用户名: 密码: 验证码:
高海拔寒区隧道冻胀机理及其保温技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文紧密结合高海拔寒区隧道工程建设中岩石冻融破坏及防寒保温领域的国际前沿科学问题,以建设西藏“扎墨”公路(连接中国唯一不通公路的县:墨脱县)的控制性工程——嘎隆拉隧道工程为依托。紧紧围绕“寒区隧道围岩冻胀破坏机理及其防寒保温技术”这一主题,以“通风条件下寒区隧道温度-渗流-应力-损伤(THMD)耦合机理”为理论基础,通过室内试验、理论分析、数值模拟以及现场监测等方法,对涉及该课题的相关理论模型和应用技术进行了全方位、多角度的研究,建立了高海拔寒区隧道冻胀力作用下隧道的结构稳定性评价方法和合理防寒保温措施。这些研究成果一方面深化了寒区隧道围岩冻胀机理的理论基础,填补了寒区隧道在通风条件下围岩THMD耦合理论的空白;另一方面,为寒区隧道支护结构的优化和合理防寒保温措施的建立做了开拓性的工作,取得了一系列的成果,具体来讲,主要包括以下几个方面:
     (1)建立了适用于低温相变岩体的温度-渗流耦合控制方程,提出了计算低温相变岩土类材料导热系数的新方法
     根据冻融条件下岩体水分运动和热量迁移的基本规律,基于连续介质力学、热力学以及分凝势理论,建立了低温相变岩体温度-渗流耦合控制方程,该耦合方程不仅包括了热传导、相变潜热和渗流速度对温度分布的影响,而且考虑了由Soret效应、分凝势引起的孔隙水流动对渗流速度以及渗透压力分布的影响,实现了温度场和渗流场的双向全耦合。并将研究成果与Mizoguchi等人著名的温度-渗流耦合室内试验进行了同等条件下的对比分析,有力地证明了该耦合模型的正确性和参数取值方法的合理性。同时,对本耦合模型中涉及到的水-热力学参数进行系统的归纳和总结,特别针对现有3种常用的计算岩土体导热系数方法的不足,从随机混合模型(RMM)理念出发,结合岩土类材料的本身特点(多孔隙,0℃以下还存在未冻水等),提出了计算低温相变岩土类材料导热系数的新方法,并通过与Mizoguchi等人的试验数据进行对比,验证了新方法的可行性。
     该模型既丰富和发展了现有的低温相变岩体的温度-渗流耦合模型,又为岩体“导热系数”这一重要热力学参数的取值方法提供了新的思路。
     (2)建立了考虑空气温度和湿度影响的隧道风流场湍流模型,探讨了隧道内风流场与围岩热量交换规律
     借助流体力学、传热学和空气动力学的基本原理与方法,在适当引入地铁通风和建筑节能方面研究成果的基础上,推导出考虑空气温度和湿度影响的风流场湍流模型,对现有的湍流数值模拟方法和围岩与风温热交换规律进行了深入的分析和探讨,并应用上述研究成果,数值模拟了Baly等人采用缩尺模型对室内空气混合对流进行的试验研究,通过与试验结果及Zhang等人数值模拟结果的比较,证明了本文推导的风流场模型及其采用的湍流数值模拟方法的优越性。在此基础上,采用数值分析方法探讨了空气的温度、湿度以及风速的大小对围岩温度场的影响,研究结果表明:风温和风速是影响围岩温度场的最主要的两个因素,相比之下,空气湿度对温度场的影响较小。
     该模型既深化了寒区隧道围岩温度场的研究水平,填补了国内外寒区隧道研究在该领域的空白,也可应用于地铁通风、火灾模拟、建筑节能和室内环境等领域的通风数值计算。
     (3)提出了考虑岩石冻融影响的损伤因子,建立了能够反映西藏嘎隆拉隧道围岩应力-应变关系的冻融损伤本构模型
     通过对西藏嘎隆拉隧道现场岩样进行系统的冻融试验和单轴、三轴压缩试验,全面分析了该类岩石在经历不同冻融次数、不同受力状态条件下的破坏形式、强度特性、变形特性和冻融劣化特征,研究结果表明:单轴条件下岩石破坏形式以劈裂破坏为主,三轴条件下以剪切破坏为主;强度随冻融次数增加而减小;应力峰值对应的轴向应变值随着围压和冻融次数的增加而增加。在此基础上,提出了考虑岩石冻融影响的损伤因子,建立了能够反映西藏嘎隆拉隧道围岩应力-应变关系的冻融损伤本构模型。
     该模型反映了岩石在多次冻融循环过程中的损伤特点,为进一步揭示工程岩体冻融损伤机理奠定了基础。
     (4)建立了通风条件下寒区隧道温度-渗流-应力-损伤(THMD)耦合模型
     考虑体积应变对围岩温度场和渗流场的影响,温度梯度、渗透压力和冻胀压力对围岩应力场的影响,建立了通风条件下寒区隧道THMD耦合模型。该模型除了包括传统三场耦合条件下的能量方程、质量守恒方程和平衡方程三大基本方程外,还根据寒区隧道的工程实际,添加了考虑隧道内空气湿度、风速和风温影响的风流场湍流模型方程组。在此基础上,数值仿真了某寒区管道工程的冻胀过程,通过与现场的实测结果对比表明:该模型能很好的反映围岩体由于负温所产生的冻胀现象。
     该模型是在THM三场耦合框架内,对寒区隧道复杂通风条件下围岩冻胀机理的一次崭新探索,使得THM耦合研究更接近隧道工程实际。
     (5)研制了一种高性能泡沫混凝土,通过试验研究了其保温性能和冻融劣化规律,通过数值分析研究了其在寒区隧道中的保温效果
     针对寒区隧道的特点,在对泡沫混凝土产品及其研究现状进行充分调研的基础上,比选出闭孔珍珠岩、聚丙烯纤维等9种材料作为本次高性能泡沫混凝土研制的基本原料;采用正交试验方法,研究了各种原材料对泡沫混凝土的密度、吸水率、抗压强度、劈裂抗拉强度等一系列基本性能的影响,试验结果显示:泡沫、闭孔珍珠岩和纤维含量是影响泡沫混凝土各项性能的最主要的几个因素。并根据正交试验的结果,优选出一种泡沫混凝土配方,重点对其保温性能和冻融特性进行研究,开发出兼具轻质、保温、抗冻、抗裂和抗震等功能,特别适合于寒区工程保温层及抗震层使用的泡沫混凝土。在此基础上,通过数值分析研究了其在寒区隧道中的保温效果。
     该产品的研制,使寒区隧道保温设计与抗震融为一体、两者兼得。
     (6)结合西藏嘎隆拉隧道的工程实际,设计并实施了多项现场试验,研制了隧道远程无线监测及健康诊断系统
     针对西藏嘎隆拉隧道地处喜马拉雅断裂带、海拔高、气温低、雨量极其丰富、进出口两端气候截然不同等特点,在隧道现场埋设了一大批监测仪器:温度传感器、渗压计、土压力盒、钢筋计、混凝土应变计和地震动加速度计;并借助移动通信GPRS技术,研制了远程无线健康诊断系统,实时监测隧道围岩和结构的温度分布、地下水渗流特征以及结构受力状况。
     该项研究工作,解决了传统监测方法无法在自然环境极其恶劣条件下开展、很难定时定量采集数据和长期监测需要花费大量人力、物力的难题。不仅为嘎隆拉隧道的施工与维护提供了决策依据,为寒区隧道积累了大量宝贵的技术数据,也为类似寒区隧道工程的长期监测与稳定性预测提供了新的方法。
     (7)确定了嘎隆拉隧道防寒保温材料的类型、厚度、安装位置和设防长度,得到了极端气候条件下嘎隆拉隧道围岩冻胀力大小,并对其在长期冻融循环荷载作用下的稳定性进行了分析
     利用前面得到的理论和试验研究成果,研究了隧道进出口端保温材料的类型、厚度、安装位置和设防长度对防寒保温效果的影响,分析了极端气候条件下嘎隆拉隧道围岩冻胀力的特征,并对隧道在长期冻融循环荷载作用下的稳定性进行了探讨。研究结果表明:1)在嘎隆拉隧道进口端600m、出口端400m范围内,二衬表面敷设6cm厚的聚酚醛保温材料,可以有效的防止嘎隆拉隧道衬砌和围岩发生冻融破坏;21极端气候条件下隧道围岩的最大冻胀力达到了1.6MPa;3)冻融循环对隧道衬砌受力影响较大。
     该项研究工作,既回答了隧道设计和现场施工人员所关心的几个主要问题,又使得本文前面得到的理论和试验研究成果接受了实践的检验。
Combining with the international frontier issues on freeze-thaw damage, cold-proof and thermal insulation in the construction of tunnel engineering in cold region with high altitude, Galongla tunnel which is an important part of Za-mo highway in Tibet is studied in this paper. The mechanism of frost heave for rock tunnel and related insulation technology are studied. The thermo-hydro-mechanical-damage (THMD) coupled model of rock tunnel in cold region under the ventilation condition is established. Researches on the related theoretic model and application technology are done with laboratory test, theoretic analysis, numerical simulation and field measurements. A method is proposed to do the stability analysis of tunnel in cold region with high altitude under frost heaving force and the related reasonable cold-proof measure is presented. There are two significances. Firstly, the THMD coupled model of tunnel in cold region under the ventilation condition is established, which is a theoretic extension of mechanism of frost heave for rock tunnel in cold region. Secondly, a pioneering work is done on the optimum design for tunnel support structure in cold region and the establishment for reasonable cold-proof measures. The conclusions of this study are list as follows.
     (1) The controlling equations for thermo-hydro coupled model of low-temperature rock mass considering phase change are established and a new method is proposed for calculation of thermal conductivity coefficient of geotechnical material considering the phase change under low temperature.
