用户名: 密码: 验证码:
Alzheimer病星形胶质细胞和海马神经元胰岛素信号通路蛋白变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     阿尔茨海默病(Alzheimer's disease, AD)是一种神经退行性疾病,也是老年人痴呆中最常见的类型,表现为进行性加重的认知功能障碍和神经精神症状及生活能力的逐渐丧失。该病发病率高,是继心脑血管疾病和肿瘤之后导致人类死亡的主要原因,正日益成为对老年人健康的重要威胁。AD是一种多因素共同作用而致的复杂异质性疾病,淀粉样蛋白(beta-amyloid protein, Aβ)沉积、神经存活通路紊乱、糖代谢障碍、线粒体损伤、氧化应激和炎症等均参与疾病的发生发展。其中,Ap沉积是公认的“源头”,尤其以Aβ1-42寡聚体毒性最强,而其他的病理改变和致病途径可能是Aβ过量沉积的继发结果。
     胰岛素信号通路参与能量代谢和神经内分泌两个过程,能调节糖脂代谢、突触形成及重塑、细胞存活和生长、炎症反应、线粒体功能和学习记忆等。该通路破坏不仅与糖尿病和肥胖等疾病相关,而且与神经退行性变及认知功能下降密不可分,且已经证实该通路损伤后能增加痴呆的发病风险。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)是蛋白激酶B(protein kinase B, Akt/PKB)的下游底物之一,并且能调节星形胶质细胞谷氨酸转运体的表达。两者还能通过相互作用来调节突触活动及记忆形成。因此,增强胰岛素信号通路的活性能起到神经保护及改善认知的作用。
     星形胶质细胞是脑组织的支持细胞,为神经元提供稳定的内环境。具体而言,星形胶质细胞能维持突触的正常功能、转移和储藏信息、参与认知、产生营养因子、移除毒素和代谢产物、维持正常的氧化还原电势以及调节神经递质和离子的浓度等。最重要的是,星形胶质细胞表达有大量胰岛素受体(insulin receptor, IR),并能受胰岛素的影响。谷氨酸是中枢神经系统(central nervous system, CNS)中最重要的兴奋性神经递质,在学习和记忆中起举足轻重的作用。谷氨酸在神经元活动时释放到突触间隙中,然后被星形胶质细胞上的兴奋性氨基酸转运体(excitatory amino acid transporters, EAATs)快速重吸收。该转运体被破坏的直接后果是导致谷氨酸在细胞外过度蓄积而对神经元产生兴奋性毒性损伤,而这也是多种神经退行性疾病包括AD的发病机制之一
     研究目的
     观察Aβ1-42寡聚体对人星形胶质细胞的影响,探索人星形胶质细胞上是否存在insul in/Akt/EAAT通路,以及Aβ1-42寡聚体和胰岛素对该通路蛋白表达水平和活性的影响作用;同时还观察Aβ1-42寡聚体侧脑室灌注AD模型大鼠的行为学改变及海马神经元胰岛素信号转导通路相关蛋白表达的变化;进一步寻找AD的发病机制及有效的干预靶点。
     研究方法
     1.Aβ1-42寡聚体的制备和鉴定。我们分别使用基础的方法和改良的方法制备Aβ1-42寡聚体,后者能在短时期内相对稳定保存。具体而言,首先,将Aβ1-42冻干粉与室温平衡后加入六氟异丙醇(hexafluoro-isopropanol, HFIP)使其单体化,再用无水二甲基亚砜(dimethyl sulfoxide, DMSO)溶解Aβ1-42肽膜。然后,使用SDS-PBS重悬Ap-DMSO溶液并于4℃孵育24h。最后,用PBS稀释重悬液,再于4℃孵育2周后用不含血清的DMEM稀释至实验所需的浓度。Ap1-42寡聚体制备完成后在透射电镜下进行观察和鉴定。
     2.细胞分组和药物干预。星形胶质细胞共分为6组,待饥饿处理结束后即加药。C组为空白对照组,即给予无胎牛血清(fetal bovine serum, FBS)的DMEM;I组给予100nmol/L的Aβ1-42寡聚体溶液;II组给予1μmol/L的Aβ1-42寡聚体溶液。将三组细胞置于37℃、饱和湿度、5%CO2含量的恒温细胞培养箱中培养24h。后三组是在前三组的基础上均再给予100nmol/L人合成胰岛素作用30min,即III组为给予无FBS的DMEM培养24h后再给予100nmol/L胰岛素作用30min;Ⅳ组为给予100nmol/L的Aβ1-42寡聚体溶液培养24h后再给予100nmol/L胰岛素作用30min;Ⅴ组为给予1μmol/L的Aβ1-42寡聚体溶液培养24h后再给予100nmol/L胰岛素作用30mmin。
     3.观察星形胶质细胞对药物的反应及检测insulin/Akt/EAAT通路相关蛋白的表达和活性。首先,用荧光定量RT-PCR和Western blot检测胶质纤维酸性蛋白(glial fibrillary acidic protein, GFAP)的mRNA和蛋白水平,再通过免疫荧光染色的方法观察细胞形态变化。然后,使用荧光定量RT-PCR检测IR, Akt、 mTOR、EAAT1和EAAT2的mRNA水平;使用Western blot的方法检测IR-α IR-β、磷酸化胰岛素受体(phosphorylation of insulin receptor, p-IR, Y1361)、Akt、磷酸化蛋白激酶B (phosphorylation of protein kinase B, p-Akt, S473) mTOR、磷酸化哺乳动物雷帕霉素靶蛋白(phosphorylation of mammalian target of rapamycin, p-mTOR, S2448), EAAT1和EAAT2的蛋白水平;使用免疫荧光染色的方法进一步观察IR-α、IR-β口p-IR在细胞内的表达情况。
