用户名: 密码: 验证码:
地壳上地幔结构的地震波各向异性层析成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震波各向异性是地球内部应变状态及动力学过程的“示踪剂”,层析成像是进行三维尺度深部结构研究的有效手段,P波各向异性层析成像方法能同时获取深部三维尺度的P波各向异性和波速结构。本文采用P波各向异性层析成像方法对日本中部和青藏东北缘地区进行了研究。结果表明:
     日本中部地区岛弧火山下方及地幔楔内可见大量低速、高泊松比异常,很多低速异常在深部都起源于俯冲的太平洋板块和菲律宾海板块。推测是由于板块在俯冲过程中发生脱水作用引起上伏地幔部分熔融造成的。岛弧地壳、菲律宾海板块及太平洋板块上部都具有较强的各向异性。俯冲带地幔楔的顶部与底部存在较强的各向异性层,而地幔楔内部各向异性较弱,这可能是由于地幔楔内不同构造部位的变形机制不同造成的。日本中部地区地幔楔的快波方向总体上在弧前地区平行于海沟,在弧后地区垂直于海沟。原因可能与弧前相对富水区橄榄石发育B型晶格优势方位,弧后相对贫水区发育橄榄石A型晶格优势方位,加之地幔流的发生有关。日本中部东海地区下方,俯冲的菲律宾海板块表现为一个明显的低角度北倾高速异常体,并在其最北端,俯冲角度陡然增大。快波方向为NEE至NE-SW方向,与菲律宾海板块形成时的洋底扩张方向一致。表明菲律宾海板块可能保存了其“化石”各向异性。约60~120公里深度,处于弧前区且具有不同俯冲倾向的太平洋板块,快波方向分别平行于其各自俯冲的日本海沟和伊豆-小笠原海沟;而到100~120公里深度以下,太平洋板块基本都处于弧后区,快波方向也转变为分别垂直于日本海沟和伊豆-小笠原海沟。经过与中生代海底磁异常条带及太平洋板块内应力方向的对比,认为太平洋板块内部的“化石”各向异性己被板块内的应力改造。
     青藏东北缘地区地壳内波速异常存在明显的横向差异,各向异性在地壳内广泛存在。自浅至深各向异性幅度逐渐增大。快波方向大多与断裂和山体等构造线的走向接近,表明在地壳深度内,形状优势方位是大多数各向异性的成因。松潘—甘孜块体内,夹在龙日坝断裂带和龙门山断裂带之间的龙门山次级块体下地壳25~35公里左右深度可能存在一个厚度不大的高速异常体,具有与松潘—甘孜块体一致的NW-SE快波方向,自龙门山次级块体下地壳低角度逆冲进四川盆地西缘下地壳,其前锋已经到达四川盆地西部龙泉山断裂下方25公里左右深度,构成松潘—甘孜向四川盆地逆冲的深部逆冲构造。秦岭造山带内佛坪反向推覆构造花岗岩带在层析成像结果中表现为108°E附近自浅至深都具有N-S向快波方向的低速异常;武当块体连同扬子北缘的黄陵背斜—神农架群在25公里之下,表现为具有复杂多变快波方向、呈近圆柱状的低速异常,可能与武当块体本身的穹窿构造有关。华北中部造山带下地壳至上地幔为低速异常,快波方向总体上为NE-SW,与该区域断裂走向一致。其低速异常可能是由华北岩石圈拆沉造成下部软流圈物质上涌引起的,NE-SW的快波方向与区域性断裂走向一致,表明形状优势方位仍是该区域各向异性的主要成因。
     利用各向异性层析成像方法对日本中部和青藏东北缘的研究同时表明在数据充分的情况下,P波各向异性层析成像方法是进行地壳上地幔结构和各向异性研究的有效手段。
Seismic anisotropy is an indicator of stress state and geodynamics of the Earth's interior. Seismic tomography is a powerful method to map out the structural heterogeneities in Earth. P-wave anisotropic tomography can determine the anisotropies and the structural heterogeneities at the same time. Central Japan and northeastern margin of Tibetan Plateau were studied by using P-wave anisotropic tomography method and the results can be summarized as follows:
     Beneath central Japan, lots of low-velocity (low-V) and high Poisson's ratio anomalies are visible beneath the arc volcanoes and within the mantel wedge and most of them origin from the subducting Pacific slab (PAC) and Philippine Sea slab (PHS). The partial melting of the upper mantle initialed by the dehydration of the underlain slab during subduction may be responsible for it. Anisotropy distribute widely beneath central Japan except for the central portion of the mantle wedge. The anisotropic mantle layer may exist on the top and the bottom of the mantle wedge. Partial melts and the domination of diffusion creep deformation which both weaken the olivine lattice-preferred orientation (LPO) may be responsible for the relatively isotropic central portion of mantle wedge. The fast-velocity directions (FVDs) of the mantle wedge beneath central Japan are generally trench-parallel in the fore-arc area and trench-normal in the back-arc area, which can be explained by the LPO of olivine changing from B-type under the fore-arc area to A-type under the back-arc area with the variation of water content and the occurrence of mantle flow. The subducting PHS slab beneath Tokai is revealed as a high-velocity (high-V) anomaly descending gently with relatively larger anisotropic amplitudes than the surroundings and with NEE to NE-SW FVDs which are consistent with the spreading direction of the PHS during its formation. The NEE to NE-SW FVDs of the PHS are inferred as the fossil anisotropy of the PHS. The subduction of the PHS beneath Tokai may have no influences on the anisotropy kept in the PHS slab. The anisotropy of the upper portion of the Pacific slab is revealed in this study. The FVDs of Japan slab and Izu-Bonin slab are sub-parallel to the Japan Trench and Izu-Bonin Trench respectively from~60to120km and change to trench-normal below100-120km. After comparisons with the Mesozoic magnetic anomaly lineations and the principle stresses in the Pacific slab, we propose that the fossil FVDs of the Pacific slab beneath central Japan were already rebuilt by the principle stresses in the slab.