     According to the basic law of water flow and heat transfer in rock mass under freezing-thawing condition, the controlling equations for thermo-hydro (TH) coupled model of low-temperature rock mass considering phase change are established based on the theories of continuum mechanics, thermodynamics and segregation potential. These equations include not only the effect of heat conductivity, latent heat of phase change and the seepage velocity on temperature distribution but also the effect of water flow in pore resulted by Soret effect and segregation potential on seepage velocity and seepage pressure distribution. And the total bi-directional coupling between seepage field and temperature field is realized. Compared with the famous TH coupling laboratory test conducted by Mizoguchi et. al., the presented TH coupled model is verified and the reasonability of determination of related material parameters are proved. Meanwhile, the systematic summarizations are done to the related thermodynamic parameters for the TH coupled model. For geotechnical material, there are many pores and the unfrozen water still exists when the temperature is below 0℃. Combining with the above characteristic and aiming at the shortage of the three current methods for calculating the heat conductivity coefficient of geotechnical material, a new method is proposed to calculate the heat conductivity coefficient of geotechnical material with low-temperature considering phase change based on random mixed model (RMM). Through the comparison with Mizoguchi's experiment results, the new method is verified.
     This model is an extension of the current HM coupled of low-temperature rock mass considering phase change, and provides a new method to determine the heat conductivity coefficient of rock mass.
     (2) Considering the effects of air temperature and humidity, the turbulence model of air-flow field in tunnel is established and the heat exchange law between surrounding rock and air-flow field in tunnel is studied.
     Based on the theories and methods of hydrodynamics, heat-transfer and aerodynamics, some researches on ventilation in subway and building energy efficiency are lead in to establish the turbulence model of air-flow field considering the effects of air temperature and humidity. Based analysis of current research on turbulence numerical simulation method and heat exchange law between air and surrounding rock, the proposed turbulence model is adopted and a numerical simulation for Baly's laboratory experiment on mixed convection with reduced scale model is done. Comparing with the experiment results and numerical results from Ma et.al., the proposed turbulence model is verified and its advantages are presented. Based on the above studies, the numerical analysis is done to study the effects of air temperature, air humidity and air speed on temperature distribution of surrounding rock in tunnel. It is concluded that:air temperature and air speed are two important factors which significantly affect the temperature distribution of surrounding rock in tunnel. In contrast, the effect of air humidity on temperature field is much smaller.
     The turbulence model is an extension research on temperature field of surrounding rock in tunnel in cold region and can be applied to the related ventilation numerical simulation such as ventilation of subway, fire modeling, building energy efficiency, indoor environment and so on.
     (3) A damage factor is proposed to consider the freezing-thawing effect in rock and the damage constitutive model considering the freezing-thawing is presented to describe the stress-strain relationship of surrounding rock for Galongla tunnel in Tibet.
     The freezing-thawing laboratory test, uniaxial compression test and triaxial compression test are done with the samples from Galongla tunnel in Tibet. The failure forms, strength, deformation and degradation characteristics of rock under different freezing-thawing condition are analyzed. It is concluded that:the main failure form of rock under uniaxial compression is splitting failure and that under triaxial compression is shear failure. The strength decreases with the increasing of numbers of freezing-thawing. The axial strain corresponding to the peak stress increases with the increasing of confining pressure and numbers of freezing-thawing. Based on the above researches, a damage factor is proposed to consider the freezing-thawing effect in rock and the damage constitutive model considering the freezing-thawing is presented to describe the stress-strain relationship of surrounding rock for Galongla tunnel in Tibet.
     With this model, the damage characteristic of rock in the process of freezing-thawing is described and a foundation is provided to reveal the mechanism of freezing-thawing damage for engineering rock mass.
     (4) The THMD coupled model for tunnel in cold region under ventilation is established.
     The THMD coupled model for tunnel in cold region under ventilation is established, considering the effect of volume strain on temperature and seepage field of surrounding rock and the effect of temperature gradient, seepage pressure and frost heave pressure on mechanical field. Besides three traditional controlling equations for THM coupling (energy conservation equation, mass conservation equation and balance equation), there are turbulence equations considering the effects of air temperature, air humidity and air speed in tunnel in the proposed model. Based on the above study, a numerical simulation is done to model the frost heave process of a pipeline engineering in cold region. Compared with the field measurements, it is concluded that:the frost heave phenomenon caused by temperature variation in surrounding rock can be described well and truly with the proposed model.
     Based on the THM coupled theory, the proposed model is a new exploration on mechanism of frost heave of rock in tunnel in cold region under complex ventilation condition. And this model is much closer to the actual situation for tunnel engineering in cold region.
     (5) A high-performance foamed concrete is designed. Its insulation properties and degradation characteristics under freezing-thawing are studied through laboratory test and the numerical analysis is done to study the insulation effect in tunnel in cold region.