     4.星形胶质细胞活性的检测。使用MTT的实验方法检测星形胶质细胞在Aβ1-42寡聚体和胰岛素作用下细胞活性的变化。
     5.动物分组和AD动物模型的建立。3-4月龄的健康成年雄性Wistar大鼠50只,体重为225±25g。术前行为学检测淘汰5只,将剩余45只大鼠分为3组。即正常对照组(C组,大鼠仅行手术而未行任何注射)、生理盐水组(NS组,向大鼠侧脑室内缓慢持续泵入生理盐水)和Aβ1-42寡聚体注射组(AD组,向大鼠侧脑室内缓慢持续泵入Aβ1-42寡聚体),各组动物数量均为15只(n=15)。先将Aβ1-42寡聚体溶液或者生理盐水注满微渗泵后再把各部分装置组装起来,并在脑立体定位仪的作用下植入微渗泵。调节流量调节器,使Aβ1-42寡聚体溶液或者生理盐水缓慢持续泵入,每天泵入3μL,连续给药30天。所有操作均遵循无菌操作的原则。术后待大鼠清醒后进行神经功能评定,并常规给予肌肉注射青霉素8万单位以防止切口感染,连续给药3天。
     6.行为学检测。给药结束后行Morris水迷宫实验评估大鼠的学习和记忆能力。术后第31-34天进行定向航行实验,第35天进行空间探索实验。将平台置于南象限(随机预设),记录分析每只大鼠的逃避潜伏期,即在定向航行实验时大鼠到达平台的时间;记录分析空间探索实验时大鼠经过平台原位置的次数;记录分析空间探索实验时大鼠在南象限停留的时间;记录分析空间探索实验时大鼠在南象限游动的路程;计算空间探索实验时大鼠在南象限游动的时间及路程占总时间和总路程的比率。
     7.大鼠海马神经元胰岛素信号通路相关蛋白表达的检测。麻醉大鼠,取材、固定海马组织后行免疫组织化学染色观察IR、胰岛素受体底物-1(insulin receptor substrate, IRS-1)、Akt、B淋巴细胞瘤/白血病基因-2(B cell lymphoma/leukemia-2,Bcl-2)和环磷腺苷反应元件结合蛋白(cAMP response element binding protein, CREB)的表达水平。
     8.统计学分析。所有数据应用SPSS17.0或SPSS13.0软件进行统计分析,数据分析的结果采用均数土标准差(mean±SD)表示。多组之间的差异采用单因素方差分析(analysis of variance, ANOVA)进行比较,两组之间的差异用Tukey's检验进行比较。以p<0.05表示差异具有统计学意义。
     研究结果
     1.Aβ1-42寡聚体的鉴定结果:在透射电镜下观察,发现Aβ1-42寡聚体形态比较一致,大小比较均匀,呈规则的球形或椭球形,直径为12-25nm,且未在寡聚体溶液中检测到纤丝状物质形成。
     2.星形胶质细胞对Aβ1-42寡聚体的反应:GFAP的mRNA水平和蛋白水平在Aβ1-42寡聚体的作用下均升高(p<0.05),且两者均与Aβ1-42寡聚体的浓度呈剂量依赖性;形态学研究结果显示星形胶质细胞呈反应性增生,表现为胞体和胞核均增大,突起肥大,细胞数量无明显改变。
     3.星形胶质细胞insulin/Akt/EAAT通路相关蛋白的表达及活性检测结果:①Aβ1-42寡聚体降低星形胶质细胞IR的mRNA水平(p<0.05),胰岛素对此无影响(p>0.05);随Aβ1-42寡聚体浓度升高,IR-α、IR-β和p-IR的表达均逐渐减少,而胰岛素能逆转这三种蛋白下降的趋势(p<0.05)。②Akt的mRNA水平和总蛋白水平均不受Aβ1-42寡聚体和胰岛素影响(P>0.05);随Aβ1-42寡聚体浓度升高,p-Akt表达减低,而胰岛素则能增加p-Akt的水平(p<0.05)。③在Ap1-42寡聚体和胰岛素的作用下,mTOR的mRNA和总蛋白水平均未改变(P>0.05);而p-mTOR的表达随Aβ1-42寡聚体浓度升高而降低(p<0.05),胰岛素能逆转减少的p-mTOR(p<0.05)。④在Aβ1-42寡聚体和胰岛素作用下,EAAT1和EAAT2的mRNA水平保持不变(p>0.05);而在Aβ1-42寡聚体作用下,EAAT1和EAAT2的总蛋白水平下降(p<0.05);在胰岛素的刺激下,与相应对照组相比,III组、IV组和V组的EAAT1和EAAT2的蛋白水平均增加(p<0.05)
     4.星形胶质细胞活性的测定结果:Aβ1-42寡聚体在浓度为100nmol/L和Iμmol/L时都能导致星形胶质细胞的活性下降(p<0.05)。而与对照组相比,胰岛素的刺激则能增强细胞的活性(p<0.05)
     5.动物的行为学评估结果:定向航行实验中大鼠的逃避潜伏期能反应其学习能力,而空间探索实验中大鼠经过平台所在位置的次数、寻找平台的时间比例和路程比例则能反应其记忆能力。①AD组大鼠逃避潜伏期为87.40±6.70s,比NS组(15.23±4.65s,p<0.05)和C组(14.00±6.01s,p<0.05)均明显延长,NS组与C组的逃避潜伏期无明显差异(p>0.05)。②AD组大鼠经过原平台所在位置的次数比NS组和C组明显减少(p<0.05)。③AD组大鼠寻找平台所在位置的时间比例(AD组vs.NS组是0.24±0.09s vs.0.34±0.07s,p<0.05;AD组vs.C组是0.24±0.09s vs.0.35±0.01s,p<0.05)和路程比例(AD组vs.NS组是0.27±0.05vs.0.35±0.03,p<0.05;AD组vs.C组是0.27±0.05vs.0.35±0.06,p<0.05)也均要比NS组和C组显著减少;而在NS组和C组中,大鼠寻找平台所用的时间比例和路程比例也均无明显差异(p>0.05)。
