用户名: 密码: 验证码:
pcDNA3.1-Myc-His B(-)/tPA质粒DNA-交联明胶微球复合物的制备及其性质检测和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验一交联明胶微球的制备及其物理性质的检测和分析
     目的制备交联明胶微球并检测和分析其物理性质。
     方法以普通碱性明胶为原料,25%戊二醛水溶液为交联剂,采用改良的双相乳化冷凝交联法制备交联明胶微球。采用扫描电镜观察微球微观形态,测定微球在37℃生理盐水中充分溶胀前后的平均直径和最大溶胀率。微电泳法测定微球的表面电荷。采用紫外分光光度法检测交联明胶微球结合和体外缓释pcDNA3.1-Myc-His B(-)/tPA质粒DNA的性能和剂量-时间规律。
     结果交联明胶微球呈分散良好的均匀球体,表面可见孔道散在分布。干燥状态下微球的平均直径为21.13±1.42μm,在37℃生理盐水中充分溶胀后的平均直径为26.72±1.74μm,两者相比具有明显统计学差异(P <0.05)。微电泳法测定微球表面携带正电荷。交联明胶微球在37℃生理盐水中的最大溶胀率为27.32±0.45%。当pcDNA3.1-Myc-His B(-)/tPA质粒DNA与交联明胶微球的质量比为1:10时,微球结合质粒DNA达到饱和状态,此时的包封率为62.75±3.31%。所形成的pcDNA3.1-Myc-His B(-)/tPA质粒DNA-交联明胶微球复合物在体外能够持续缓释质粒DNA超过4周。
     结论本实验所制备的交联明胶微球能够有效结合pcDNA3.1-Myc-His B(-)/tPA质粒DNA形成pcDNA3.1-Myc-His B(-)/tPA质粒DNA-交联明胶微球复合物,在体外能够持续缓释pcDNA3.1-Myc-His B(-)/tPA质粒DNA超过4周。
     实验二交联明胶微球的细胞毒性和生物相容性研究
     目的检测交联明胶微球的细胞毒性和生物相容性,评价其用于体内应用的安全性。
     方法采用MTT染色法检测交联明胶微球的细胞毒性程度。通过溶血实验、凝血酶原时间实验和复钙时间实验评价交联明胶微球对红细胞的破坏作用和对凝血功能的影响。通过扫描电镜观察、测定黏附细胞数和细胞迁移实验研究交联明胶微球对体外培养的人脐静脉内皮细胞的黏附和迁移能力的影响。
     结果交联明胶微球的细胞毒性程度维持在1级,并且不随微球降解时间延长和浓度增加而增强。交联明胶微球的溶血率为2.27±0.34%,提示微球没有溶血性。测定微球的凝血酶原时间为16.0±0.7 s,与阴性对照组(17.2±0.8 s)相比没有统计学差异(P >0.05);复钙时间为165.4±4.5 s,与普通明胶组(169.2±5.4 s)和阴性对照组(181.2±3.4 s)相比均没有统计学差异(P >0.05),从而提示微球不会促进外源性和内源性凝血途径的功能。通过扫描电镜观察和在1周末和4周末时测定携带交联明胶微球溶液的Dacron补片表面的黏附细胞数量为(1.47±0.30)×106和(65.34±11.25)×106,分别与普通Dacron补片组的黏附细胞数(1.63±0.26)×106和(62.43±10.06)×106相比均没有统计学差异(P >0.05),提示微球不会抑制人脐静脉内皮细胞在Dacron纤维表面的黏附。细胞迁移试验测定交联明胶微球组的细胞迁移距离为29.61±3.54μm,与阴性对照组(32.41±4.31μm)和普通明胶组(30.55±5.08μm)相比均没有统计学差异(P >0.05),提示微球不会抑制细胞的迁移能力。
     结论交联明胶微球没有细胞毒性;不会引起溶血和促进外源性和内源性凝血功能,也不会抑制人脐静脉内皮细胞的黏附和迁移能力,具有良好生物相容性。
     实验三pcDNA3.1-Myc-His B(-)/tPA质粒DNA-交联明胶微球复合物的体外基因转染实验研究
     目的检测pcDNA3.1-Myc-His B(-)/tPA质粒DNA-交联明胶微球复合物体外缓释pcDNA3.1-Myc-His B(-)/tPA质粒DNA转染人脐静脉内皮细胞的瞬时转染效率和转染后的tPA蛋白的表达和分泌情况。
     方法以体外培养的人脐静脉内皮细胞HUVECs为转染对象,通过免疫荧光染色技术检测其瞬时转染效率。通过RT-PCR技术检测转染后HUVECs中tPA mRNA转录,通过Western印迹检测技术检测转染后HUVECs中tPA蛋白表达情况。通过ELISA技术检测HUVECs转染后细胞培养上清液中tPA蛋白含量。
     结果pcDNA3.1-Myc-His B(-)/tPA质粒DNA-交联明胶微球复合物所缓释的pcDNA3.1-Myc-His B(-)/tPA质粒DNA能够成功转移进入HUVECs,其瞬时转染效率为12.74±2.53%,明显高于单纯pcDNA3.1-Myc-His B(-)/tPA质粒DNA溶液组(4.63±1.75%) (P <0.05),但低于pcDNA3.1-Myc-His B(-)/tPA质粒DNA-阳离子脂质体复合物组(26.49±5.23%) (P <0.05)。RT-PCR提示其转染后转录产生的tPA mRNA电泳条带的积分光密度值与相应内参β-actin的比值为1.65±0.27,明显高于单纯pcDNA3.1-Myc-His B(-)/tPA质粒DNA溶液组(1.22±0.23) (P <0.05),但低于pcDNA3.1-Myc-His B(-)/tPA质粒DNA-阳离子脂质体复合物组(2.07±0.25) (P <0.05),以上3组均显著高于空白pcDNA3.1质粒DNA载体组(0.86±0.21)和正常培养的HUVECs (0.91±0.18) (P <0.05)。Western免疫印迹技术提示其转染后细胞内有tPA蛋白表达,而空白pcDNA3.1质粒DNA载体组和正常培养的HUVECs中则仅有痕量表达。ELISA实验证明HUVECs转染后所表达的tPA蛋白能够被分泌到细胞培养上清液中,其tPA蛋白浓度为497.2±61.9 ng/ml,高于单纯pcDNA3.1-Myc-His B(-)/tPA质粒DNA溶液组(295.7±49.1 ng/ml) (P <0.05),但低于pcDNA3.1-Myc-His B(-)/tPA质粒DNA-阳离子脂质体复合物组(862.1±96.8 ng/ml) (P <0.05)。
     结论由pcDNA3.1-Myc-His B(-)/tPA质粒DNA-交联明胶微球复合物在体外缓释的pcDNA3.1-Myc-His B(-)/tPA质粒DNA能够成功转移进入HUVECs中并进行转录和表达,转染后细胞所产生的tPA蛋白能够被分泌到细胞外。
Experiment I Preparation of Cross Linking Gelatin Microspheres, Detection and Analysis of Physical Properties
     Objective To prepare cross linking gelatin microspheres (CLG microspheres), analyze and detect physical properties.