     Aiming at the characteristics of tunnel in cold region and based on the investigation of foamed concrete products,9 types of material are chosen to be the basic materials of the designed foamed concrete such as obturator perlite, polypropylene fibers and so on. With the orthogonal test, the effect of each basic material on performance of foamed concrete is studied. The results show that the contents of foam, obturator perlite and polypropylene fibers are the main factors which affect each characteristics of foamed concrete. According to the orthogonal test results, the optimal formula is established to make up a high-performance foamed concrete. Its insulation property and degradation characteristics under freezing-thawing are studied particularly. The experimental results show that this foamed concrete is suitable for application to the insulation layer and anti-seismic layer in engineering in cold region which has the characteristics of lightweight, cold-proof, crack resistance and anti-seismic. Based on the above research, the insulation effect in tunnel in cold region is studied by numerical simulation.
     With this foamed concrete, the design of insulation and anti-seismic of tunnel in cold region are integrated together.
     (6) Combining with the Galongla tunnel engineering in Tibet, many field tests are done and a remote wireless monitor and health diagnose system in tunnel is presented.
     There are many characteristics in Galongla tunnel which locates at the Himalaya fault zone in Tibet, such as high altitude, low temperature, large rainfall and different climate at the entrance and exit of tunnel. Aiming at those characteristics, many monitoring equipments are installed in situ such as temperature sensor, osmometer, pressure cell, steel bar meter, concrete strain gauge and Seismic accelerometer. With GPRS technology, a remote wireless health diagnose system is designed to monitor the temperature distribution, underground water seepage and stress status of structure and surrounding rock in tunnel.
     With this monitor system, the measurements can be done under any severe environment condition and cost less resources compared with those traditional monitor methods. The basis is provided for construction and maintenance of Galongla tunnel and many precious technical data are provided for tunnel in cold region. A new method is proposed for stability prediction and long-term monitor of tunnel engineering in cold region.
     (7) Aiming at Galongla tunnel, the material type, depth, location and length for cold-proof and insulation are determined and the frost heave force of surrounding rock in an extreme climate is obtained. The stability analysis of tunnel under long-term freezing-thawing cycle is done.
     With the above theoretic and experimental results, the length of insulation material near the entrance and exit of tunnel and the frost heave force in an extreme climate in Galongla tunnel are studied. The stability analysis of tunnel under long-term freezing-thawing cycle is done. It is concluded that:1) 600m far from the entrance of tunnel and 400 m far from the exit of tunnel, the application of insulation material with a depth of 6cm at the surface of secondary lining can prevent the lining and surrounding rock from freezing-thawing damage effectively for Galongla tunnel.2) the frost heave force of surrounding rock of tunnel in an extreme climate reaches to 1.6MPa.
     With this part of work, the above theoretic and experimental results are applied to an actual projects and are verified.
引文
[1]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [2]周幼吾,郭东信,邱国庆等.中国冻土[M].北京:科学出版社,2000.
    [3]杨位洗.地基及基础[M].北京:中国建筑工业出版社,1998.
    [4]马静嵘.软岩体冻融损伤温度-渗流力耦合研究初探[硕士学位论文][D].西安:西安科技大学,2004.
    [5]徐光苗.寒区岩体低温、冻融损伤力学特性及多场耦合研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2006.
    [6]朱立平,Whalley W B,王家澄.寒冻条件下花岗岩小块体的风化模拟试验及其分析[J].冰川冻土,1997,19(4):312-320.
    [7]何国梁,张磊,吴刚.循环冻融条件下岩石物理特性的试验研究[J].岩土力学,2004,25(增2):52-56.
    [8]刘成禹,何满潮,王树仁,等.花岗岩低温冻融损伤特性的实验研究[J].湖南科技大学学报(自然科学版),2005,20(1):37-40.
    [9]吴刚,何国梁,张磊,等.大理岩循环冻融试验研究[J].岩石力学与工程学报,2006,25(增1):2930-2938
    [10]张继周,缪林昌,杨振峰.冻融条件下岩石损伤劣化机制和力学特性研究[J].岩石力学与工程学报,2008,27(8):1688-1694.
    [11]Anderson D M, Tice A R. Predicting unfrozen water contents in frozen soils from surface area measurements[J]. Highway Research Record,1972,393:12-18.
    [12]Konrad J M. Unfrozen water as a function of void ratio in a clayey silt[J]. Cold Regions Science and Technology,1990,18(1):49-55.
    [13]Kolaian J H, Low P F. Calorimetric determination of unfrozen water in montmorillonite pastes[J]. Soil Science,1963,95(6):376-384.
    [14]Williams P J. Experimental determination of apparent specific heats of frozen soils[J]. Geotechnique.1964, 14:133-142.
    [15]Anderson D M, Tice A R. Low temperature phases of interfacial water in clay-water systems[J]. Soil Science Society of America,1971,35:47-54.
    [16]Anderson D M, Tice A R. The unfrozen interfacial phase in frozen soil water systems[J]. Ecological Studies, 1973,4:107-125.
    [17]Pusch R. Unfrozen water as a function of clay microstructure[J]. Engineering Geology,1979,13:157-162.
    [18]Handa Y P, Zakrzewski M, Fairbridge C. Effect if restricted geometries on the structure and thermodynamic properties of ice[J]. Physics and Chemistry,1992,96:8594-8599.
    [19]Kozlowski T. A comprehensive method of determining the soil unfrozen water curves 1:Application of the term of convolution[J]. Cold Regions Science and Technology,2003,36:71-79.
    [20]Kozlowski T. A semi-empirical model for phase composition of water in clay-water systems[J]. Cold Regions Science and Technology,2007,47:226-236.
    [21]Kozlowski T. Some factors affecting supercooling and the equilibrium freezing point in soil-water systems[J]. Cold Regions Science and Technology,2009,59:25-33.
    [22]Tice A R, Burrous C M, Anderson D M. Phase composition measurements on soils at very high water contents by the pulsed Nuclear Magnetic Resonance technique[J]. Transportation Research Record,1978, 675:11-14.
    [23]Ishizaki T, Maruyama M, Furukawa Y, et al. Premelting of ice in porous silica glass[J]. Journal of Crystal Growth,1996,163(4):455-460.
    [24]王丽霞,胡庆立,凌贤长,等.青藏铁路冻土未冻水含量与热参数试验[J].哈尔滨工业大学学报,2007,39(10):1660-1663.
    [25]覃英宏,张建明,郑波,等.基于连续介质热力学的冻土中未冻水含量与温度的关系[J].青岛大学学报(工程技术版),2008,23(1):77-82.
    [26]Sparrman T, Oquist M, Klemedtsson L, et al. Quantifying unfrozen water in frozen soil by high-field 2H NMR[J]. Environmental Science & Technology,2004,38(20):5420-5425.
    [27]Patterson D E, Smith M W. The use of time domain reflectometry for measurement of unfrozen water content in frozen soils[J]. Cold Regions Science and Technology,1980,3(3):205-210.
    [28]Spaans E J A, Baker J M. Examining the use of time domain reflectometry for measuring liquid water content in frozen Soil [J]. Water Resources Research,1995,31(12):2917-2925.
    [29]Christ M, Kim Y C. Experimental study on the physical-mechanical properties of frozen silt[J]. KSCE Journal of Civil Engineering,2009,13(5):317-324.
    [30]Wyllie M R, Gregory A E, Gardner L W. Elastic wave velocities in heterogeneous and porous media[J]. Geophysics,1956,21(1):41-70.