     Obvious lateral velocity heterogeneities and widely distributed anisotropies manifest in the crust of northeastern margin of Tibetan Plateau. Along with the depth increasing, the anisotropic magnitude increases. Most of FVDs are sub-parallel to the strikes of tectonic lines (e.g., faults and mountains), which indicates the shape-preferred orientations (SPOs) are responsible for the anisotropies. Beneath Longmenshan sub-block, a thin high-V anomaly with NW-SE FVDs which is the same with FVDs of Songpan-Ganzi block has thrust into the west margin of Sichuan Basin block with low angles and has reached the lower crust at about25km depth beneath Longquanshan fault. It forms a thrust structure from Songpan-Ganzi block to Sichuan Basin block in crustal scale. The low-V anomaly nearby108°E with N-S FVDs corresponds to the Foping reverse thrust tectonic granite belt of Qinling orogen.
     The cylindrical low-V anomaly with variant FVDs manifests beneath the Wudang terrain and adjacent Huangling anticline and Shennongjia Group below25km depth may be attributed to the dome structure of Wudang terrain. Significant low-V anomalies with NE-SW FVDs are visible at lower crust to uppermost mantle depth beneath trans-North China orogen. Low-V anomaly may be related to the upwelling of asthenospheric material initiated by the delamination of the lithosphere of North China Craton. The NE-SW FVDs share the same orientation with regional normal faults, which indicates the SPOs are still the main reasons for the anisotropies beneath trans-North China orogen.
     The anisotropic tomography studies of central Japan and northeastern margin of Tibetan Plateau also indicate that with sufficient data the anisotropic tomography method is an effective way to study structures and anisotropies of crust and upper mantle.
引文
Abdelwahed, M., Zhao, D.,2007. Deep structure of the Japan subduction zone. Phys. Earth Planet. Inter.162,32-52.
    Aki, K., Christoffersson, A., Husebye, S.,1977. Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res.82, 277-296.
    Aki, K., Kaminuma, K.,1957. Phase velocity of Love waves in Japan, part 1 Love waves from the Aleutian shock of March. Bull. Earthquake Res. Inst. Univ. Tokyo 41,243-259.
    Aki, K., Lee, W.,1976. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes. Part Ⅰ:a homogeneous initial model. J. Geophys. Res.,81,4381-4399.
    Aki, K., Husebye, E., Christoffersson, A., et al.,1974. Three-dimensional seismic velocity anomalies in the crust and upper mantle under the USGS California seismic array. EOS Trans. AGU 56,1145.
    Anderson, D.L.,1961. Elastic wave propagation in layered anisotropic media. J. Geophys. Res.66,2953-2963.
    Ando, M., Ishikawa, Y., Yamazaki, F.,1983. Shear wave polarization anisotropy in the upper mantle beneath Honshu Japan. J. Geophys. Res.88,5850-5864.
    Audet, P., Mareschal, J. C.,2004. Anisotropy of the flexural response of the lithosphere in the Canadian Shield. Geophys. Res. Lett.31, L20601, doi:10.1029/2004GL021080.
    Backus, G.,1965. Possible forms of seismic anisotropy of the uppermost mantle under oceans. J. Geophys. Res.70,3429-3439.
    Bamford, D.,1977. Pn velocity anisotropy in continental upper mantle. Geophys. J. R. Astron. Soc.49,29-48.
    Bank, C. G., Bostock, M.G.,2003. Linearized inverse scattering of teleseismic waves for anisotropic crust and upper mantle structure:2. Numerical examples and applications to data from Canadian stations. J. Geophys. Res.108 (B5),2259, doi:10.1029/2002JB001951.
    Barclay, A., Toomey, D., Solomon, S.,1998. Seismic structure and crustal magmatism at the Mid-Atlantic Ridge,35°N. J. Geophys. Res.103,17827-17844.
    Bassin, C., Laske, G., Masters, G.,2000. The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU 81, F897.
    Beaumont, C., Jamieson, R. A., Nguyen, M. H., Lee, B.,2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to foucused surface denudation. Nature 414,738-742.
    Bokelmann, G.,2002. Convection-driven motion of the North American craton: Evidence from P-wave anisotropy. Geophys. J. Int.148,278-287.
    Bostock, M.G.,1998. Mantle stratigraphy and evolution of the Slave province. J. Geophys. Res.103 (B9),21183-21200.
    Braun, M.G., Hirth, G., Parmentier, E.M.,2000. The effects of deep damp melting on mantle flow and melt generation beneath midocean ridges. Earth Planet. Sci. Lett.176(3-4),339-356.