     6.大鼠海马神经元胰岛素信号通路相关蛋白的检测结果:①Aβ1-42寡聚体降低海马神经元IR的表达(AD组vs.NS组是0.25±O.02vs.0.38±0.03,p<0.05;AD组vs.C组是0.25±0.02vs.0.40±0.02,p<0.05)。②IRS-1在AD组的表达水平明显比NS组和C组低(AD组vs.NS组是0.22±0.02vs.0.35±0.03,p<0.05;AD组vs.C组是0.22±0.02vs.0.29±0.06,p<0.05),而NS组与C组的差异无统计学意义(p>0.05)。③Akt在AD组的表达水平比NS组(0.20±0.03vs.0.37±0.03,p<0.05)和C组(0.20±0.03vs.0.38±0.03,p<0.05)均减少,在NS组与C组无差异(p>0.05)。④Aβ1-42寡聚体使Bc1-2表达降低(AD组vs.NS组是0.20±0.02vs.0.41±0.04,p<0.05;AD组vs.C组是0.20±0.02vs.0.40±0.06,p<0.05)。⑤AD组大鼠海马神经元CREB的表达与NS组(AD组vs.NS组是0.43±0.03vs.0.40±0.03)和C组(AD组vs.C组是0.43±0.03vs.0.41±0.03)相比无明显差异(p>0.05)。
     研究结论
     1.采用改良的方法制备Aβ1-42寡聚体能稳定储存,透射电镜鉴定结果符合实验要求,可用于AD模型的制备。
     2.Aβ1-42寡聚体对星形胶质细胞和神经元均能造成毒性损害,侧脑室持续微量泵入Aβ1-42寡聚体的大鼠出现学习记忆能力下降。
     3.星形胶质细胞上存在insulin/Akt/EAAT通路,且Aβ1-42寡聚体在浓度为100nmol/L时就能使该信号通路相关底物表达异常;AD大鼠海马神经元胰岛素信号转导通路也能在Aβ1-42寡聚体的作用下发生紊乱。即星形胶质细胞和神经元上的胰岛素信号通路紊乱是AD发病的重要机制之一。
     4.尽管慢性持续性高血浆胰岛素水平对脑组织有害,但100nmol/L的胰岛素作用于星形胶质细胞30min能保护insulin/Akt/EAAT通路,且对该通路激活有重要意义,即以正确的途径给予合适浓度的胰岛素可能对AD起治疗作用。
Background
     Alzheimer's disease (AD), an age-related neurodegenerative disorder, becomes the most common form of dementia among old people. Clinically, AD is characterized by the insidious onset and gradual progression of cognitive decline, psychiatric symptoms and loss in activity of daily living. It is a fatal cause of human death with a high incidence just inferior to the cardiovascular disease and cancer, increasingly becoming an important threat to the health of the elderly. AD is a heterogeneous disease caused by several factors, such as depositing of beta-amyloid protein (Aβ), disturbances of neuronal survival pathways, disorders of glucose metabolism, mitochondrial damage, oxidative stress and inflammation which are involved in the development of the disease. Although the pathogenesis of AD is still elusive, there is an ample consensus that the abnormal Aβ deposition in the central nerves system (CNS) plays the most crucial role, especially Aβ1-42in the form of soluble oligomers, and other pathological changes and pathogenic pathways may be secondary to the result of excessive deposition of Aβ.