     Method Modified diphasic emulsified cold-condensation method was adapted to prepare CLG microspheres, with basic gelatin as material and 25% glutaral solution as cross linking agent. SEM was used to observe morphology and detect the average diameter of CLG microspheres before and after fully swelling in physiologic saline at 37?C. The maximum swelling radio of CLG microspheres was also evaluated. Microelectrophoresis was used to detect the surface charge of CLG microspheres. The ability of binding and delayed releasing dose-time profile of pcDNA3.1-Myc-His B(-)/tPA plasmid DNA by CLG microspheres was also detected by ultraviolet spectrophotometry.
     Results CLG microspheres were uniform spheroids with small pores on surface and sporadically dispersed without conglutination. The average diameter of CLG microspheres was 21.13±1.42μm and 26.72±1.74μm before and after fully swelling in physiologic saline at 37?C, and there was statistical difference between the average diameter of microspheres before and after fully swelling. The maximum swelling radio was 27.32±0.45% in physiologic saline at 37?C. The surface charge was positive. When the mass proportion of plasmid DNA vs. CLG microspheres reached 1:10, the absorption for plasmid DNA by CLG microspheres reached saturation, with entrapment radio of 62.75±3.31%. pcDNA3.1-Myc-His B(-)/tPA plasmid DNA could be continuously delayed released by CLG microspheres over 4 weeks in vitro.
     Conclusion CLG microspheres possessed good ability of binding pcDNA3.1-Myc-His B(-)/tPA plasmid DNA to form pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-CLG microspheres complex, and pcDNA3.1-Myc-His B(-)/tPA plasmid DNA could be delayed released continuously from the complex over 4 weeks in vitro.
     Experiment II Research of Cytotoxicity and Biocompatibility of Cross Linking Gelatin Microspheres
     Objective To detect cytotoxicity and biocompatibility of CLG microspheres in order to evaluate safety of CLG microspheres used in vivo.
     Method MTT assay was used to detect cytotoxicity of CLG microspheres. Haemolysis test, prothrombin time and recalcification time experiment were used to evaluate influence on erythrocyte and blood coagulation function by CLG microspheres. The influence on ability of adhesion and migration on Dacron fibers surface of human umbilical vein endothelium cells (HUVECs) by CLG microspheres were also evaluated through SEM, adhesion cells numbers counting and cell migration test.
     Results Cytotoxicity of CLG microspheres retained as grade 1, and would not increase along with degradation time and concentration of CLG microspheres. The Haemolysis degree was 2.27±0.34%, which indicated that CLG microspheres would not destroy erythrocytes. Prothrombin time was 16.0±0.7 s, and there was no statistical difference with that of negative control group (17.2±0.8 s) (P >0.05). Recalcification time was 165.4±4.5 s, and there was no significantly statistical difference with that of common gelatin (169.2±5.4 s) or negative group (181.2±3.4 s) (P >0.05). Those results indicated that CLG microspheres would not facilitate exogenous and intrinsic coagulation. The amount of HUVECs on the surface of Dacron fibers coated with CLG microspheres solution was (1.47±0.30)×106 and (65.34±11.25)×106 at the end of week 1 and 4 respectively, and there were no statistical difference between that of untreated Dacron fibers, (1.63±0.26)×106 and (62.43±10.06)×106 respectively (P >0.05). The migration distance in CLG microspheres group was 29.61±3.54μm, and there was no statistical difference between that of negative control group (32.41±4.31μm) or common gelatin group (30.55±5.08μm) (P >0.05). Those results indicated that CLG microspheres would not inhibit the ability of adhesion and migration of HUVECs.
     Conclusion CLG microspheres had little cytotoxicity and would not facilitate coagulation, or inhibit the ability of adhesion and migration of HUVECs, which indicated that CLG microspheres possessed good biocompatibility.
     Experiment III Experimental Research of Gene Transfection of pcDNA3.1-Myc-His B(-)/tPA Plasmid DNA-Cross Linking Gelatin Microspheres Complex in vitro
     Objective To detect transient gene transfection efficiency of pcDNA3.1-Myc-His B(-)/tPA plasmid DNA being transferred into HUVECs, which was released from pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-CLG microspheres complex in vitro, and gene expression after transfection.
