsengwen dam in Taiwan [J]. Chinese Journal of Geotechnical Engineering, 2008, 11, 11(30): 1643-1650.
    [61]董亮,伍尚锰.平湖水库正常蓄水位的选择[J].人民珠江,2003:31-33.
    [62]胡亮,李香春.红石水电站正常蓄水位拾高的可行性[J].东北水利水电,1997,12:42-44.
    [63]夏期颐.海涂水库蓄水位的合理选择[J].河海大学学报,1997,25(2):86-89.
    [64]何长宽.洋河水库正常蓄水位和汛限水位分析论证[J].河北水利水电技术,1999,3:5-6.
    [65]陈俊贤,蔡创良.黔中水利枢纽水库正常蓄水位选择[J].人民珠江,2005,5:47-52.
    [66]李如成.沙沱水电站正常蓄水位选择[J].贵州水力发电,2005,19(3):11-20.
    [67]李文俊,易思勇.小中甸水电站正常蓄水位选择[J].湖北水力发电,2006,5:26-28.
    [68]杜剑楣.席子河水电站扩建引水坝正常蓄水位论证[C].南方十三省(市、区)水电学会联络会暨学术交流会,2007.
    [69]陈海英,郭巧,徐力.基于神经网络的指标体系优化方法[J].计算机仿真,2004,21(7):107-109.
    [70]刘艳菊.浆纸林基地建设规划的大尺度生态风险评价研究[D].北京:北京师范大学,2010.
    [71]王如松,欧阳志云.天城合一:山水城建设的人类生态学原理,见:城市学与山水城市[M].中国建筑工业出版社,1994:285-295.
    [72]朱兴平,曹荣林.生态城市的数学模型建立[J].生态环境,2004,23(2):59-63.
    [73]黄欧.松原市区域生态安全指标体系研究[D].大连:东北师范大学,2009.
    [74]王明涛.多指标综合评价中权数确定的利差、均方差决策方法[J].中国软科学,1998(8):100-107.
    [75]戴全厚,刘国彬,刘明义等.小流域生态经济系统可持续发展评价——以东北低山丘陵区黑牛河小流域为例[J].地理学报,2005,60(2):209-218.
    [76]卢晓春,李明辉,吴毅洲等.用主成分分析法优化高速公路顾客评价指标体系[J].交通标准化,2004,(2):93-96.
    [77] Wang M S. Limitations and Necessary Conditions of Applying Principal Component Analysis to Comprehensive Evaluation [J]. Bulletin of the International Statistical Institute, Book 2, 1995. 813-814.
    [78]苏为华.多指标综合评价理论与方法研究[M].中国物价出版社,2001.
    [79]张文彤. SPSS统计分析高级教程[M].高等教育出版社,2006.
    [80]朱党生.水利水电工程环境影响评价[M].北京:中国环境科学出版社,2006.
    [81]郭儒,李宇斌,富国.河流中污染物衰减系数影响因素分析[J].气象与环境学报,2008,24(1):56-57.
    [82]陈炎,孟西林,袁彩凤等.淮河流域多闸坝河流COD综合降解系数测算[J].重庆环境科学,2002,24(3):83-85.
    [83]王有乐,孙苑菡,周智芳等.黄河兰州段COD(Cr)降解系数的实验研究[J].甘肃冶金,2006,28(1):27-28.
    [84]马耀光,李书琴,杨宣政等.泾河下游可降解污染物的自净特征[J].干旱地区农业研究,2003,21(1):126-128.
    [85]万金保,王嵘,黄学平.乐安河COD环境容量的研究[J].江西农业大学学报,2004,26(5):805-807.
    [86]寇晓梅.汉江上游有机污染物COD(Cr)综合降解系数的试验确定[J].水资源保护,2005,21(5):31-33.
    [87]云飞,李燕,杨建宁等.黄河宁夏段COD及氨氮污染动态分布模拟探讨[J].宁夏大学学报:自然科学版,2005,26(3):283-286.
    [88]曾全方,张学洪,张华等.桂林桃花江水环境容量的研究[J].桂林工学院学报,2006,26(1):18-22.
    [89]祁超征,张桂村,刘庆蕾等.有排污口存在河流估算污染物降解系数K值方法[J].山东水力,2002(3):38-42.
    [90]龚若愚,周源岗.柳江柳州段水环境容量研究[J].水资源保护,2001,17(1):31-32.
    [91]韩宇平,阮本清,蒋任飞等.黄河宁夏段水环境容量计算与分析[J].黄河水利职业技术学院学报,2006,18(3):1-3.
    [92]张彦法,陈尧隆,刘景翼.水利工程[M].北京:中国水利水电出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700