     Brain insulin signaling pathway involves in energy metabolism and neuroendocrine. It is critical to regulate glucose and lipid metabolism, modulate synaptic genesis and remodeling, promote cell survival and growth, control inflammation, maintain mitochondrial function and improve learning and memory. The destruction of insulin signaling pathway contributes not only to diabetes and obesity but also to neurodegeneration and cognitive decline and it has been demonstrated that its injury can increase the risk of dementia. Furthermore, mammalian target of rapamycin (mTOR), one of the most important downstream targets of protein kinase B (PKB/Akt), is able to regulate the glutamate transporter expression in astrocytes. Through interactions, mTOR and Akt could also regulate synaptic activity and memory formation. Therefore, enhancing the activity of insulin signaling pathway plays an important role in neuroprotection and cognitive improvement.
     Astrocytes are the major glial components providing a nurturing environment for neurons in the CNS. To be specific, they contribute to synaptic functions, transfer and store information, participate in cognition, produce trophic factors, remove toxins and debris, maintain redox potential and regulate concentration of neurotransmitter and ion. Noteworthy, astrocytes express abundant insulin receptors (IRs) and might be influenced by insulin. Glutamate, the main excitatory neurotransmitter in the brain, plays a key role in learning and memory. It is released into the synaptic cleft during the neuronal action and rapidly taken up by the excitatory amino acid transporters (EAATs), among which EAAT1and EAAT2preferentially located in astrocytes are responsible for clearing the majority glutamate. Consequently, malfunctions of the EAATs may lead to aberrant glutamate accumulation and neuron injury known as excitotoxicity, which is also the reason for several neurodegenerative disorders including AD.
     Objective
     The aim of this study is as follows:first, determine the reaction of astrocytes to Aβ1-42oligomers; second, explore whether the insulin/Akt/EAAT signaling is existed in human astrocytes and whether could be influenced by Aβ1-42oligomers and insulin; third, explore the behavioral changes of the AD model rats and explore the effect of Aβ1-42oligomers to the cellular signaling proteins of insulin signaling transduction pathway in the hippocampal neurons. Overall, we aimed to further explore the pathogenesis of AD and its feasible treatment.
     Methods
     1. Preparation and determination of the Aβ1-42oligomers. We prepared the Aβ oligomers using a basic method and an improved method, respectively. But the Aβ oligomers prepared by the improved method were superior due to its relatively stability in short term. Briefly, human synthetic Aβ1-42lyophilized powder was returned to room temperature firstly and suspended in hexafluoro-isopropanol (HFIP) to make it into monomer followed by further dissolving with dimethyl sulfoxide (DMSO) to produce a homogenous suspension. Subsequently, the Ap-DMSO solution was resuspended with SDS-PBS and incubated at4℃for24h. Ultimately, the solution was diluted with PBS and continually incubated at4℃for2weeks, which was then diluted to the specific concentration with DMEM. The characterization of Aβ1-42oligomers were determined using a transmission electron microscopy (TEM).
     2. Groups of astrocytes and drug intervention. Astrocytes were divided into6groups which were treated with drugs after the starvation:control group and groups I to V. In brief, the control group (group C) was the negative control which was treated with DMEM without fetal bovine serum (FBS); group I was treated with100nmol/L Aβ1-42oligomers; group II was treated with1μmol/L Aβ1-42oligomers. All of the three groups were cultured for24h at the atmosphere of5%CO2and37℃. Groups III, IV and V were treated with100nM human recombinant insulin for30min after the treatments with DMEM vehicle,100nM Aβ1-42oligomers and1μM Aβ1-42oligomers, respectively.