    Burchfiel B. C., Chen, Z. L., Liu, Y. P., Royden L. H.,1995. Tectonics of the Longmen Shan and adjacent regions, central China. Int. Geology Rev.37(8), 661-735.
    Cerveny, V.,2001. Seismic ray theory. New York:Cambridge University Press.
    Christensen, N.,1984. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophys. J. Roy. Astr. Soc.76,89-111.
    Clark, M., Royden, L. H.,2000. Topographic ooze:Building the eastern margin of Tibiet by lower crustal flow. Geology 28(8),703-706.
    Crampin, S., Chesnokov, E.M., Hipkin, R.A.,1984. Seismic anisotropy:the state of the art. First Break 2 (3),9-18.
    Crampin, S., King, D.,1977. Evidence for anisotropy in the upper mantle beneath eurasia from generalized higher mode surface waves. Geophys. J. R. Astron. Soc.49,59-85.
    Dahlen, F. A., Huang S. H., Nolet, G.,2000. Frechet kernels for finite-frequency traveltimes—Ⅰ. Theory. Geophys. J. Int.141,157-174.
    Deng, Q., Zhang, P., Ran, Y., Yang, X., Min, W., Chu, Q.,2003. Basic characteristics of active tectonics of China. Science in China:Series D-Earth Sciences 46, 356-372. doi:10.1360/03yd9032.
    Dziewonski, A. M., Hager, B., O'connell, R.,1977. Large-scale heterogeneities in the lower mantle. J. Geophys. Res.82,23-55.
    Dziewonski, A. M.,1984. Mapping the lower mantle:determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res.89, 5929-5952.
    Eberhart-Phillips, D., Henderson, C.,2004. Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand. Geophys. J. Int. 156,237-254.
    Eberhart-Phillips, D., Reyners, M.,2009. Three-dimensional distribution of seismic anisotropy in the Hikurangi subduction zone beneath the central North Island, New Zealand. J. Geophys. Res.114, B06301, doi:10.1029/2008JB005947.
    Engdahl, E. R., Lee, W.,1976. Relocation of local earthquakes by seismic ray tracing. J. Geophys. Res.81,4400-4406.
    Fischer, K.M., Parmentier, E.M., Stine, A.R., Wolf, E.R.,2000. Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc. J. Geophys. Res.105,16181-16191.
    Fouch, M., Rondenay, S.,2006. Seismic anisotropy beneath stable continental interiors. Phys. Earth Planet. Inter.158,292-320.
    Forsyth, D.W.,1975. The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astron. Soc.43,103-162.
    Frederiksen, A.W., Folsom, H., Zandt, G.,2003. Neighbourhood inversion of teleseismic Ps conversions for anisotropy and layer dip. Geophys. J. Int.155, 200-212.
    Fukao, Y.,1984. Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature 309,695-698.
    Gorbatov, A., Dominguez, J., Suarez, G., et al.,1999. Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula. Geophys. J. Int. 137,269-279.
    Hammond, W., Toomey, D.,2003. Seismic velocity anisotropy and heterogeneity beneath the Mantle Electromagnetic and Tomography Experiment (MELT) region of the East Pacific Rise from analysis of P and S body waves. J. Geophys. Res.108 (B4),2176, doi:10.1029/2002JB001789.
    Hearn, T.,1996. Anisotropic Pn tomography in the western United States. J. Geophys. Res.101,8403-8414.
    Hearn, T., Ni, J.,1994. Pn velocities beneath continental collision zones:The Turkish-Iranian plateau. Geophys. J. Int.117,273-283.
    Helbig, K., Thomsen, L.,2005.75-plus years of anisotropy in exploration and reservoir seismics:A historical review of concepts and methods. Geophys.70, 9-23, doi:10.1190/1.2122407.
    Hess, H.,1964. Seismic anisotropy of the uppermost mantle under oceans. Nature 203, 629-631.
    Hirahara, K.,1988. Detection of three-dimensional velocity anisotropy. Phys. Earth Planet. Inter.51,71-85.
    Hiramatsu, Y., Ando, M., Tsukuda, T., Ooida, T.,1998. Three-dimensional image of the anisotropic bodies beneath central Honshu, Japan. Geophys. J. Int.135, 801-816.
    Holtzman, B.K., Kohlstedt, D.L., Zimmerman, M.E., Heidelbach, F., Hiraga, T., Hustoft, J.,2003. Melt segregation and strain partitioning:implications for seismic anisotropy and mantle flow. Science 301,1227-1230.
    Huang, J., Zhao, D.,2004. Crustal heterogeneity and seismotectonics of the region around Beijing, China. Tectonophysics 385,159-180.
    Huang, J., Zhao, D.,2006. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. 111, B09305.
    Huang, Z., Wang, L., Zhao, D., Mi, N., Xu, M.,2011. Seismic anisotropy and mantle dynamics beneath China. Earth Planet. Sci. Lett.306,105-117.
    Huang, Z., Xu, M., Wang, L., Mi, N., Yu, D., Li, H.,2008. Shear wave splitting in the southern margin of the Ordos Block, north China, Geophys. Res. Lett.35, L19301,doi:10.1029/2008GL035188.
    Huang. Z, Zhao, D., Umino, N., et al.,2010. P-wave tomography, anisotropy and seismotectonics in the eastern margin of Japan Sea. Tectonophysics 489, 177-188.