     Method Immunofluorescence staining was used to detect the transient gene transfection efficiency of pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-CLG microspheres complex. RT-PCR was used to detect tPA mRNA and Western blotting was used to detect tPA protein synthesized in HUVECs after transfection. ELISA was used to evaluate tPA content in culture medium supernatant, which was secreted by HUVECs after transfection.
     Results pcDNA3.1-Myc-His B(-)/tPA plasmid DNA, which was released from pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-CLG microspheres complex, could be successfully transferred into HUVECs in vitro, with transient transfection efficiency of 12.74±2.53%, and it was significantly higher than that of simple pcDNA3.1-Myc-His B(-)/tPA plasmid DNA solution (4.63±1.75%) (P <0.05), but lower than pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-liposome complex (26.49±5.23%) (P <0.05). The integral optical density ratio value of tPA mRNA electrophoresis strip in pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-CLG microspheres complex group was 1.65±0.27, which was higher than simple pcDNA3.1-Myc-His B(-)/tPA plasmid DNA solution group (1.22±0.23) (P <0.05), but lower than pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-liposome complex group (2.07±0.25) (P <0.05). The integral optical density ratio values of those 3 groups were all significantly higher than that of blank pcDNA3.1 plasmid DNA vector group (0.86±0.21) and HUVECs in control culture (0.91±0.18) (P <0.05). tPA expression could be detected in HUVECs after transfection by pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-CLG microspheres complex, however it was expressed in trace level in blank pcDNA3.1 plasmid DNA vector group and HUVECs in control culture. tPA could be secreted into culture medium supernatant by HUVECs after transfection, and tPA content in pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-CLG microspheres complex grorp was 497.2±61.9 ng/ml, which was higher than simple pcDNA3.1-Myc-His B(-)/tPA plasmid DNA solution group (295.7±49.1 ng/ml) (P <0.05), but lower than pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-liposome complex group (862.1±96.8 ng/ml) (P <0.05).
     Conclusion pcDNA3.1-Myc-His B(-)/tPA plasmid DNA which was released from pcDNA3.1-Myc-His B(-)/tPA plasmid DNA-CLG microspheres complex could be successfully transferred into HUVECs and tPA synthesized in HUVECs could be secreted extracellularly after transfection.
引文
1. Acar J, Iung B, Boissel JP, et al. AREVA: multicenter randomized comparion of low-dose versus standard-dose anticoagulation in patients with mechanical prostheticheart valves. Circulation, 1996, 94(7): 2107~2112.
    2. Tiede DJ, Nishimura RA, Gastineau DA, et al. Modern management of prosthetic valve anticoagulation. Mayo Clin Proc, 1998, 73 (7): 665~680.
    3. Sidhu P, O’Kane HO. Self-managed anticoagulation: results from a two-year prospective randomized trial with heart valve patients. J Ann Thorac Surg, 2001, 72(5): 1523~1527.
    4. Wattanapitayakul S, Schommer JC. The human genome project: benefits and risks to society. Drug Inform, 1999, 33(4): 729~735.
    5. Bernecker OY, del Monte F, Hajjar RJ. Gene therapy for the treatment of heart failure-calcium signaling. Semin Thorac Cardiovasc Surg, 2003, 15(3): 268~276.
    6. Oliver JM, Hugo AK, Raffi B. Targeting the heart with gene therapy-optimized gene delivery methods. Cardio Res, 2007, 73(4): 453~462.
    7. Berthold A, Cremer K, Kreuter J. Collagen microparticles: carriers for glucocorticoid steroids [J]. Eur J Pham Biopham, 1998, 45(1): 23~29.
    8. Weadock KS, Olson RM, Sliver FH. Evaluation of collagen crosslinking techniques. Med Dev Art Org, 1983-1984. 11(4): 295~328.
    9. Fan H, Dash AK. Effect of cross-linking on the in vitro release kinetics of doxorubicin from gelatin implants. Int J Pharm, 2001, 213(1): 103~116.
    1. Snyder RO, Francis J. Adeno-associated viral vectors for clinical gene transfer studies. Curr Gene Ther, 2005, 5(3): 311~321.
    2. Ikada Y, Tabata Y. Protein release fron gelatin matrices. Adv Drug Deliv Rev, 1998, 31(2): 287~301.
    3.张娜,黄桂华,席延伟等.肺靶向炎琥宁明胶微球的制备.中国药学杂志, 2006, 41(6): 438~441.
    4. Atyabi F, Manoochehri S, Moghadam SH, et al. Cross-linked starch microspheres: effect of cross-linking condition on the microsphere characteristics. Arch Pharm Res, 2006, 29(12): 1179~1186.
    5. Bielinska AU, Kukowska-Latallo JF, Baker R. The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation analysis of alterations induced in nuclease sensitivity, transcriptional activity of the complexed DNA. Biochim Biophys Acta, 1997, 1353(2): 180~190.
    6. Gvili K, Benny O, Danino D, et al. Poly (D, L-lactide-co-glycolide acid) nanoparticles for DNA delivery: waiving preparation complexity and increasing efficiency.Biopolymers, 2007, 85(5): 379~391.
    7. Tarahovsky YS, Rakhmanova VA, Epand RM, et al. High temperature stabilization of DNA in complexes with cationic lipids. Biophys J. 2002, 82(1): 264~273.
    8. Aoki M, Morishita R, MurasihiA, et al. Efficient in vivo gene transfer into the heart in the rat myocardial infarction model using the HVJ (Hemagglutinating virus of Japan)-Liposome method. Mol Cell Cardiol, 1997, 29(3): 949~959.
    9. Oliver JM, Hugo AK, Raffi B. Targeting the heart with gene therapy-optimized gene delivery methods. Cardio Res, 2007, 73(4): 453~462.