     3. Observing the reaction of astrocytes to the drugs and detecting expression and activity of the cellular signaling proteins in insulin/Akt/EAAT signaling pathway. First, we determined the mRNA of glial fibrillary acidic protein (GFAP) with real time RT-PCR, determined the GFAP protein with Western blot, and then observed the changes of cell morphology by immunofluorescence staining. Second, we detected the mRNA of IR, Akt, mTOR, EAAT1and EAAT2, detected the protein expression of IR-α, IR-β, phosphorylation of insulin receptor (p-IR, Y1361), Akt, phosphorylation of protein kinase B (p-Akt, S473), mTOR, phosphorylation of mammalian target of rapamycin (p-mTOR, S2448), EAAT1and EAAT2. Third, we further observed the expression of IR-a, IR-(3and p-IR by immunofluorescence staining.
     4. Detecting the cell viability of astrocytes. The cell viability of astrocytes treated with Aβ1-42oligomers and insulin was examined through conversing the methyl thiazolyl tetrazolium (MTT) to colored formazan crystals.
     5. Groups of animals and preparation of AD rat models.50adult male Wistar rats (3-4months old, healthy and weighing225±25g) were used.5rats were eliminated by behavioral tests preoperatively, and the remaining45rats were divided into three groups, namely the control group (group C, rats only underwent surgery, but without any injection, n=15); the normal saline group (NS group, slow and continuous infusion of normal saline into the lateral ventricle of rats, n=15) and the Aβ1-42oligomers injection group (AD group, slow and continuous injection of Aβ1-42oligomers into the lateral ventricle of rats, n=15). Briefly, the micro-osmotic pump was filled with Aβ1-42oligomer solution or normal saline firstly, and then the various parts were assembled with the micro-osmotic pump, which was implanted into the lateral ventricle with the help of a stereotaxic instrument. Adjust the flow regulator to inject Aβ1-42oligomer solution or normal saline slowly and continuously (3μL/day for30days). All operations followed the aseptic principles. Do neurological assessment until the rats were conscious and80,000units of penicillin were injected to all rats for3days routinely.
     6. Test of behavior. The Morris water maze (MWM) test was used to evaluate the learning and memory function of rats at the end of the drug administration. Acquisition trials were done at the31-34th days after the surgery and probe trials were done at the35th day. The platform was placed in the southern quadrant and the escape latency that the time needed to reach the platform in acquisition trials was recorded and analyzed. Then the times passing through the original position of the platform in probe trials was recorded and analyzed; the residence time and the swimming distance in the south quadrant in probe trials was recorded and analyzed; the ratio of the residence time in the south quadrant to the total time was recorded and analyzed; and also the ratio of the swimming distance in the south quadrant to the total swimming distance in probe trials was recorded and analyzed.
     7. Detecting the cellular signaling proteins of insulin signaling pathway in hippocampal neurons. Rats were anesthetized and the hippocampus was drawn and fixed. And then, the proteins of IR, insulin receptor substrate-1(IRS-1), Akt, B cel llymphoma/leukemia-2(Bcl-2) and cAMP response element binding protein (CREB) were detected by immunohistochemistry.
     8. Statistical analysis. Results are expressed as mean±SD. To determine the significance of difference among various groups, the statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey's test using SPSS17.0.p<0.05was considered statistically significant in all tests.
     Results
     1. Identification of Aβ1-42oligomers. The Aβ1-42oligomers were regular and uniform spheres with a diameter of12-25nm, and no fibrillar aggregates were present in the oligomer solution.
     2. Reaction of astrocytes to the Aβ1-42oligomers. The mRNA level of GFAP was elevated under the treatment of Aβ1-42oligomers (p<0.05) and the protein level of GFAP was also increased (p<0.05). Moreover, both mRNA and protein levels of GFAP were changed by Aβ1-42oligomers in a dose-dependent manner. Besides, our morphological study showed that astrocytes were activated by Aβ1-42oligomers, namely enlarged cell bodies and nuclei, hypertrophic processes, and increased GFAP expression. However, there was an absence of cell proliferation.