    Huang, Z., Zhao, D., Wang, L..2011. Seismic heterogeneity and anisotropy of the Honshu arc from the Japan Trench to the Japan Sea. Geophys. J. Int.184, 1428-1444.
    Humphreys, E., Clayton, R.,1988. Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res.93,1073-1085.
    Ishida, M.,1992. Geometry and relative motion of the Philippine Sea plate and Pacific plate beneath the Kanto-Tokai district, Japan. J. Geophys. Res.97, 489-513, doi:10.1029/91JB02567.
    Ishise, M., Koketsu, K., Miyake, H.,2009. Slab segmentation revealed by anisotropic P-wave tomography. Geophys. Res. Lett.36, L08308, doi:10.1029/2009GL037749.
    Isse, T., Shiobara, H., Montagner, J.P., Sugioka, H., Ito, A., Shito, A., Kanazawa, T., Yoshizawa, K.,2010. Anisotropic structures of the upper mantle beneath the northern Philippine Sea region from Rayleigh and Love wave tomography. Phys. Earth Planet. In. doi:10.1016/j.pepi.2010.04.006
    Ji, S. C., Wang, Q., Xia, B.,2002. Handbook of Seismic Properties of Minerals, Rocks, and Ores. Montreal:Polytechnic International Press,630.
    Jiang, G., Zhao, D., Zhang, G.,2009. Seismic tomography of the Pacific slab edge under Kamchatka. Tectonophysics 465,190-203.
    Jung, H., Karato, S.,2001. Water-induced fabric transitions in olivine. Science 293, 1460-1463.
    Katayama, I.,2009. Thin anisotropic layer in the mantle wedge beneath northeast Japan. Geology 37,211-214, doi:10.1130/G25413A.1
    Katayama, I., Karato, S.,2006. Effect of temperature on the B-to C-type olivine fabric transition and implication for flow pattern in the subduction zone. Phys. Earth Planet. Inter.157,33-45, doi:10.1016/j.pepi.2006.03.005.
    Kendall, J.M.,1994. Teleseismic arrivals at a mid-ocean ridge:effects of mantle melt and anisotropy. Geophys. Res. Lett.21 (4),301-304.
    Kennett, B., Engdahl, E. R.,1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int.105,429-465.
    Kennett, B., Furumura, T.,2010. Tears or thinning? Subduction structures in the Pacific plate beneath the Japanese Islands. Phys. Earth Planet. Inter.180, 52-58.
    Kimura, J., Yoshida, T.,1999. Magma pluming system beneath Ontake Volcano, central Japan. Isl. Arc 8,1-29.
    Kneller, E.A., Long, M.D., van Keken, P.E.,2008. Olivine fabric transitions and shear wave anisotropy in the Ryukyu subduction system. Earth Planet. Sci. Lett. 268,268-282.
    Karato, S.,1987. Seismic anisotropy due to lattice preferred orientation of minerals: kinematic or dynamic? In:Manghnani, M.H., Syono, S. (Eds.), High-Pressure Research in Mineral Physics. Geophysical Monograph Ser. AGU, Washington, DC, pp.455-471.
    Karato, S.,1989. Defects and plastic deformation of olivine, in Karato, S., Toriumi, M., eds., Rheology of solids and of the Earth. Oxford, Oxford University Press 176-208.
    Karato, S., Jung, H., Katayama, I., et al.,2008. Geodynamic significance of seismic anisotropy of the upper mantle:new insights from laboratory studies. Ann. Rev. Earth Planet. Sci.36,59-95.
    Kusky, T.M., Li, J.H.,2003. Paleoproterozoic tectonic evolution of the North China Craton. J. of Asian Earth Sci.22,383-397.
    Lei, J., Zhao, D.,2009. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (Ms 8.0). Geochem. Geophys. Geosyst.10, Q10010.
    Levin, V., Park, J.,1997. P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophys. J. Int.131,153-166.
    Li, S., Mooney, W., Fan, J., Crustal structure of mainland China from deep seismic sounding data. Tectonophysics 420,239-252.
    Long, M.D., Silver, P.G.,2008. The subduction zone flow field from seismic anisotropy:a global view. Science 319,315-318.
    Long, M.D., Silver, P.G.,2009a. Mantle flow in subduction systems:the subslab flow field and implications for mantle dynamics. J. Geophys. Res.114, B10312, doi:10.1029/2008JB006200.
    Long, M.D., Silver. P.G.,2009b. Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surv. Geophys.30, 407-461.
    Long, M.D., Becker, T.,2010. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett.297,341-354.
    Mainprice, D.,2007. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. Schubert G. Treatise on Geophysics. Oxford:Elsevier 437-492.
    Mainprice, D., Silver, P.G.,1993. Interpretation of SKS-waves using samples from the subcontinental lithosphere. Phys. Earth Planet. Int.78 (3-4),257-280.
    Maupin, V., Park, J.,2007. Theory and observations-wave propagation in anisotropic media. In:Schubert, G. (ed.), Seismology and the Structure of the Earth. Treatise Geophys., vol.1. Elsevier,289-321.
    McCollum, B., Snell F. A.,1932. Asymmetry of sound velocity in stratified formations:Phys. (J. Applied Phys.) 2,174-185; reprinted in SEG, Early Geophysical Papers,217-227.