    10. Tio RA, Grandjean JG, SuurmeijerAJ, et al. Thoracoscopic monitoring for pericardial application of local drug or gene therapy. Int J Cardiol, 2002, 82(2): 117~124.
    11. Berthold A, Cremer K, Kreuter J. Collagen microparticles: carriers for glucocorticoid steroids. Eur J Pham Biopham, 1998, 45(1): 23~29.
    12. Weadock KS, Olson RM, Sliver FH. Evaluation of collagen crosslinking techniques. Med Dev Art Org, 1983-1984. 11(4): 295~328.
    13. Fan H, Dash AK. Effect of cross-linking on the in vitro release kinetics of doxorubicin from gelatin implants. Int J Pharm, 2001, 213(1): 103~116.
    14. Goissis G, Marcantonio EJR, Marcantonio RA, et al. Biocompatibility studies of anionic collagen membranes with different degree of GA cross-linking. Biomaterials, 1999, 20(1): 27~34.
    15. Yamamoto M, Ikada Y, Tabata Y. Controlled Release of growth factors based on biodegradation of gelatin hydrogel. J Bioma Sci Polym. 2001, 12(7): 77~88.
    16. Holland TA, Mikos AG. Advances in drug delivery for articular cartilage. J Control Release. 2003, 86(1): 1~14.
    1.中华人民共和国国家标准GB/T 16886. 12-1996,医疗器械生物学评价第12部分:样品制备与参照样品[S].
    2. Sahlin H, Nygren H. Cytotoxicity testing of wound-dressing materials. Altern Lab Anim, 2001, 29(3): 269~275.
    3. Vives MA, Macian M, Seguer J, et al. Hemolytic action of anionic surfactants of the diacyl lysine type. Comp Biochem Physiol, 1997, 118(1): 71~74.
    4. Mao JS, Liu HF, Yin YJ, et al. The properties of chitosan-gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials, 2003, 24(9): 1621~1629.
    5. Rao JK, Ramesh DV, Rao KP. Controlled release systems for proteins based on gelatinmicrospheres. J Biomater Sci Polym Ed. 1994, 6(5): 391~398.
    6. Hunt JA, McLaughlin PJ, Flanagan BF. Techniques to investigate cellular and molecular interactions in the host response to implanted biomaterials. Biomaterials, 1997, 18(22): 1449~1459.
    7. Jayakrishnan A, Jameela SR. Glutaraldehyde as a flexative in bioprostheses and drug delivery matrices. Biomat, 1996, 17(5): 471~484.
    8. Nugent HM, Edelman ER. Tissue engineering therapy for cardiovascular disease. Circ Res, 2003, 92(10): 1068~1078.
    9. Jastrzebska M, Wrzalik R, Kocot A, et al. Raman spectroscopic study of glutaraldehyde-stabilized collagen and pericardium tissue. J Biomater Sci Polym Ed, 2003, 14(2): 185~197.
    10. Sung HW, Chang Y, Chin CT, et al. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring cross linking agent. J Biomed Mater Res, 1999, 47(2): 116~126.
    11. George F, John AT. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxic Let, 2006, 160(2): 171~177.
    12.中华人民共和国国家标准GB/16886.生物材料和医疗器材生物学评价技术要求[S]. 1997: 1.
    13. Doyle S, O’Brien P, Murphy K, et al. Coagulation factor content of solvent/detergent plasma compared with fresh frozen plasma. Blood Coagul Fibrinolysis, 2003, 14(3): 283~287.
    14. Hoheisel G, Roth M, Chan CH, et al. Procoagulant activity of purified protein derivative-stimulated pleural effusion mononuclear cells in tuberculous pleurisy. Respir, 1997, 64(2): 152~158.
    1. Stadler J, Lenmmens R, Nyhammaer T. Plasmid DNA purification. J Gene Med, 2004, 6(Suppl 1): S54~66.
    2. Spadoni C, Taylor J, Neame S. A method utilizing differential culture and comparative RT-PCR for determining RNA expression in superior cervical ganglion neurones. J Neurosci Methods, 2003, 123(1): 99~107.
    3. Kurokawa T, Toyoda Y, Iwasa S. Characterization of monoclonal antibodies against human tissue plasminogen activator (tPA): quantitation of free tPA in human cell cultures by an ELISA. J Biochem, 1991, 109(2): 217~222.
    4. Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost, 2005, 93(4): 655~660.
    5. Dunn PF, Newman KD, Jones M, et al. Seeding of vascular grafts with genetically modified endothelial cells. Secretion of recombinant TPA results in decreased seeded cell retention in vitro and in vivo. Circulation, 1996, 93(7): 1439~1446.
    6. Griese DP, Achatz S, Batzlsperger CA, et al. Vascular gene delivery of anticoagulants by transplantation of retrovirally-transduced endothelial progenitor cells. Cardiovasc Res, 2003, 58(2): 469~477.
    7. Eton D, Yu H, Wang Y, et al. Endograft technology: a delivery vehicle for intravascular gene therapy. J Vasc Surg, 2004, 39(5): 1066~1073.
    8. Yasunori F, Kazunori I, Kazuhiro M, et al. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J Con Rel, 2002, 80(5):333~343.
    9. Remaut K, Sanders NN, Fayazpour F, et al. Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. J Control Release, 2006, 115(3): 335~343.
    10. Lechardeur D, Verkman AS, Lukacs GL. Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev, 2005, 57(5): 755~767.
    11. Byrnes CK, Khan FH, Nass PH, et al. Success and limitations of a naked plasmid transfection protocol for keratinocyte growth factor-1 to enhance cutaneous wound healing. Wound Repair Regen. 2001, 9(5): 341~346.