     3. Changes of expression and activity of the cellular signaling proteins of insulin/Akt/EAAT signaling pathway in astrocytes.①The mRNA encoding IR was decreased by Aβ1-42oligomers in a dose-dependent manner (p<0.05), but insulin had no effect on IR mRNA (p>0.05). In addition, the Western blot result showed that lower expressions of IR-a (p<0.05), IR-β (p<0.05) and p-1R at Tyrl361(p<0.05) were potentiated with concentrations of the Aβ1-42oligomers. However, we found a significant effect on IR-a, IR-β and phosphorylation of IR after exposure to insulin compared with their respective control groups(p<0.05).②Both mRNA and protein levels of total Akt were not altered by Aβ1-42oligomers and insulin (p>0.05). However, Akt phosphorylation at Ser473was significantly decreased by the soluble Aβ1-42oligomers (p<0.05). Moreover, we also observed that insulin enhanced the phosphorylation of Akt compared with the control groups (p<0.05).③Aβ1-42oligomers and insulin had no effect on mRNA and protein levels of mTOR (p>0.05). However, the expression of p-mTOR was decreased by the Aβ1-42oligomers (p<0.05) and insulin could reverse the reduction in p-mTOR (p<0.05).④Aβ1-42oligomers and insulin had no effect on the mRNA levels of EAAT1and EAAT2(p>0.05). However, the protein expressions of EAAT1and EAAT2were both lowered by the Aβ1-42oligomers (p<0.05), whereas they were increased by insulin in group III, group IV and group V compared with the control groups (p<0.05).
     4. Cell viability of the astrocytes. Incubation with Aβ1-42oligomers at100nmol/L and lμmol/L for24h caused a significant decrease of MTT reduction (p<0.05), whereas insulin exposure induced an increase of MTT reduction compared with the control groups (p<0.05).
     5. Assessment of animal behavior. The escape latency in the acquisition trials could react the learning ability of rats and the times of finding the location of the platform, the ratio of time in the south quadrant to the total time and the ratio of distance in the south quadrant to the total distance to find the platform in the probe trials could react the memory capacity of rats.①The escape latency of AD rats was87.40±6.70s, which was significant longer than the NS group (15.23±4.65s, p<0.05) and the control group (14.00±6.01s, p<0.05); however, there was no significant difference between the NS group and the control group (p>0.05).②The frequency of passing through the original position on the platform in AD group were significantly less than the NS group and the control group (p<0.05,p<0.05).③The ratio of time (AD group vs. NS group:0.24±0.09s vs.0.34±0.07s,p<0.05; AD group vs. group C:0.24±0.09s vs.0.35±0.01s,p<0.05) and the ratio of distance (AD group vs. NS group:0.27±0.05vs.0.35±0.03, p<0.05; AD group vs. group C:0.27±0.05vs.0.35±0.06, p<0.05) to find the original position on the platform in the AD group were also significantly less than the NS group and the control group, while no significant difference was detected between the NS group and the control group (p>0.05).
     6. Changes of the cellular signaling proteins of insulin signaling pathway in hippocampal neurons:①The expression of IR was reduced by Aβ1-42oligomers (AD group vs. NS group:0.25±0.02vs.0.38±0.03, p<0.05; AD group vs. group C:0.25±0.02vs.0.40±0.02, p<0.05).②The level of IRS-1protein in AD group was significantly lower than the NS group and group C (AD group vs. NS group:0.22±0.02vs.0.35±0.03, p<0.05; AD group vs. group C:0.22±0.02vs.0.29±0.06, p<0.05), while no significant difference was found between the NS group and the group C (p>0.05).③The amount of Akt protein in AD group was significantly lower than the NS group (0.20±0.03vs.0.37±0.03, p<0.05) and the group C (0.20±0.03vs.0.38±0.03,p<0.05), while there is no significant difference between the NS group and the group C (p>0.05).④The protein expression of Bcl-2was decreased by Aβ1-42oligomers (AD group vs. NS group:0.20±0.02vs.0.4±0.04,p<0.05; AD group vs. group C:0.20±0.02vs.0.40±0.06,p<0.05).⑤The level of CREB in AD group was similar with the NS group (AD group vs. NS group:0.43±0.03vs.0.40±0.03) and the group C (AD group vs. group C:0.43±0.03vs.0.41±0.03).
     Conclusions
     1. The modified method for preparing oligomeric Aβ1-42is stable for storage and viable in the preparation of AD models.
     2. Aβ1-42oligomers are toxic to the astrocytes and hippocampal neurons. The continuous injection of Aβ1-42oligomers to the lateral ventricle could decrease the ability of learning and memory in rats.
     3. Insulin/Akt/EAAT signaling pathway exists in the astrocytes and Aβ1-42oligomers at100nmol/L can induce abnormal expressions of the cellular signaling proteins in the signaling pathway. The insulin signaling transduction pathway of hippocampal neurons in AD rat can be disturbed by the Aβ1-42oligomers. Overall, disorders of the insulin signaling transduction pathway in astrocytes and neurons may be one of the important pathogenesis of AD.