    Molnar, P., Tapponnier, P.,1975. Cenozoic tectonics of Asia:Effects of a continental collision. Science 189(4201),419-426.
    Montagner, J. P., Nataf, H. C.,1986. A simple method for invert in g the azimuthal anisotropy of surface waves. J. Geophys. Res.91,511-520.
    Montagner, J. P., Tanimoto, T.,1991. Global upper mantle tomography of seismic velocities and anisotropies. J. Geophys. Res.96,20337-20351.
    Nakajima, J., Hasegawa, A.,2004. Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan, Earth Planet. Sci. Lett.225,365-377.
    Nakajima, J., Hasegawa, A.,2006. Anomalous low-velocity zone and linear alignment of seismicity along it in the subducted Pacific slab beneath Kanto, Japan: Reactivation of subducted fracture zone? Geophys. Res. Lett.33, L16309, doi:10.1029/2006GL026773.
    Nakajima, J., Shimizu, J., Hori, S., Hasegawa, A.,2006. Shear-wave splitting beneath the southwestern Kurile arc and northeastern Japan arc:A new insight into mantle return flow. Geophys. Res. Lett.33, L05305, doi:10.1029/2005GL025053.
    Nakajima, J., Hasegawa, A.,2007. Subduction of the Philippine Sea plate beneath southwestern Japan:Slab geometry and its relationship to arc magmatism. J. Geophys. Res.112, B08306, doi:10.1029/2006JB004770.
    Nakajima, J., Hirose, F., Hasegawa, A.,2009. Seismotectonics beneath the Tokyo metropolitan area, Japan:Effect of slab-slab contact and overlap on seismicity. J. Geophys. Res.114, B08309, doi:10.1029/2008JB006101.
    Nakanishi, M., Tamaki, K., Kobayashi, K.,1992. A new Mesozoic isochron chart of the northwestern Pacific Ocean:Paleomegnetic and tectonic implications. Geophys. Res. Lett.19,693-696.
    Nataf, H. C., Nakanish, I., Anderson, D. L.,1984. Anisotropy and shear velocity heterogeneities in the upper mantle. Geophys. Res. Lett.11,109-112.
    Nataf, H. C., Nakanish, I., Anderson, D. L.,1986. Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. J. Geophys. Res.91,7261-7307
    Nicolas, A., Christensen, N.I.,1987. Formation of anisotropy in upper mantle peridotites:a review. In:Fuchs, K., Froidevaux, C. (Eds.), Composition, Structure, and Dynamics of the Lithosphere-Asthenosphere System. Geodyn. Ser. AGU, Washington, DC, pp.111-123.
    Nishimura, C., Forsyth, D.,1989. The anisotropic structure of the upper mantle in the Pacific. Geophys. J.96,203-229.
    Nolet, G.,2008. A breviary of seismic tomography:imaging the interior of the Earth and Sun. France:Geosciences Azur,344.
    Obara, K., Kasahara, K., Hori, S., Okada, Y.,2005. A densely distributed high-sensitivity seismograph network in Japan:Hi-net by National Research Institute for Earth Science and Disaster Prevention. Rev. Sci. Instrum.76, 021301.
    Obayashi, M., Yoshimitsu, J., Fukao, Y.,2009. Tearing of stagnant slab. Science 324, 1173-1175.
    Ohmi, S., Hori, S.,2000. Seismic wave conversion near the upper boundary of the Pacific plate beneath the Kanto district, Japan. Geophys. J. Int.141,136-148, doi:10.1046/j.1365-246X.2000.00086.x.
    Okada, Y., Kasahara, K., Hori, S., et al.,2004. Recent progress of seismic observation networks in Japan-Hi-net, F-net, K-NET and KiK-net. Earth Planet. Space 56.
    Okino, K., Ohara, Y., Kasuga, S., Kato, Y.,1999. The Philippine Sea:New survey results reveal the structure and the history of the marginal basins. Geophys. Res. Lett.26,2287-2290.
    Okino, K., Shimakawa, Y., Nagaoka, S.,1994. Evolution of the Shikoku Basin. J. Geomagn. Geoelectr.46,279-463.
    Paige, C., Saunders, M.,1982. LSQR:an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8,43-71.
    Pan, S., Niu, F.,2011. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis. Earth Planet. Sci. Lett.303,291-298.
    Peacock, S., Wang, K.,1999. Seismic consequences of warm versus cool subduction metamorphism:Examples from southwest and northeast Japan. Science 286, 937-939.
    Qi, C., Zhao, D., Chen, Y.,2007. Search for deep slab segments under Alaska. Phys. Earth Planet. Inter.165,68-82.
    Raitt, R., Shor, J., Francis, T., Morris, G.,1969. Anisotropy of the Pacific upper mantle. J. Geophys. Res.74,3095-3109.
    Ren, J., Xu, J., Yeats, R. S., Zhang, S.,2013a. Latest Quaternary paleoseismology and slip rates of the Longriba fault zone, eastern Tibiet:Implication for fault beheavior and strain partitioning. Tectonics 32,216-238.
    Ren, J., Xu, J., Yeats, R. S., Zhang, S., Ding, R., Zheng, G.,2013b. Holocene paleoearthquakes of the Maoergai fault, eastern Tibet. Tectonophysics 590, 121-135.
    Roth, E., Wiens, D., Zhao, D.,2000. An empirical relationship between seismic attenuation and velocity anomalies in the upper mantle. Geophys. Res. Lett. 27,601-604.