    12. Herweijer H, Zhang G, Subbotin VM, et al. Time course of gene expression after plasmid DNA gene transfer to the liver. J Gene Med. 2001, 3(3): 280~291.
    13. Oliver JM, Hugo AK, Raffi B. Targeting the heart with gene therapy-optimized gene delivery methods. Cardio Res, 2007, 73(4): 453~462.
    14. Korpanty G, Chen S, Shohet RV, et al. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Therapy, 2005, 12(7): 1305~1312.
    1. Wattanapitayakul S, Schommer JC. The human genome project: benefits and risks to society. Drug Inform, 1999, 33: 729~735.
    2. Kim SY. Assessing and communicating the risks and benefits of gene transfer clinical trials. Curr Opin Mol Ther, 2006, 8: 384~389.
    3. Snyder RO, Francis J. Adeno-associated viral vectors for clinical gene transfer studies. Curr Gene Ther, 2005, 5: 311~321.
    4. Nishikawa M, Huang L. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Therapy, 2001, 12: 861~870.
    5. Sen L, Hong YS, Luo H, et al. Efficiency, efficacy, and adverse effects of adenovirus vs. liposome-mediated gene therapy in cardiac allografts. Am J Physiol Heart Circ Physiol, 2001, 281: 1433~1441.
    6. Tomlinson E, Rolland A. Controllable gene therapy: pharmaceutics of non-viral genedelivery systems. J Cont Rel, 1996, 39: 357~372.
    7. Buttrick PM, Kass A, Kitsis RN, et al. Behavior of genes directly injected into the rat heart in vivo. Circ Res, 1992, 70: 193~198.
    8. Lin H, MS Parmacek, G Morle, et al. Expression of recombinant genes in the myocardium in vivo after direct injection of DNA. Circulation, 1990, 82: 2217~2221.
    9. Lee M, Rentz J, Bikram M, et al. Hypoxiainducible VEGF gene delivery to ischemic myocardium using water soluble lipopolymer. Gene Therapy, 2003, 10: 1535~1542.
    10. Miyagawa S, Sawa Y, Taketani S, et al. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation, 2002, 105: 2556~2561.
    11. TokunagaN,NagayaN, Shirai M, et al. Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia: benefits of a novel non-viral vector, gelatin. Circulation, 2004, 109: 526~531.
    12. Pitard B, Bello-Roufai M, Lambert O, et al. Negatively charged self-assembling DNA/poloxamine nanospheres for in vivo gene transfer. Nucleic Acids Res, 2004, 32: 159~164.
    13. Affleck DG, Yu L, Bull DA, et al. Augmentation of myocardial transfection using TerplexDNA: a novel gene delivery system. Gene Therapy, 2001, 8: 349~353.
    14. Boussif O, Gaucheron J, Boulanger C, et al. Enhanced in vitro and in vivo cationic lipid-mediated gene delivery with a fluorinated glycerophosphoethanolamine helper lipid. J Gene Med, 2001, 3: 109~114.
    15. Li S, Huang L. In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Therapy, 1997, 4: 891~900.
    16. Song YK, Liu F, Chu S, et al. Characterization of cationic liposome mediated gene transfer in vivo by intravenous administration. Hum Gene Therapy, 1997, 8: 1585~1594.
    17. Chan SY, Goodman RE, Szmuszkovicz JR, et al. DNA-liposome versus adenoviralmediated gene transfer of transforming growth factor beta 1 in vascularized cardiac allografts: differential sensitivity of CD4+ and CD8+ T cells to transforming growth factor beta 1. Transplantation, 2000, 70: 1292~1304.
    18. Abdelhady HG, Allen S, Davies MC, et al. Direct real-time molecular scale visualization of the degradation of condensed DNA complexes exposed to DNase I. Nucleic Acids Res, 2003, 31: 4001~4005.
    19. Ahn CH, Chae SY, Bae YH, et al. Biodegradable poly (ethylenimine) for plasmid DNA delivery. Control Release, 2002, 80: 273~282.
    20. Jeon E, Kim HD, Kim JS. Pluronic-grafted ploy (l-lysine) as a new synthetic gene carrier. J Biomed Mater Res, 2003, 66: 854~859.
    21. Toncheva V , Wolfert MA , Uibrich K, et al . Novel vectors for gene delivery formed by self2assembly of DNA with poly (L-lysine) grafted with hydrophilic polymers. Biochim Biophys Acta, 1998, 1380: 354~368.
    22. Zhang X, Yu C, Xu S, et al. Direct chitosan-mediated gene delivery to the rabbit knee joint in vitro an in vivo. Biochem Biophys Res Commun, 2006, 341: 202~208.
    23. Kim TH, Ihm JE, Choi YJ, et al. Efficient gene delivery by urocanic acid-modified chitosan. Control Release, 2003, 93: 389~402.
    24. Yasunori Fukunaka , Kazunori Iwanaga , Kazuhiro Morimoto, et al . Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. Control Release, 2002, 80: 333~343.
    25. Chen S, Shohet RV, Bekeredjian R, et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. Am Coll Cardiol, 2003, 42: 301~308.
    26. Kondo I, Ohmori K, Oshita A, et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a“functional”gene using ultrasonic microbubble destruction. Am Coll Cardiol, 2004, 44: 644~653.
    27. Korpanty G, Chen S, Shohet RV, et al. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Therapy, 2005, 12(7): 1305~1312.
    28. Bekeredjian R, Chen S, Pan W, et al. Effects of ultrasound-targeted microbubble destruction on cardiac gene expression. Ultrasound Med Biol, 2004, 30: 539~543.
    29. Nakano A, Matsumori A, Kawamoto S, et al. Cytokine gene therapy for myocarditis by in vivo electroporation. Hum Gene Therapy, 2001, 12: 1289~1297.