     4. Although chronic and persistent high level of insulin in plasma is harmful to brain tissue, insulin at100nmol/L could protect insulin/Akt/EAAT signaling pathway in astrocytes after30min. In addition, it is also very important for the activity of the signaling pathway. This indicates that a correct way to give appropriate concentration of insulin might give a therapeutic effect on AD.
引文
[1]Thies W, Bleiler L.2013 Alzheimer's disease facts and figures. Alzheimer's & dementia:the journal of the Alzheimer's Association 2013;9:208-45.
    [2]Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, et al. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition (Burbank, Los Angeles County, Calif) 2011;27:3-20.
    [3]Cummings JL. Alzheimer's disease. The New England journal of medicine 2004;351:56-67.
    [4]McGowan E, Eriksen J, Hutton M. A decade of modeling Alzheimer's disease in transgenic mice. Trends in genetics:TIG 2006;22:281-9.
    [5]Moreira PI. Alzheimer's disease and diabetes:an integrative view of the role of mitochondria, oxidative stress, and insulin. Journal of Alzheimer's disease:JAD 2012;30 Suppl 2:S199-215.
    [6]Correia SC, Santos RX, Carvalho C, Cardoso S, Candeias E, Santos MS, et al. Insulin signaling, glucose metabolism and mitochondria:major players in Alzheimer's disease and diabetes interrelation. Brain research 2012;1441:64-78.
    [7]Moreira PI, Duarte Al, Santos MS, Rego AC, Oliveira CR. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer's disease. Journal of Alzheimer's disease:JAD 2009;16:741-61.
    [8]Ahmad W. Overlapped metabolic and therapeutic links between Alzheimer and diabetes. Molecular neurobiology 2013;47:399-424.
    [9]Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. The Journal of clinical investigation 2012; 122:1316-38.
    [10]Skeberdis VA, Lan J, Zheng X, Zukin RS, Bennett MV. Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proceedings of the National Academy of Sciences of the United States of America 2001;98:3561-6.
    [11]Ahmadian G, Ju W, Liu L, Wyszynski M, Lee SH, Dunah AW, et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. The EMBO journal 2004;23:1040-50.
    [12]C ON. PI3-kinase/Akt/mTOR signaling:impaired on/off switches in aging, cognitive decline and Alzheimer's disease. Experimental gerontology 2013;48:647-53.
    [13]Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. Journal of neurochemistry 2007;101:757-70.
    [14]Sato N, Takeda S, Uchio-Yamada K, Ueda H, Fujisawa T, Rakugi H, et al. Role of insulin signaling in the interaction between Alzheimer disease and diabetes mellitus: a missing link to therapeutic potential. Current aging science 2011;4:118-27.
    [15]Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? Journal of Alzheimer's disease:JAD 2005;7:63-80.
    [16]Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease:link to brain reductions in acetylcholine. Journal of Alzheimer's disease:JAD 2005;8:247-68.
    [17]Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. Journal of Alzheimer's disease:JAD 2008;13:323-31.
    [18]Lee J, Kim MS. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes research and clinical practice 2007;77 Suppl 1:S49-57.
    [19]Balaraman Y, Limaye AR, Levey AI, Srinivasan S. Glycogen synthase kinase 3beta and Alzheimer's disease:pathophysiological and therapeutic significance. Cellular and molecular life sciences:CMLS 2006;63:1226-35.
    [20]Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK.-3beta conditional transgenic mice. The EMBO journal 2001;20:27-39.
    [21]Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proceedings of the National Academy of Sciences of the United States of America 2004;101:3100-5.
    [22]Kim B, Feldman EL. Insulin resistance in the nervous system. Trends in endocrinology and metabolism:TEM 2012;23:133-41.
    [23]Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America 2005;102:6990-5.
    [24]Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, et al. Inhibition of GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes. The Journal of clinical investigation 2013;123:224-35.
    [25]Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, et al. Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer's disease mouse models. The Journal of experimental medicine 2008;205:2781-9.
    [26]Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proceedings of the National Academy of Sciences of the United States of America 2003; 100:4162-7.
    [27]Zhao Z, Xiang Z, Haroutunian V, Buxbaum JD, Stetka B, Pasinetti GM. Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer's disease. Neurobiology of aging 2007;28:824-30.
    [28]Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade:implications for Alzheimer's disease intervention. The Journal of neuroscience:the official journal of the Society for Neuroscience 2004;24:11120-6.
    [29]Zhao WQ, Townsend M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochimica et biophysica acta 2009; 1792:482-96.
    [30]Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. The Journal of neuroscience:the official journal of the Society for Neuroscience 2002;22:RC221.