    Royden, L.,1996. Coupling and decoupling of crust and mantle in convergent orogens:Implications for strain partitioning in the crust. J. Geophys. Res. 101,17679-17705, doi:10.1029/96JB00951.
    Russo, R.M., Silver, P.G.,1994. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263,1105-1111.
    Savage, M.K.,1998. Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. J. Geophys. Res.103, 15069-15087.
    Savage, M.K.,1999. Seismic anisotropy and mantle deformation:what have we learned from shear wave splitting? Rev. Geophys.37,65-106.
    Seno, T., Sakurai, T., Stein, S.,1996. Can the Okhotsk plate be discriminated from the North American plate? J. Geophys. Res.101,11305-11315, doi:10.1029/96JB00532.
    Seno, T., Stein, S., Gripp, A. E.,1993. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. J. Geophys. Res.98, 17941-17948, doi:10.1029/93JB00782.
    Silver, P. G, Chan, W. W.,1988. Implications for continental structure and evolution from seismic anisotropy. Nature 335,34-39.
    Silver, P. G., Chan, W. W.,1991. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res.96,16429-16454.
    Silver, P. G.1996. Seismic anisotropy beneath the continents:probing the depths of geology. Ann. Rev. Earth Planet. Sci.24,385-432.
    Shapiro, N. M., Campillo, M., Stehly, L., et al.,2005. High-resolution surface-wave tomography from ambient seismic noise. Science 307,1615-1618.
    Shearer, P.,2009. Introduction to seismology. New York:Cambridge University Press, 396.
    Shearer, P., Orcutt, J.,1986. Compressional and shear wave anisotropy in the oceanic lithosphere-The Ngendei seismic refraction experiment. Geophys. J. Roy. Astr. Soc.87,967-1003.
    Simons, F.J., van der Hilst, R.D.,2003. Seismic and mechanical anisotropy and the past and present deformation of the Australian lithosphere. Earth Planet. Sci. Lett.211 (3-4),271-286.
    Simons, F.J., van der Hilst, R.D., Zuber, M.T.,2003. Spatio-spectral localization of isostatic coherence anisotropy in Australia and its relation to seismic anisotropy:implications for lithospheric deformation. J. Geophys. Res.108 (B5),2250, doi:10.1029/2001JB000704.
    Smith, D., Ritzwoller, M., Shapiro, N.,2004. Stratification of anisotropy in the Pacific upper mantle. J. Geophys. Res.109, doi:10.1029/2004JB003200.
    Soh, W., Nakamura, K., Kimura, T.,1998. Arc-arc collision in the Izu collision zone, central Japan, deduced from the Ashigara Basin and adjacent Tanzawa Mountains. Isl. Arc 7,330-341, doi:10.1111/j.1440-1738.1998.00193.x.
    Su, W., Woodward, R., Dziewonski, A.,1994. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res.99,6945-6980.
    Sun, A., Zhao, D., Ikeda, M., Chen, Y., Chen, Q.,2008. Seismic imaging of southwest Japan using P and PmP data:implications for arc magmatism and seismotectonics. Gondwana Res.13,535-542.
    Takahashi, N., Suyehiro, K., Shinohara, M.,1998. Implications from the seismic crustal structure of the northern Izu-Bonin arc. Isl. Arc 7,383-394.
    Tape, C., Liu, Q., Maggi, A., et al.,2009. Adjoint tomography of the southern California crust. Science 325,988-992.
    Thurber, C. H.,1983. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res.88,8226-8236.
    Tono, Y., Fukao, Y., Kunugi, T., Tsuboi, S.,2009. Seismic anisotropy of the Pacific slab and mantle wedge beneath the Japanese islands. J. Geophys. Res.114, B07307, doi:10.1029/2009JB006290.
    Tian, Y., Zhao, D.,2011. Destruction mechanism of the North China Craton:Insight from P and S wave mantle tomography. J.Asian Earth Sci.42,1132-1145.
    Tian, Y., Zhao, D.,2013. Reactivation and mantle dynamics of North China Craton: insight from P-wave anisotropy tomography. Geophys. J. Int. doi: 10.1093/gji/ggt333.
    Tian, Y, Zhao, D., Sun, R., Teng, J.,2009. Seismic imaging of the crust and upper mantle beneath the North China Craton. Phys. Earth Planet. Int.172, 169-182, doi:10.1016/j.pepi.2008.09.002.
    Uchida, N., Matsuzawa, T., Nakajima, J., Hasegawa, A.,2010. Subduction of a wedge shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted waves and small repeating earthquakes. J. Geophys. Res.115, B07309, doi:10.1029/2009JB006962.
    Um, J., Thurber, C.,1987. A fast algorithm for two-point seismic ray tracing. Bull. Seism. Soc. Am.77,972-986.
    Walker, K.T., Nyblade, A.A., Klemperer, S.L., Bokelmann, G.H.R., Owens, T.J., 2004. On the relationship between extension and anisotropy:constraints from shear-wave splitting across the East African Plateau. J. Geophys. Res.109 (B8), B08302.
    Wang, C. Y., Han, W., Wu, J., Lou, H., Chan, W.,2007. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications, J. Geophys. Res.112, B07307, doi:10.1029/2005JB003873.