    [31]Timur A. Velocity of compressional waves in porous media at permafrost temperatures[J]. Geophysics. 1968,33(4):584-595.
    [32]Nakano Y, Martin R J, Smith M. Ultrasonic velocities of the dilatational and shear waves in frozen soils[J]. Water Resources Research,1972,8(4):1024-1030.
    [33]Nakano Y, Arnold R. Acoustic properties of frozen Ottawa sand[J]. Water Resources Research 1973,9(1): 178-184.
    [34]Wang D Y, ZhuYL, Ma W, et al. Application of ultrasonic technology for physical-mechanical properties of frozen soils[J]. Cold Regions Science and Technology,2006,44(1):12-19.
    [35]盛煜,福田正己,金学三,等.未冻水含量对含废弃轮胎碎屑冻土超声波速度的影响[J].岩土工程学报,2000,22(6):716-719.
    [36]Anderson D M, Hoekstra P. Migration of interlamellar water during freezing and thawing of Wyoming bentonite[J]. Soil Science Society of America,1965,29:498-504.
    [37]陈友昌,张显凤,义宗贞.冻土未冻水含量测试装置(测试盒)[J].油气田地面工程,1995,14(4):49-51.
    [38]尚松浩,毛晓敏.基于BP神经网络的土壤冻结温度及未冻水含量预测模型[J].冰川冻土,2001,23(4):414-418.
    [39]Yoshikawa K, Overduin P P. Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors[J]. Cold Regions Science and Technology,2005,42(3):250-256.
    [40]张学富,寒区隧道多场耦合问题的计算模型研究及其有限元分析[博士学位论文][D].兰州:中国科学院寒区与旱区环境与工程研究所,2004.
    [41]Zhang M Y, Lai Y M, Yu W B. Experimental study on influence of particle size on cooling effect of crushed-rock layer under closed and open tops[J]. Cold Regions Science and Technology,2007,48(3):232-238.
    [42]赖金星,谢永利,李群善.青沙山隧道地温场测试与分析[J].中国铁道科学,2007,28(5):78-82.
    [43]赖远明,吴紫汪,张淑娟,等.寒区隧道保温效果的现场观察研究[J].铁道学报,2003,25(1):81-86.
    [44]谢红强,何川,李永林.寒区隧道结构抗防冻试验研究及仿真分析[J].公路,2006,2:184-188.
    [45]张先军.青藏铁路昆仑山隧道洞内气温及地温分布特征现场试验研究[J].岩石力学与工程学报,2005,23(24):1086-1089.
    [46]陈建勋,罗彦斌.寒冷地区隧道温度场的变化规律[J].交通运输工程学报,2008,8(2):44-48.
    [47]Ma W, Feng G L, Wu Q B, et al. Analyses of temperature fields under the embankment with crushed-rock structures along the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology,2007,53(3):259-270.
    [48]张德华,王梦恕,任少强.青藏铁路多年冻土隧道围岩季节活动层温度及响应的试验研究[J].岩石力学与工程学报,2007,26(3):614-619.
    [49]Bonacina C, Comini G. On the solution of the nonlinear heat conduction equations by numerical methods[J]. International Journal of Heat and Mass Transfer,1973,16(3):581-589.
    [50]Mottaghy D, Rath V. Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions[J]. Geophysical Journal International,2006,164(1):236-245
    [51]Bronfenbrener L. The modelling of the freezing process in fine-grained porous media:Application to the frost heave estimation[J]. Cold Regions Science and Technology,2009,56(2):120-134.
    [52]李述训.立井冻结法凿井工程中的热工计算[J].冰川冻土,1994,16(1):20-30.
    [53]赖远明,喻文兵,吴紫汪,等.寒区圆形截面隧道温度场的解析解[J].冰川冻土,2001 2(2):126-130.
    [54]麦继婷,陈春光.通风速度和外界气温对秦岭隧道温度的影响[J].石家庄铁道学院学报,1998,11(2):6-10.
    [55]徐学祖,邓友生.冻土中水分迁移的实验研究[M].北京:科学出版社,1991.
    [56]李述训,程国栋.冻融土中的温度-渗流输运问题[M].兰州:兰州大学出版社,1995.
    [57]Park C, Synn J H, Shin D S. Experimental study on the thermal characteristics of rock at low temperatures[J]. International Journal of Rock Mechanics & Mining Science,2004,41(Supp.1):81-86.
    [58]吕康成,解赴东,张翊翱.寒区隧道围岩导温系数反分析[J].西安建筑科技大学学报(自然科学版),2000,32(4):379-381.
    [59]水伟厚,高广运,韩晓雷,等.寒区隧道围岩导温系数及其冻深分析[J].地下空间,2002,22(4):343-346.
    [60]Zhang H F, Ge X S Ye H. Heat conduction and heat storage characteristics of soils[J]. Applied Thermal Engineering,2007,27(2):369-373.
    [61]Nicolsky D J, Romanovsky V E, Tipenko G S. Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems[J]. The Cryosphere,2007,1:41-58.
    [62]Nicolsky D J, Romanovsky V E, Panteleev G G. Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost[J]. Cold Regions Science and Technology, 2009,55(1):120-129.
    [63]刘玉勇,伍晓军.高寒地区特长公路隧道中花岗岩的热参数测试[J].四川建筑,2008,28(1):216-217.
    [64]Kay B D, Fukuda M, Izuta H. The importance of water migration in the measurement of the thermal conductivity of unsaturated frozen soils[J]. Cold Regions Science and Technology,1981,5(2):95-106
    [65]Comini G, Giudice S D, Lewis R, et al. Finite element solution of non-linear heat conduction problems with special reference to phase change[J]. International Journal for Numerical Methods in Engineering,1974, 8(3):613-624.
    [66]姜培学,柯道友,任泽霈.PHOENICS求解非稳态导热对流及辐射换热耦合问题[J].清华大学学报(自然科学版),1999,39(4):113-117.
    [67]何春雄,吴紫汪,朱林楠.严寒地区隧道围岩冻融状况分析的导热与对流换热模型[J].中国科学(D辑),1999,29(增1):1-7.
    [68]何春雄,吴紫汪.祁连山区大坂山隧道围岩的冻融状况分析[J].冰川冻土,2000,22(2):113-120.
    [69]张学富,赖远明,喻文兵,等.寒区隧道三维温度场数值分析[J].铁道学报,2003,25(3):84-90.
    [70]张学富,赖远明,喻文兵,等.风火山隧道多年冻土回冻预测分析[J].岩石力学与工程学报,2004,23(24):4170-4178.
    [71]蔡海兵,荣传新.考虑相变潜热的冻结温度场非线性分析[J].低温技术,2009,31(2):43-45.
    [72]朱明,苏小勇,宋琼瑶,等.冻土非稳态温度场有限元模拟分析[J].四川建筑科学研究,2009,35(1):120-124.
    [73]刘慧,杨更社,任建喜.基于数字图像处理的冻融页岩温度场的数值分析方法[J].岩石力学与工程学报,2007,26(8):1678-1683.
    [74]Beskow G. Soil freezing and frost heaving with special application to roadsrailroads. The Swedish Geological Survey Yearbook,1935,26(3), (in Swedish). (translated by J.O. Osberberg, published by Technical Institute, Northweatern University,1947.
    [75]Williams P J. Propertiesand behavior of freezing soils[J]. Norwegian Geotechnical Institute,1967,72:1-119.