    30. Nishizaki K, Mazda O, Dohi Y, et al. In vivo gene gun-mediated transduction into rat heart with Epstein–Barr virus-based episomal vectors. Ann Thorac Surg, 2000, 70: 1332~1337.
    31. Labhasetwar V, Bonadio J, Goldstein S, et al. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. Pharm Sci, 1998, 87: 1347~1350.
    32. Wang Y, Bai Y, Price C, et al. Combination of electroporation and DNA/dendrimer complexes enhances gene transfer into murine cardiac transplants. Am J Transplant, 2001, 1: 334~338.
    33. Poston RS, Mann MJ, Hoyt EG, et al. Antisense oligodeoxynucleotides prevent acute cardiac allograft rejection via a novel, nontoxic, highly efficient transfection method. Transplantation, 1999, 68: 825~832.
    34. DeBruyne LA, Li K, Chan SY, et al. Lipid-mediated gene transfer of viral IL-10 prolongs vascularized cardiac allograft survival by inhibiting donor-specific cellular and humoral immune responses. Gene Therapy, 1998, 5: 1079~1087.
    35. Giacca M. Virus-mediated gene transfer to induce therapeutic angiogenesis: where do we stand. Int J Nanomedicine. 2007, 2:527~540.
    36. Kitamura T, Koshino Y, Shibata F, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol, 2003, 31: 1007~1014.
    37. Feldman LJ, Steg G. Optimal techniques for arterial gene transfer. Cardiovasc Res, 1997, 35: 391~404.
    38. Isner JM, Vale PR, Symes JF, et al. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res, 2001, 89: 389~400.
    39. Kass-Eisler A, Falck-Pedersen E, Alvira M, et al. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci USA, 1993, 90: 11498~11502.
    40. Romano G, Micheli P, Pacilio C, et al. Latest development in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications, Stem Cell, 2000, 18: 19~39.
    41. Moisset PA, Tremblay P. Gene therapy: a strategy for the treatment of inherited muscle diseases. Current Opin in Pharma, 2001, 14: 294~299.
    42. Schneider MD, French BA. The advent of adenovirus: gene therapy for cardiovascular disease. Circulation, 1993, 88: 137~142.
    43. Wang J, Ma Y, Knechtle SJ. Adenovirus-mediated gene transfer into rat cardiac allografts. Transplantation, 1996, 61: 1726~1729.
    44. Yang Y, Li Q, Ertl HC, et al. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. Virol, 1995, 69: 2004~2015.
    45. Wright MJ, Wightmann LML, Lilley C, et al. In vivo myocardial gene transfer: optimization, evaluation and direst comparison of gene transfer vectors. Basic Res Cardial, 2001, 96: 227~236.
    46. Schulick AH, Vassalli G, Dunn PF, et al. Established immunity precludes adenovirus-mediated gene transfer in rat carotid arteries. Potential for immunosuppression and vector engineering to overcome barriers of immunity. Clin Invest, 1997, 99: 209~219.
    47. Harvey BG, Hackett NR, Sawy T, et al Variability of human systemic humoral immuneresponses to adenovirus gene transfer vectors administered to different organs. Virol, 1999, 73: 6729~6742.
    48. Schiedner G, Morral N, Parks RJ, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet, 1998, 18: 180~183.
    49. Kochanek S, Clemens PR, Mitani K, et al. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and fl-galactosidase. Proc Natl Acad Sci USA, 1996, 93: 5731~5736.
    50. Volpers C, Kochanek S. Adenoviral vectors for gene transfer and therapy. Gene Med, 2004, 6 (Suppl 1): S164~171.
    51. Chen HH, Mack LM, Kelly R, et al. Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc Natl Acad Sci USA, 1997, 94: 1645~1650.
    52. Monahan PE, Samulski RJ. AAV vectors: is clinical success on the horizon. Gene Therapy, 2000, 7: 24~30.
    53. Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. Virol, 1996, 70: 8098~8108.
    54. Hoshijima M, Ikeda Y, Iwanaga Y, et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med, 2002, 8: 864~871.
    55. Hauck, B, Wei Z, Katherine H, et al. Intracellular viral processing, not single-stranded DNA accumulation, is crucial for recombinant adeno-associated virus transduction. Virol, 2004, 78: 13678~13686.
    56. Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Therapy, 2006, 14: 316~327.
    57. Gregorevic P, Blankinship MJ, Allen JM, et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med, 2004, 10: 828~834.
    58. Wang Z, Zhu T, Qiao C, et al. Adeno-associated virus serotype 8 efficiently deliversgenes to muscle and heart. Nat Biotec, 2005, 23: 321~328.
    59. Inagaki K, Fuess S, Storm TA, et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Therapy, 2006, 14: 45~53.
    60. Pacak CA, Mah CS, Thattaliyath BD, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res, 2006, 99: 3~9.
    61. Phillips MI. Is gene therapy for hypertension possible. Hypertension, 1999, 33: 8~13.
    62. Trono D. Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Therapy, 2000, 7: 20~23.
    63. Fleury S, Simeoni E, Zuppinger C, et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation, 2003, 107: 2375~2382.
    64. Tio RA, Tkebuchava T, Scheuermann TH, et al. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardial. Hum Gene Therapy, 1999,10: 2953~2959.
    65. Ruixing Y, Dezhai Y, Hai W, et al. Intramyocardial injection of vascular endothelial growth factor gene improves cardiac performance and inhibits cardiomyocyte apoptosis. Eur J Heart Fail, 2007, 9: 343~351.
    66. Aoki M, Morishita R, MurasihiA, et al. Efficient in vivo gene transfer into the heart in the rat myocardial infarction model using the HVJ (Hemagglutinating virus of Japan)-Liposome method. Mol Cell Cardiol, 1997, 29: 949~959.