    Wang, J., Zhao, D.,2008. P-wave anisotropic tomography beneath Northeastern Japan. Phys. Earth Planet. Inter.170,115-133.
    Wang, J., Zhao, D.,2009. P-wave anisotropic tomography of the crust and upper mantle under Hokkaido, Japan. Tectonophysics 469,137-149.
    Wang, J., Zhao, D.,2010. Mapping P-wave anisotropy of the Honshu arc from Japan Trench to the back-arc. J. Asian Earth Sci.39,396-407.
    Wang, J., Zhao, D.,2013. P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones. Geophys. J. Int.193, 1166-1181.
    Wang, J., Zhao, D., Yao, Z.,2013. Crustal and uppermost mantle structure and seismotectonics of North China Craton. Tectonophysics 582,177-187.
    Wang, Z., Fukao, Y., Pei, S.,2009. Structural control of rupturing of the Mw 7.92008 Wenchuan earthquake, China. Earth Planet. Sci. Lett.279,131-138.
    Wang, Z., Zhao, D.,2005. Seismic imaging of the entire arc of Tohoku and Hokkaido in Japan using P-wave, S-wave and sP depth-phase data. Phys. Earth Planet. Inter.152,144-162.
    Wang, Z., Zhao, D.,2006. Vp and Vs tomography of Kyushu, Japan:new insight into arc magmatism and forearc seismotectonics. Phys. Earth Planet. Inter.157, 269-285.
    Wei, W., Sun, R., Shi, Y.,2010. P-wave tomographic images beneath southeastern Tibet:investigating the mechanism of the 2008 Wenchuan earthquake. Sci. China D:Earth Sci.53,1252-1259.
    Wei, W., Xu, J., Zhao, D., Shi, Y.,2012. East Asia mantle tomography:New insight into plate subduction and intraplate volcanism. J. Asian Earth Sci.60, 88-103.
    Wessel, P., Smith, W.H.F.,1998. New, improved version of generic mapping tools released. Eos Trans. AGU,79,579.
    Xia, S., Zhao, D., Qiu, X., Nakajima, J., Matsuzawa, T., Hasegawa, A.,2007. Mapping the crustal structure under active volcanoes in central Tohoku, Japan using P and PmP data. Geophys. Res. Lett.34, L10309.
    Yu, D., Wang, L.,2013. P-wave anisotropy tomography of central Japan:Insight into subduction dynamics. Tectonophysics 592,14-30.
    Zhang, P. Z.,2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics 584,7-22.
    Zhang, P.Z., Deng, Q., Zhang, G., Ma, J., Gan, W.,2003. Active tectonic blocks and strong earthquakes in continental China. Science in China:Series D-Earth Sciences 33,13-24 (Suppl.).
    Zhang, S., Karato, S.,1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 415,777-780.
    Zhao, D.,2001a. New advances of seismic tomography and its applications to subduction zones and earthquake fault zones:A reviews. Isl. Arc 10,68-84.
    Zhao, D.,2001b. Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett.192,251-265.
    Zhao, D.,2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter.146,3-34.
    Zhao, D.,2007. Seismic images under 60 hotspots:search for mantle plumes. Gondwana Res.12,335-355.
    Zhao, D.,2009. Multiscale seismic tomography and mantle dynamics. Gondwana Res. 15,297-323.
    Zhao, D., Christensen, D., Pulpan, H.,1995. Tomographic imaging of the Alaska subduction zone. J. Geophys. Res.100,6487-6504.
    Zhao, D., Hasegawa, A., Horiuchi, S.,1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res.97, 19909-19928.
    Zhao, D., Hasegawa, A., Kanamori, H.,1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. J. Geophys. Res. 99,22313-22329.
    Zhao, D., Kanamori, H., Negishi, H., et al.,1996. Tomography of the source area of the 1995 Kobe earthquake:evidence for fluids at the hypocenter? Science 274,1891-1894.
    Zhao, D., Lei, J., Tang, R.,2004. Origin of the Changbai volcano in northeast China: evidence from seismic tomography. Chinese Sci. Bull.49,1401-1408.
    Zhao, D., Maruyama, S., Omori, S.,2007a. Mantle dynamics of western Pacific and East Asia:insight from seismic tomography and mineral physics. Gondwana Res.11,120-131.
    Zhao, D., Mishra, O. P., Sanda, R.,2002. Influence of fluids and magma on earthquakes:seismological evidence. Phys. Earth Planet. Inter.132,249-267.
    Zhao, D., Todo, S., Lei, J.,2005. Local earthquake reflection tomography of the Landers aftershock area. Earth Planet. Sci. Lett.235,623-631.
    Zhao, D., Wang, Z., Umino, N., et al.,2007b. Tomographic imaging outside a seismic network:application to the Northeast Japan arc. Bull. Seism. Soc. Am.97, 1121-1132.
    Zhao, D., Wang, Z., Umino, N., et al.,2009a. Mapping the mantle wedge and interpolate thrust zone of the northeast Japan arc. Tectonophysics 467, 89-106.
    Zhao, D., Tani, H., Mishra, O.,2004. Crustal heterogeneity in the 2000 western Tottori earthquake region:effect of fluids from slab dehydration. Phys. Earth Planet. Inter.145,161-177.