    [76]Williams P J. Moisture migration in frozen soils[M]. National Academy Press, Washington. D. C,1984.
    [77]Konrad J M, Morgenstern N R. The segregation potential of a freezing soil[J]. Canadian Geotechnical Journal,1981,18:482-491.
    [78]Nakano Y. Quasi-steady problems in freezing soils:I. Analysis on the steady growth of an ice layer[J]. Cold Regions Science and Technology,1990,17(3):207-226.
    [79]Takeda K, Nakano Y. Quasi-steady problems in freezing soils:Ⅱ. Analysis on the steady growth of an ice layer[J]. Cold Regions Science and Technology,1990,18(3):225-247.
    [80]Nakano Y, Takeda K. Quasi-steady problems in freezing soils:Ⅲ. Analysis on the steady growth of an ice layer[J]. Cold Regions Science and Technology,1991,17(3):225-243.
    [81]Nakano Y. Quasi-steady problems in freezing soils:Ⅳ. Analysis on the steady growth of an ice layer[J]. Cold Regions Science and Technology,1994,23(1):1-17.
    [82]徐学祖,王家澄,邓友生.土中水分迁移试验装置的研制[J].冰川冻土,1988,10(2):189-197.
    [83]徐学祖,王家澄,张立新,等.土体冻胀和盐胀机理[M],北京:科学出版社,1995.
    [84]王家澄,程国栋.孔隙特征对材料在冻结过程中位移的影响[J].冰川冻土,1993,15(1):183-185.
    [85]王家澄,张学珍,王玉杰.扫描电子显微镜在冻土研究中的应用[J].冰川冻土,1996,18(2):184-189.
    [86]张喜发,辛德刚,张冬青等.季节冻土区高速公路路基土中的水分迁移变化[J].冰川冻土,2004,26(4):454-461.
    [87]盛煜,马巍,候仲杰.正冻土中水分迁移的迁移势模型[J].冰川冻土,1993,15(1):140-143.
    [88]王铁行,胡长顺.冻土路基水分迁移数值模型[J].中国公路学报,2001,14(4):5-9.
    [89]Taylor G S, Luthin J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal,1978,15(4):548-555.
    [90]Jame Y W, Norum D I. Heat and mass transfer in a freezing unsaturated porous media[J]. Water Resources Research,1980:811-819.
    [91]Hansson K, Simunek J, Mizoguchi M. Water Flow and Heat Transport in Frozen Soil:Numerical Solution and Freeze-Thaw Applications[J]. Vadose Zone Journal,2004,3:693-704.
    [92]杨诗秀,雷志栋,朱强,等.土壤冻结条件下温度-渗流耦合运移的数值模拟[J].清华大学学报(自然科学版),1988,28(增1):112-120.
    [93]尚松浩,雷志栋,杨诗秀.冻结条件下土壤温度-渗流耦合迁移数值模拟的改进[J].清华大学学报(自然科学版),1997,37(8):62-64.
    [94]Koopmans R W R, Miller R D. Soil freezing and soil water characteristic curves[J]. Soil Science Society of America Journal,1966,30:680-685.
    [95]McKenzie J M, Voss C I, Siegel D I. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs[J]. Advances in Water Resources,2007,30(4):966-983.
    [96]Lambe T W, Whitman R V. Soils Mechanics[M]. New York:John Wiley,1979.
    [97]Zhu Y, Carbee D L. Uniaxial compressive strength of frozen silt under constant deformation rates[J]. Cold Regions Science and Technology,1984,9(1):3-15.
    [98]Li N, Chen F X, Su B. Theoretical frame of the saturated freezing soil[J]. Cold Regions Science and Technology,2002,35(2):73-80.
    [99]Winkler E M. Frost damage to stone and concrete:geological considerations[J]. Engineering Geology, 1968,2(5):315-323.
    [100]Inada Y, Yokota K. Some studies of low temperature rock strength[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1984.21(3):145-153.
    [10l]赖远明,吴紫汪.大坂山隧道围岩冻融损伤的CT分析[J].冰川冻土,2000,22(3):206-210.
    [102]杨更社,蒲毅彬.寒区冻融环境条件下岩石损伤扩展研究探讨[J].实验力学,2002,17(2):220-226.
    [103]张淑娟,赖远明,苏新民,等.风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究[J].岩石力学与工程学报,2004,23(24):4105-4111.
    [104]徐光苗,刘泉声,彭万巍,等.低温作用下岩石基本力学性质试验研究[J].岩石力学与工程学报,2006,25(12):2502-2508.
    [105]付伟,汪稔,胡明鉴,等.不同温度下冻土单轴抗压强度与电阻率关系研究[J].岩土力学,2009,30(1):73-78.
    [106]杨更社,奚家米,邵学敏.冻结条件下岩石强度特性的试验[J].西安科技大学学报,2010,30(1):14-18.
    [107]杨更社,奚家米,李慧军.三向受力条件下冻结岩石力学特性试验研究[J].岩石力学与工程学报,2010,29(3):459-464.
    [108]Yamabe T, Neaupane K M. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature conditions[J]. International Journal of Rock Mechanics & Mining Science,2001. 38(7):1029-1034.
    [109]赖远明,程红彬,高志华.冻结砂土的应力-应变关系及非线性莫尔强度准则[J].岩石力学与工程学报,2007,26(8):1612-1617.
    [110]程磊.冻结条件下岩石力学特性实验研究及工程应用[硕士学位论文][D].西安:西安科技大学,2009.
    [111]李慧军.冻结条件下岩石力学特性的实验研究[硕士学位论文][D].西安:西安科技大学,2009.
    [112]郑波,张建明,马小杰.高温-高含冰量冻土压缩变形特性研究[J].岩石力学与工程学报,2009,28(增1):3063-3069.
    [113]Matsuoka N. Mechanisms of rock breakdown by frost action:an experimental approach[J]. Cold Regions Science and Technology,1990,17:253-270.
    [114]Ruiz V G, Rey R A, Clorio C, et al. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Phys. Chem. Earth,1999,7(24):633-637.
    [115]Nicholson D T, Nicholson F H. Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering[J]. Earth Surface Processes and Landforms,2000,25(12):1295-1307.
    [116]Mutlutuk M, Altindag R, TurK G. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling[J]. International Journal of Rock Mechanics and Mining Science,2004,41(2):237-244.
    [117]Chen T C, Yeung M R, M N. Effect of watcr saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology,2004,38(2):127-136.
    [118]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究[J].岩石力学与工程学报,2005,24(17):3076-3082.
    [119]苗天德,张长庆.冻土蠕变过程的微结构损伤理论[J].中国科学(B辑),1998,25(3):309-317.
    [120]李宁,张平,程国栋.冻结裂隙砂岩低周循环动力特性试验研究[J].自然科学进展,2001,11(11):1175-1180.
    [121]杨更社,张全胜,任建喜,等.冻结速度对铜川砂岩损伤CT数变化规律研究[J].岩石力学与工程学报,2004,23(24):4099-4104.
    [122]金龙,赖远明,高志华,等.冻结砂土的损伤试验研究[J].冰川冻土,2008,30(2):306-311.
    [123]Lai Y M, Jin L, Chang X X. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil[J]. International Journal of Plasticity,2009,25(6):1177-1205.
    [124]Watanabe K. Amount of unfrozen water in frozen porous media saturated with solution[J]. Cold Regions Science and Technology,2002,34(2):103-110.