    67. Donahue JK, Kikkawa K, Johns DC, et al. Ultrarapid, highly effcient viral gene transfer to the heart. Proceedings of the National Academy of Sciences of the USA, 1997, 94: 4664~4668.
    68. Donahue JK, Kikkawa K, Thomas AD, et al. Acceleration of widespread adenoviral gene transfer to intact rabbit hearts by coronary perfusion with low calcium and serotonin. Gene Therapy, 1998, 5: 630~634.
    69. Hajjar RJ, Schmidt U, Matsui T, et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA, 1998, 95(9): 5251~5256.
    70. Weig HJ, Laugwitz KL, Moretti A, et al. Enhanced cardiac contractility after gene transfer of V2 vasopressin receptors in vivo by ultrasound-guided injection or transcoronary delivery. Circulation, 2000, 101: 1578~1585.
    71. Laitinen M, Hartikainen J, Hiltunen MO, et al. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Therapy, 2000, 11: 263~270.
    72. Miao W, Luo Z, Kitsis RN, et al. Intracoronary, Adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. Mol Cell Cardiol, 2000, 32: 2397~2402.
    73. Maurice JP, Hata JA, Shah AS, et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta 2-adrenergic receptor gene therapy. Clini Inves, 1999, 104: 21~29.
    74. Herity NA, Lo ST, Oei F, et al. Selective regional myocardial infiltration by the percutaneous coronary venous route: a novel technique for local drug delivery. Catheter Cardiovasc Intervent, 2000, 51, 358~363.
    75. Boekstegers P, von Degenfeld G, Giehrl W, et al. Selective pressure regulated retroinfusion of coronary veins as an alternative access of ischemic myocardium: implications for myocardial protection, myocardial gene transfer and angiogenesis. Z Kardiol, 2000, 89: 109~112.
    76. Boekstegers P, von Degenfeld G, Giehrl W, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Therapy, 2000, 7: 232~240.
    77. Logeart D, Hatem SN, Rucker-Martin C, et al. Highly efficient adenovirus-mediated gene transfer to cardiac myocytes after single-pass coronary delivery. Hum Gene Therapy, 2000, 11: 1015~1022.
    78. Wang J, Ma Y, Knechtle SJ. Adenovirus-mediated gene transfer into rat cardiacallografts: comparison of direct injection and perfusion. Transplantation, 1996, 61: 1726~1729.
    79. Tio RA, Grandjean JG, SuurmeijerAJ, et al. Thoracoscopic monitoring for pericardial application of local drug or gene therapy. Int J Cardiol, 2002, 82: 117~124.
    80. Fromes Y, Salmon A, Wang X, et al. Gene delivery to the myocardium by intrapericardial injection. Gene Therapy, 1999, 6: 683~686.
    81. Bridges CR, Burkman JM, Malekan R, et al. Use of cardiopulmonary bypass with in situ cardiac isolation to achieve global cardiac-specific transgene expression in the canine heart. Circulation, 2000, Suppl II: PII739.
    82. Davidson MJ, Jones JM, Emani S, et al. Cardiac gene delivery with cardiopulmonary bypass. Circulation, 2001, 104: 131~133.
    83. Smith RS, Agata J, Xia CF, et al. Human endothelial nitric oxide synthase gene delivery protects against cardiac remodeling and reduces oxidative stress after myocardial infarction. Life Sci, 2005, 76: 2457~2471.
    84. Perricaudet LD, Makeh I, Perricaudet M, et al. Widespread long-term gene transfer to mouse skeletal muscles and heart. Clin Invest, 1992, 90: 626~630.
    85. Lee RJ, Springer ML, Blanco-Bose WE, et al. VEGF gene delivery to myocardium -deleterious effects of unregulated expression. Circulation, 2000, 102: 898~901.
    86. Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF(165) after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation, 1998, 97: 1114~1123.
    87. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis initial clinical results with direct myocardial injection of phVEGF(165) as sole therapy for myocardial ischemia. Circulation, 1998, 98: 2800~2804.
    88. Vale PR, Losordo DW, Milliken CE, et al. Left ventricular electromechanical mapping to assess efficacy of phVEGP(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation, 2000, 102: 965~974.
    89. Rosengart TK, Lee LY, Patel SR, et al. Six-month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Ann Surg, 1999, 230: 466~470.
    90. Tang, YL, Tang Y, Zhang YC. et al. Protection from ischemic heart injury by a vigilant hemeoxygenase-1 plasmid system. Hyperten, 2004, 43: 746~751.
    91. Hajjar RJ, Del Monte F, Matsui T, et al. Prospects for gene therapy for heart failure. Circ Res, 2000, 86: 616~621.
    92. Del Monte F, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation, 1999, 100: 2308~2311.
    93. Miyamoto MI, Del Monte F, Schmidt U, et al. Adenoviral gene transfer of SERCA2 aim proves left ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA, 2000, 97: 793~798.
    94. Del Monte F, Williams E, Lebeche D, et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca2+-ATPase in a rat model of heart failure. Circulation, 2001, 104: 1424~1429.
    95. Del Monte F, Lebeche D, Guerrero JL, et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci USA, 2004, 101: 5622~5627.
    96. Iwanaga, Y, Hoshijima M, Gu Y, et al. Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. Clin Invest, 2004, 113: 727~736.
    97. Akhter SA, Skaer CA, Kypson AP, et al. Restoration ofβ-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral mediated gene transfer. Proc Natl Acad Sci USA, 1997, 94: 12100~12105.
    98. Rockman HA, Chien KR, Choi DJ, et al. Expression of aβ-adrenergic receptor kinase1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci USA, 1998, 95: 7000~7005.