    Zhao, D., Tian, Y., Lei, J., et al.,2009b. Seismic image and origin of the Changbai intraplate volcano in East Asia:role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter.173,197-206.
    Zhao, D., Xu, Y., Wiens, D. et al.,1997. Depth extent of the Lau back-arc spreading center and its relation to subduction processes. Science 278,254-257.
    Zhao, G., Cawood, P.,2012. Precambrian geology of China. Precambrian Res. 222-223,13-54.
    Zhao, L., Jordan, T. H., Chapman, C. H.,2000. Three-dimensional Frechet differential kernels for seismic delay time. Geophys. J. Int.141,558-576.
    Zhang, Z., Wang, Y., Chen, Y, Houseman, G. A., Tian, X., Wang, E., Teng, J.,2009. Crustal structure across Longmenshan fault belt from passive source seismic profiling, Geophys. Res. Lett.,36, L17310, doi:10.1029/2009GL039580.
    Zimmerman, M.E., Zhang, S.Q., Kohlstedt, D.L., Karato, S.,1999. Melt distribution in mantle rocks deformed in shear. Geophys. Res. Lett.26 (10),1505-1508.
    常利军,王椿镛,丁志峰,2011.鄂尔多斯块体及周缘上地幔各向异性研究.41(5),686-699.
    邓起东,冉勇康,杨晓平,闵伟,楚全芝等,2007.中国活动构造图(1:400万).北京:地震出版社.
    傅承义,陈运泰,祁贵仲,1985.地球物理学基础.北京:科学出版社.
    黄汲清,陈炳蔚,1987.中国及邻区特提斯海的演化.北京:地质出版社.
    李志伟,胥颐,郝天珧等,2006.环渤海地区的地震层析成像与地壳上地幔结构.地球物理学报49(3),797—804.
    滕吉文,张中杰,白武明,等,2004.岩石圈物理学.北京:科学出版社.
    滕吉文,张中杰,王光杰,张秉铭,王铁男,2000.地球内部各圈层介质的地震各向异性与地球动力学.地球物理学报15(1),1-35.
    郭飚,刘启元,陈九辉等.2009.川西龙门山及邻区地壳上地幔远震P波层析成像.地球物理学报52(2),346-355.
    刘和甫,1994.川西龙门山冲断系构造样式与前陆盆地演化.地质学报68(2),101-118.
    宋方敏,汪一鹏等,1998.中国活断层研究专辑—小江活动断裂带.北京:地震出 版社.
    吴建平,黄嫒,张天中,明跃华,2009.房川8.0级地震余震分布及周边区域P波三维速度结构研究.地球物理学报52(2).
    王良书,陈运平,米宁,刘绍文,李成,徐鸣洁,李华,2005.从地震波各向异性到各向异性地震学:地震波各向异性研究综述.高校地质学报11(4),544-551.
    王琪,张培震,马宗晋,2002.中国大陆现今构造变形GPS观测数据与速度场.地学前缘9(2),415-429.
    王若,王妙月,底青云等,2007.巴颜喀拉块体东南缘地质构造的航磁反演成像.地球物理学报50(6),1787-1793.
    王伟涛,贾东,李传友,郑文俊,魏占玉,2008.四川龙泉山断裂带变形特征及其活动性初步研究.地震地质30(4),968-979.
    徐锡伟,闻学泽,陈桂华,于贵华,2008.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义.中国科学D辑:地球科学38(5),529-542.
    谢富仁,崔效锋,赵建涛,陈群策,李宏,2004.中国大陆及邻区现代构造应力场分区.地球物理学报47(4),654-662.
    许志琴,侯立玮,王宗秀等著,1992.中国松潘-甘孜造山带的造山过程.北京:地质出版社73-87.
    许志琴,李化启,侯立玮,付小芳,陈文,曾令森,蔡志慧,陈方远,2007.青藏高原东缘龙门山-锦屏造山带的崛起—大型拆离断层和挤出机制.地质通报26(10),1262-1276.
    喻学惠,莫宣学,赵志丹,和文言,李勇,2011.西秦岭新生代双峰式火山作用及南北构造带成因初探.岩石学报27(7),2195-2202.
    尹安.2001.喜马拉雅-青藏高原造山带地质演化—显生宙亚洲大陆生长.地球学报22(3):1-230
    臧绍先,宁杰远,1996.西太平洋俯冲带的研究及其动力学意义.地球物理学报39(2),188-202.
    张国伟,董云鹏,姚安平,1997.秦岭造山带基本组成与结构及其构造演化.陕西地质15(2),1-14.
    张国伟,柳小明,1998.关于“中央造山带”几个问题的思考.地球科学23(5),443-448.
    张国伟,孟庆任,赖绍聪,1995.秦岭造山带的结构构造.中国科学25(9),994-1003.
    张培震,王琪,马宗晋,2002.青藏高原现今构造变形特征与GPS速度场.地学前缘9(2),442-450.
    张培震,徐锡伟,闻学泽等,2008年汶川8.0级地震发震断裂的滑动速率,复发周期和构造成因.地球物理学报51(4),1066-1073.
    张辉,高原,石玉涛等,2012.基于地壳介质各向异性分析青藏高原东北缘构造应力特征.地球物理学报55(1),95-104.
    张忠杰,陈赞,田小波,2009.青藏高原东缘地壳上地幔结构及其动力学意义.地质科学44(4),1136-1150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700