    [125]马静嵘,杨更社,徐坤.软岩隧道冻胀损伤参量的确定[J].西安科技大学学报,2004,24(3):271-274.
    [126]张慧梅,杨更社.冻融与荷载耦合作用下岩石损伤模型的研究[J].岩石力学与工程学报,2010,29(3):471-476.
    [127]Walder J, Hallet B. A theoretical model of the fracture of rock during freezing[J]. Geological Society of America Bulletin,1985,96(3):336-346.
    [128]Hori M. Micromechanical analysis on deterioration due to freezing and thawing in porous brittle materials[J]. International Journal of Engineering Science,1998,36(4):511-522.
    [129]何平,程国栋,朱元林.冻土粘弹塑损伤耦合本构理论[J].中国科学(D辑),1999,29(增1):34-39.
    [130]赖远明,李双洋,高志华,等.高温冻结粘土单轴随机损伤本构模型及强度分布规律[J].冰川冻土,2007,39(12):969-976.
    [131]宁建国,朱志武.含损伤的冻土本构模型及耦合问题数值分析[J].力学学报,2007,39(1):70-76.
    [132]Shoop S, Affleck R, Haehnel R, et al. Mechanical behavior modeling of thaw-weakened soil[J]. Cold Regions Science and Technology,2008,52(2):191-206.
    [133]Li S Y, Lai Y M, Zhang S J, et al. An improved statistical damage constitutive model for warm frozen clay based on Mohr-Coulomb criterion[J]. Cold Regions Science and Technology,2009,57(2):154-159.
    [134]王铁行.多年冻土地区路基计算原理及临界高度研究[D][博士学位论文].西安:长安大学,2002.
    [135]Philip J R, De Veries D A. Moisture movement in porous material under temperaturegradient[J]. Transactions American Geophysical Union,1957,38:222-232.
    [136]Ershov E D. The moisture transfer and cryogenic textures in dispersive rock, Nauka, Moscow,1979.
    [137]Bronfenbrener L, Korin E. A numerical method for solving Stefan problems containing a kinetic zone, Proceedings of the Third International Colloquium on numerical, Science Culture Technology Publisher, Singapore,1995,29-37.
    [138]Bronfenbrener L, Korin E. Kinetic model for crystallization in porous media[J]. International Journal of Heat and Mass Transfer,1997,40(5)1053-1059.
    [139]Bronfenbrener L, Korin E. Thawing and refreezing around a buried pipe[J]. Chemical Engineering and Processing,1999,38(3):239-247.
    [140]Lunardini V J. Phase-change around insulated buried pipes:quasi-steady method[J]. Journal of Energy Resources Technology,1981,103:201-207.
    [141]苗天德,郭力,牛永红,等.正冻土中水热迁移问题的混合物理论模型[J].中国科学(D辑),1999,29(增11:8-14.
    [142]Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973,9(5):1314-1323.
    [143]O'Neill K, Miller R D. Exploration of a rigid ice model of frost heave[J]. Water Resources Research,1985, 21(3):281-296.
    [144]Fukuda M, Nakagawa S. Numerical analysis of frost heaving based upon the coupled heat and water flow model[A]. in 4th International Symposium on Ground Freezing[C].1985, Sapporo, Japan.
    [145]Lundin L. Hydraulic properties in an operational model of frozen soil[J]. Journal of Hydrology,1990,118 (1):289-310.
    [146]赖远明,吴紫汪,朱元林.寒区隧道温度场和渗流场耦合问题的非线性分析[J].中国科学(D辑),1999,29(增1):21-26.
    [147]张学富,喻文兵,刘志强.寒区隧道渗流场和温度场耦合问题的三维非线性分析[J].岩土工程学报,2006,28(9):1095-1100.
    [148]王铁行,胡长顺.多年冻土地区路基温度场和水分迁移场耦合问题研究[J].岩土工程学报,2003,36(12):93-97.
    [149]张树光,屈小民.非等温条件下道路水分迁移的数值模拟[J].岩土力学,2004,25(增1):231-234.
    [150]毛雪松,王秉纲,胡长顺.多年冻土路基水分迁移热力学性能分析[J].路基工程,2006,127(4):1-4.
    [151]汪仁和,李栋伟.人工多圈管冻结温度-渗流耦合数值模拟研究[J].岩石力学与工程学报,2007,26(2):355-359.
    [152]谭贤君,陈卫忠,贾善坡,等.相变低温岩体温度-渗流耦合模型研究.岩石力学与工程学报,2008,27(7):1455-1461.
    [153]Kay B D, Groenevelt P H. On the interaction of water and heat transport in frozen and unfrozen soils:Ⅰ. basic theory; the vapor phase[J]. Soil Science Society of America,1974,38:395-400.
    [154]Groenevelt P H, Kay B D. On the interaction of water and heat transport in frozen and unfrozen soils:Ⅱ. the liquid phase[J]. Soil Science Society of America,1974,38:400-404.
    [155]Kung S K J, Steenhuis T S. Heat and Moisture Transfer in a Partly Frozen Nonheaving Soil[J]. Soil Science Society of America,1986,50:1114-1122.
    [156]郭力,苗天德,张慧,等.饱和正冻土中水热迁移的热力学模型[J].岩土工程学报,1998,20(5):87-91.
    [157]翁家杰,周希圣,陈明雄,等.冻结土体的水分迁移和固结作用[J].地下工程与隧道,1999,1:2-10.
    [158]杨更社,周春华,田应国,等.软岩类材料冻融过程水热迁移的实验研究初探[J].岩石力学与工程学报,2006,25(9):1765-1770.
    [159]杨更社,周春华,田应国,等.软岩材料冻融过程中的水热迁移实验研究[J].煤炭学报,2006,31(5):566-570.
    [160]汪仁和,李栋伟.多圈管冻结模型试验及温度-渗流耦合数学模型研究[J].合肥工业大学学报(自然科学版),2007,30(11):1481-1484.
    [161]Penner E. The mechanism of frost heaving in soils[J]. Highway Research Board Bulletin,1959,225:1-13.
    [162]Everett D H. The thermodynamics of frost damage to porous solids[M]. Transactions of the Farady Society, 1961.
    [163]李宁,程国栋,徐学祖.冻土力学的研究进展与思考[J].力学进展,2001,31(1):95-102.
    [164]Miller, R D. Frost heaving in non-colloidal softs[C]. In:Proc. Third Int. Conf. Permafrost, Edmonton, Alberta,1978,707-713.
    [165]Mu S, Ladanyi B. Modelling of coupled heat, moisture and stress field in freezing soil[J]. Cold Regions Science and Technology,1987,14(3):237-246.
    [166]Guymon G L, Hromadka Ⅱ T V, Berg R L. A one dimensional frost heave model based upon simulation of simultaneous heat and water flux[J]. Cold Regions Science and Technology,1980,3(3):253-262
    [167]Konrad J M, Morgenstem N R. Effects of applied pressure on freezing soils[J]. Canadian Geotechnical Journal,1982,19:494-505,
    [168]Konrad J M, Morgenstem N R. Frost heave prediction of chilled pipelines buried in unfrozen soils[J]. Canadian Geotechnical Journal,1984.21:100-115.
    [169]Konrad J M. Influence of freezing mode on frost heave characteristics[J]. Cold Regions Science and Technology,1988,15(2):161-175.