    99. Maurice JP, Hata JA, Shah AS, et al. Enhancement of cardiac function after adenoviral mediated in vivo Intracoronaryβ2-adrenergic receptor gene delivery. Clin Invest 1999, 104: 21~29.
    100.Weig HJ, Laugwitz KL, Moretti A, et al. Enhanced cardiac contractility after gene transfer of V2 vasopressin receptors in vivo by ultrasound-guided injection or transcoronary delivery. Circulation, 2000, 101: 1578~1585.
    101.Kirshenbaum LA. Bcl-2 intersects the NF kappa B signaling pathway and suppresses apoptosis in ventricular myocytes. Clin Invest Med 2000, 23: 322~330.
    102.Matsui T, Li L, Del Monte F, et al. Adenoviral gene transfer of activated phosphatidylinositol 3’-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation, 1999, 100: 2373~2379.
    103.Edelberg JM, Aird WC, Rosenberg RD. Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. Clin Invest, 1998, 101: 337~343.
    104.Miake J, Marban E, Nuss HB. Gene therapy: Biological pacemaker created by gene transfer. Nature, 2002, 419: 132~133.
    105.Qu J, Plotnikov AN, Danilo Jr P, et al. Expression and function of a biological pacemaker in canine heart. Circulation, 2003, 107: 1106~1109.
    106.Plotnikov AN, Sosunov EA, Qu J, et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation, 2004, 109: 506~512.
    107.Tse HF, Xue T, Lau CP, et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCNC channel reduces the dependence on electronic pacemaker in a sick sinus syndrome model. Circulation, 2006, 114: 1000~1011.
    108.Bucchi A, Plotnikov AN, Shlapakova I, et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation, 2006, 114: 992~999.
    109.Kashiwakura Y, Cho HC, Barth AS, et al. Gene transfer of a synthetic pacemaker channel into the heart: a novel strategy for biological pacing. Circulation, 2006, 114: 1682–1686.
    110.Donahue JK, Heldman AW, Fraser H, et al. Focal modification of electrical conduction in the heart by viral gene transfer. Nat Med, 2000, 6: 1395~1398.
    111.Kizana E, Ginn SL, Allen DG, et al. Fibroblasts can be genetically modified to produce excitable cells capable of electrical coupling. Circulation, 2005, 111: 394~398.
    112.JohnsDC, NussHB, Chiamvimonvat N, et al. Adenovirus-mediated expression of a voltage gated potassium channel in vitro (rat cardiac myocytes) and in vivo (rat liver). A novel strategy for modifying excitability. Clin Invest, 1995, 96: 1152~1158.
    113.Nuss HB, Johns DC, Kaab S, et al. Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Therapy, 1996, 3: 900~912.
    114.Ennis IL, Li RA, Murphy AM, et al. Dual gene therapy with SERCA1 and Kir2.1 abbreviates excitation without suppressing contractility. Clin Invest, 2002, 109: 393~400.
    115.Mazhari R, Nuss HB, Armoundas AA, et al. Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. Clin Invest, 2002, 109: 1083~1090.
    116.Brunner M, Kodirov SA, Mitchell GF, et al. In vivo gene transfer of Kv1.5 normalizes action potential duration and shortens QT interval in mice with long QT phenotype. Am J Physiol Heart Circ Physiol, 2003, 285: 194~203.
    117.Sasano T, McDonald AD, Kikuchi K, et al. Molecular ablation of ventricular tachycardia after myocardial infarction. Nat Med, 2006, 12: 1256~1258.
    118.Schneider DB, Sassani AB, Vassalli G, et al. Adventitial delivery minimizes theproinflammatory effects of adenoviral vectors. Vasc Surg, 1999, 29: 543~550.
    119.Kibbe MR, Billiar TR, Tzeng E. Gene therapy for restenosis. Circ Res, 2000, 86: 829~833.
    120.Yamamoto K, Morishita R, Tomita N, et al. Ribozyme oligonucleotides against transforming growth factor-beta inhibited neointimal formation after vascular injury in rat model-potential application of ribozyme strategy to treat cardiovascular disease. Circulation, 2000, 102: 1308~1314.
    121.Nakai H, Montini E, Fuess S, et al. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet, 2003, 34: 297~302.
    122.Arruda VR, Fields PA, Milner R, et al. Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. Molec Ther, 2001, 4: 586~592.
    123.Couto L, Parker A, Gordon JW. Direct exposure of mouse spermatozoa to very high concentrations of a serotype-2 adeno-associated virus gene therapy vector fails to lead to germ cell transduction. Hum Gene Therapy, 2004, 15: 287~291.
    124.Schuettrumpf J, Liu JH, Couto LB, et al. Inadvertent germline transmission of AAV2 vector: findings in a rabbit model correlate with those in a human clinical trial. Molec Ther, 2006, 13: 1064~1073.
    125.Jiang H, Pierce GF, Ozelo MC, et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe Hemophilia B. Molec Ther, 2006, 14: 452~455.
    126.Kornowski R, Leon MB, Fuchs S, et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. Am Coll Cardiol, 2000, 35: 1031~1039.
    127.Rutanen J, Rissanen TT, Markkanen JE, et al. Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growthfactor-D induces transmural angiogenesis in porcine heart. Circulation, 2004, 109: 1029~1035.
    128.Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum Gene Therapy, 2002, 13: 3~13.
    129.Burcin MM, Schiedner G, Kochanek S, et al. Adenovirus mediated regulable target gene expression in vivo. Proc Natl Acad Sci USA, 1999, 96: 355~360.
    130.Wang Y, Tsai SY, O’Malley BW. An antiprogestin regulable gene switch for induction of gene expression in vivo. Adv Pharmacol, 2000, 47: 343~355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700