    [170]Konrad J M, Shen M.2-D frost action modeling using the segregation potential of soils[J]. Cold Regions Science and Technology,1996,24(3):263-278.
    [171]Nixon J F. Thermally induced heave beneath chilled pipelines in frozen ground[J]. Canadian Geotechnical Journal,1987,24(22):260-266.
    [172]Li N, Chen F X, Xu B, et al. Theoretical modeling framework for an unsaturated freezing soil[J]. Cold Regions Science and Technolog,2008,54(1):19-35.
    [173]Michalowski R. A constitutive model of saturated soils for frost heave simulations[J]. Cold Regions Science and Technology,1993,22(1):47-63.
    [174]Michalowski R L, Zhu M. Frost heave modelling using porosity rate function[J]. International Journal for Numerical and Analytical Methods in Geomechanics2006,30(8):703-722.
    [175]Neaupane K M, Yamabe T, Yoshinaka R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1999,36(5):563-580.
    [176]Neaupane K M, Yamabe T. A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium [J]. Computers and Geotechnics,2001,28(8):613-637.
    [177]赖远明,吴紫汪,朱元林,等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,21(5):529-533.
    [178]何平,程国栋,俞祁浩,等.饱和正冻土中的水、热、力场耦合模型[J].冰川冻土,2000,22(2):135-138.
    [179]陆宏轮.饱和多孔介质冻融过程的混合物连续介质理论[J].西南交通大学学报,2001,36(6):599-603.
    [180]Li N, Chen B, Chen F X. The coupled heat-moisture-mechanic model of the frozen soil[J]. Cold Regions Science and Technology,2000,31(3):199-205.
    [181]陈飞熊,李宁,程国栋.饱和正冻土多孔多相介质的理论构架[J].岩土工程学报,2002,24(2):213-217.
    [182]李宁,陈波,陈飞熊.冻土路基温度场、水分场、应力场三场耦合分析[J].土木工程学报,2003,36(10):66-71.
    [183]徐光苗,刘泉声,张秀丽.冻结温度下岩体THM完全耦合的理论初步分析[J].岩石力学与工程学报,2004,23(21):3709-3713.
    [184]马静嵘,杨更社.软岩冻融损伤的水-热-力耦合研究初探[J].岩石力学与工程学报,2004,23(增1):4371-4377.
    [185]朱万成,魏晨慧,唐春安,等.岩体开挖损伤区的表征及热-流-力耦合模型:研究现状及展望[J].自然科学进展,2008,18(9):968-978.
    [186]张祉道,王联.高海拔及严寒地区隧道防冻设计探讨[J].现代隧道技术,2004,41(3):1-6.
    [187]盛煜,吴紫汪,朱林楠,等.寒区隧道围岩冻胀力的初步分析[R].冻土工程国家重点实验室年报,兰州:冻土工程国家重点实验室,1996,6,126-131.
    [188]张德华,王梦恕,谭忠盛.风火山隧道围岩冻胀对支护结构体系的影响[J].岩土工程学报,2003,25(5):571-573.
    [189]张全胜,杨更社,王连花.冻融条件下软岩隧道冻胀力计算分析[J].西安科技学院学报,2003,23(1):1-5.
    [190]赖远明,吴紫汪,朱元林.寒区隧道冻胀力的粘弹性解析解[J].铁道学报,1999,21(6):70-74.
    [191]Lai Y M, Wu H, Wu Z W. Analytical viscoelastic solution for frost force in cold-region tunnels[J]. Cold Regions Science and Technology,2000,31(3):227-234.
    [192]何川,谢红强.多场耦合分析在隧道工程中的应用[M].成都:西南交通大学出版社,2007.
    [193]王建宇,胡元芳.隧道衬砌冻胀压力问题初探[J].铁道工程学报,2004,81(1):87-93.
    [194]范磊,曾艳华,何川.寒区硬岩隧道冻胀力的量值及分布规律[J].中国铁道科学,2007,28(1):44-49.
    [195]周敏娟.寒区隧道衬砌背部空洞积水冻胀力学分析[J].石家庄铁道学院学报(自然科学版),2007,20(10):62-65.
    [196]邓刚,王建宇,郑金龙.寒区隧道衬砌刚度分布对冻胀压力的影响[J].西南交通大学学报,2009,44(5):416-420.
    [197]赖远明,吴紫汪,张淑娟,等.寒区隧道保温效果的现场观察研究[J].铁道学报,2003,25(1):81-86.
    [198]赵吉明,郭兴,盛煜.大坂山隧道洞内保温性能分析[J].公路隧道,2007,59(3):57-58.
    [199]Broch E, Grov E, Davik K I. The inner lining system in Norwegian traffic tunnels[J]. Tunneling and Underground Technology,2002,17(7):305-314.
    [200]邓刚,郑金龙,李海清.寒区隧道离壁式衬砌结构的保温隔热原理研究[J].公路隧道,2008,63(3):6-11.
    [201]黄双林,刘小刚.青藏铁路昆仑山隧道设计[J].中国铁路,2003,2:48-50.
    [202]张学富,王成,喻文兵.风火山隧道空气与围岩对流换热和围岩热传导耦合问题的三维非线性分析[J].岩土工程学报,2005,27(12):1414-1420.
    [203]马建新,李永林,谢红强.高寒地区隧道保温隔热层设防厚度的研究[J].铁道建筑技术,2003,6:20-22.
    [204]陈建勋,咎勇杰.寒冷地区公路隧道防冻隔温层效果现场测试与分析[J].中国公路学报,2001,14(4):75-79.
    [205]陈建勋,张建勋,朱计华.硬质聚氨酯在寒冷地区隧道冻害防治中的应用[J].长安大学学报(自然科学版),2006,26(5):66-68.
    [206]陈建勋,罗彦斌.寒冷地区隧道防冻隔温层厚度计算方法[J].交通运输工程学报,2007,7(2):76-79.
    [207]张纯清.高寒地区隧道防水施工技术[J].西部探矿工程,2001,1:51-52.
    [208]吕康成,解赴东,崔凌秋.温度对寒区隧道渗漏的影响分析[J].东北公路,2001,24(3):73-75.
    [209]吕康成,王大为,解赴东,等.隧道复合式衬砌防水层损伤预防探讨[J].公路,2001,10:6-8.
    [210]崔凌秋,金祥秋.寒冷地区隧道渗漏水的主要原因及预防措施[J].公路,2001,11:91-92.
    [211]崔凌秋,吕康成,王潮海.寒冷地区隧道渗漏与冻害综合防治技术探讨[J].现代隧道技术,2005,42(5):22-25.
    [212]王明阳.严寒地区隧道防排水与保温防冻技术[J].隧道建设,2006,26(3):51-54.
    [213]王伟忠,向科.严寒地区隧道中心排水管布置方法研究[J].地下工程与隧道,2007,(增1):52-54
    [214]汪阳,田俊峰.寒区岩石隧道防水措施浅析[J].山西建筑,2008,34(28):7-8.
    [215]立石俊一.山岭隧道的防水技术隧道译丛[J].1990,11:58-63.
    [216]Okada K. Lcicle prevention by adiatic treatment of tunnel linling[J]. Japanese Railway Engineering,1985, 26(3):75-80.
    [217]Yoshimurt J. Design for frost prevention in road tunnels:simplified design method for insulator between the outer and inner linings [A]. Pro.of the Int. Congress on Tunnel and Underground Works Today and Future [C],1990,1:55-63.
    [218]Jaby J F.用于的隧道防水和隔热衬砌[J].隧道译丛,1990,11:49-50
    [219]Sodha M S, Sharma A K, Sawhney R L. Optimum length of underground tunnel and corresponding annual heating/cooling potentials[J]. International Journal of Energy Research,1990,14(3):323-335.
    [220]Okada K. Actual states and analysis of frost penetration depth in lining and Earth of cold region tunnel[J]. Quarterly Report of Railway Technical Research Institute(Japan),1992,33(2):129-133.
    [221]Sandegren E. Insulation against ice in railroad tunnels[J]. Transportation Research Record,1995,115:126-132.
    [222]Friant E J, Ozdemir L. Tunnel boring technology-Present and future[A]. Rapid Excavation and Tunneling Congerence[C].1993,869-888.
    [223]雷升祥.对高原隧道设计与施工的几点认识[J].西部探矿工程,2000,64(3):56-57.
    [224]余文忠.风火山隧道施工技术[J].铁道建筑技术,2002,4:7-11.
    [225]刘新军.寒区隧道支护设计理论研究初探[硕士学位论文][D].西安:西安科技大学,2006.
    [226]张亚兴.嘎隆拉隧道抗防冻及防排水技术的研究[硕士学位论文][D].重庆:重庆交通大学,2009.
    [227]Koopmans R W R, Miller R D. Soil freezing and soil water characteristics curves[J]. Soil Science Society of America,1966,30(6):680-685.
    [228]Grant S A, Sletten R S. Calculating capillary pressures in frozen and ice-free soils below the melting temperature[J]. Environmental Geology,2002,42(2):130-136.
    [229]Nishimura S, Gens A, Olivella S, et al. THM-coupled finite element analysis of frozen soil:formulation and application[J]. Geotechnique,2009,59(3):159-171.
    [230]Van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America,1980,44(5):892-898.
    [231]Lunardini V J. Freezing of soil with an unfrozen water content and variable thermal properties[C]. CRREL report, National Technical Information Service,1987.
    [232]Mottaghy D, Rath V. Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions[J]. Geophysical Journal International,2006,164(1):236-245.
    [233]吕兆华.泡沫型多孔介质等效导热系数的计算[J].南京理工大学学报,2001,25(3):257-261.
    [234]刘为民,何平,张钊.土体导热系数的评价与计算[J].冰川冻土,2002,24(6):770-773.
    [235]Zhang H F, Ge X S, Ye H, et al. Heat conduction and heat storage characteristics of soils[J]. Applied Thermal Engineering,2007,27(2):369-373.
    [236]李万平.计算流体力学[M].武汉:华中科技大学出版社,2004.
    [237]Volchkov E P, Terekhov V V, Terekhov V I. A numerical study of boundary-layer heat and mass transfer in a forced flow of humid air with surface steam condensation[J]. International Journal of Heat and Mass Transfer,2004,47(6):1473-1481
    [238]Hayat T, Mustafa M, Pop I. Heat and mass transfer for Soret and Dufour's effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid[J]. Communications in Nonlinear Science and Numerical Simulation,2010,15(5):1183-1196.
    [239]王春.地铁车站通风与火灾三维数值模拟研究[博士学位论文][D].成都:西南交通大学,2005
    [240]Wijeysundera N E, Chou S K, Jayamaha S,E G. Heat flow through walls under transient rain conditions[J]. Journal of Building Physics,1993,17(1):118-143.
    [241]邵建涛,刘京,赵加宁,等.建筑外表面对流换热实验研究进展[J].建筑科学,2007,23(8):92-97.
    [242]中华人民共和国建设部.GB 50176293民用建筑热工设计规范[S].北京中国计划出版社,1999.
    [243]电子工业部第十设计研究院.空气调节设计手册[M].北京:中国建筑工业出版社,1995.
    [244]Lacasse D, Turgeon E, Pelletier D. On the judicious use of the k-ε model, wall functions and adaptivity[J]. International Journal of Thermal Sciences,2004,43(10):925-938.
    [245]Bejan A. Heat Transfer, Wiley,1993.
    [246]Baly D, Mergui S, Niculae C. Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet, in:Fundamentals of Mixed Convection, HTD-Vol.213, ASME, New York,1992,65-72.
    [247]Zhang W, Chen Q Y. Large eddy simulation of indoor airflow with a filtered dynamic subgrid scale model[J]. International Journal of Heat and Mass Transfer,2000,43(17):3219-3231.
    [248]吴维青,阮玉忠.回火处理温度对40Cr钢疲劳损伤过程的影响[J].材料热处理学报,2005,26(5):68-71.
    [249]陈剑文,杨春和,高小平等.盐岩温度与应力耦合损伤研究[J].岩石力学与工程学报,2005,24(11):1986-1991.
    [250]Jing L R, Tsang C F, Stephansson O. DECOVALEX-An International Co-Operative Research Project on Mathematical Models of Coupled THM Processes for Safety Analysis of Radioactive Waste Repositories[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1995,32(5):389-398.
    [251]Hart R D, John C M S. Formulation of a fully-coupled thermal-mechanical-fluid flow model for non-linear geologic systems[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1986,23(3):213-224.
    [252]Hudson J A, Stephansson O, Andersson J, et al. coupled t-h-m issues relating to radioactive waste repository design and performance [J]. International Journal of Rock Mechanics and Mining Science,2001,38(1):143-161.
    [253]Rutqvist J, Borgesson L, Chijimatsu M, et al. Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models [J]. International Journal of Rock Mechanics and Mining Science,2001,38(1):105-127.
    [254]Zhou Yafei. Thermo-hydro-mechanical models for saturated and unsaturated porous media [D]. Canada: University of Manitoba,1998.
    [255]周创兵,陈益峰,姜清辉,等.复杂岩体多场广义耦合分析导论[M].北京:中国水利水电出版社,2008.
    [256]盛金昌.多孔介质流-固-热三场全耦合数学模型及数值模拟[J].岩石力学与工程学报,2006,26(增1):3028-3033.
    [257]Smith M W, Patterson D E. Detailed observations on the nature of frost heaving at a field scale[J]. Canadian Geotechnical Journal,1989,26(2):306-312.
    [258]Mikkola M, Hartikainen J. Mathematical model of soil freezing and its numerical implementation[J]. International Journal for Numerical Methods in Engineering,2001,52(5):543-557.
    [259]朱家桥,朱维申.军都山隧道黄土试验段重直位移观测及分析[J]l岩土力学,1988,9(1):45-49.
    [260]陈建勋,咎勇杰.寒冷地区公路隧道防冻隔温层效果现场测试与分析[J].中国公路学报2001,14(4):75-79.
    [261]王军,夏才初,朱合华,等.不对称连拱隧道现场监测与分析研究[J].岩石力学与工程学报,2004,23(2):267-271.
    [262]刘志春,李文江,朱永全,等.青藏铁路风火山隧道洞内外温度实测与分析[J].铁道标准设计,2004(11):56-58.
    [263]黄宏伟,徐凌.大风垭口岩石公路隧道围岩及初期支护变形与内力研究[J].岩石力学与工程学报,2004,23(1):44-52.
    [264]李德武.断层破碎带隧道衬砌受力特性研究[博士学位论文][D].兰州:兰州大学,2004.
    [265]王建秀,朱合华,唐益群.高速公路隧道跟踪监测及承载状况诊断[J].土木工程学报,2005,38(2):110-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700