    [31]Ling X, Martins RN, Racchi M, Craft S, Helmerhorst E. Amyloid beta antagonizes insulin promoted secretion of the amyloid beta protein precursor. Journal of Alzheimer's disease:JAD 2002;4:369-74.
    [32]Li L, Holscher C. Common pathological processes in Alzheimer disease and type 2 diabetes:a review. Brain research reviews 2007;56:384-402.
    [33]de la Monte SM. Insulin resistance and Alzheimer's disease. BMB reports 2009;42:475-81.
    [34]Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system:more than just a peripheral hormone. Journal of aging research 2012;2012:384017.
    [35]Moloney AM, Griffin RJ, Timmons S, O'Connor R, Ravid R, O'Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiology of aging 2010;31:224-43.
    [36]Bosco D, Fava A, Plastino M, Montalcini T, Pujia A. Possible implications of insulin resistance and glucose metabolism in Alzheimer's disease pathogenesis. Journal of cellular and molecular medicine 2011;15:1807-21.
    [37]Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Molecular and cellular endocrinology 2001;177:125-34.
    [38]Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate Alzheimer disease pathology? Nature reviews Neurology 2010;6:551-9.
    [39]McNay EC, Recknagel AK. Brain insulin signaling:a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiology of learning and memory 2011;96:432-42.
    [40]Moreira PI, Cardoso SM, Pereira CM, Santos MS, Oliveira CR. Mitochondria as a therapeutic target in Alzheimer's disease and diabetes. CNS & neurological disorders drug targets 2009;8:492-511.
    [41]J SR-F, Sa-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves ML, et al. (Pre)diabetes, brain aging, and cognition. Biochimica et biophysica acta 2009; 1792:432-43.
    [42]Reijmer YD, van den Berg E, Ruis C, Kappelle LJ, Biessels GJ. Cognitive dysfunction in patients with type 2 diabetes. Diabetes/metabolism research and reviews 2010;26:507-19.
    [43]Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes:implications for brain function. European journal of pharmacology 2002;441:1-14.
    [44]Ristow M. Neurodegenerative disorders associated with diabetes mellitus. Journal of molecular medicine (Berlin, Germany) 2004;82:510-29.
    [45]Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. The Journal of pathology 2011;225:54-62.
    [46]Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW. Pro-regenerative properties of cytokine-activated astrocytes. Journal of neurochemistry 2004;89:1092-100.
    [47]Wang DD, Bordey A. The astrocyte odyssey. Progress in neurobiology 2008;86:342-67.
    [48]Maragakis NJ, Rothstein JD. Mechanisms of Disease:astrocytes in neurodegenerative disease. Nature clinical practice Neurology 2006;2:679-89.
    [49]Dong Y, Benveniste EN. Immune function of astrocytes. Glia 2001;36:180-90.
    [50]Bernardinelli Y, Magistretti PJ, Chatton JY. Astrocytes generate Na+-mediated metabolic waves. Proceedings of the National Academy of Sciences of the United States of America 2004;101:14937-42.
    [51]Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiology of aging 2004;25:663-74.
    [52]Rodriguez JJ, Olabarria M, Chvatal A, Verkhratsky A. Astroglia in dementia and Alzheimer's disease. Cell death and differentiation 2009;16:378-85.
    [53]Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia 2010;58:831-8.
    [54]Kashon ML, Ross GW, O'Callaghan JP, Miller DB, Petrovitch H, Burchfiel CM, et al. Associations of cortical astrogliosis with cognitive performance and dementia status. Journal of Alzheimer's disease:JAD 2004;6:595-604; discussion 73-81.
    [55]Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, et al. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of aging 2010;31:578-90.
    [56]Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJ, Nyengaard JR, et al. Aging and the human neocortex. Experimental gerontology 2003;38:95-9.
    [57]Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer's disease. Neurotherapeutics:the journal of the American Society for Experimental NeuroTherapeutics 2010;7:399-412.
    [58]Mosconi L, Pupi A, De Leon MJ. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer's disease. Annals of the New York Academy of Sciences 2008;1147:180-95.
    [59]Heneka MT, Rodriguez JJ, Verkhratsky A. Neuroglia in neurodegeneration. Brain research reviews 2010;63:189-211.
    [1]Pahnke J, Walker LC, Scheffler K, Krohn M. Alzheimer's disease and blood-brain barrier function-Why have anti-beta-amyloid therapies failed to prevent dementia progression? Neuroscience and biobehavioral reviews 2009;33:1099-108.
    [2]Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 1999;399:A23-31.
    [3]Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. Disease-a-month:DM 2010;56:484-546.
    [4]Goedert M, Spillantini MG. A century of Alzheimer's disease. Science (New York, NY) 2006;314:777-81.
    [5]Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, et al. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition (Burbank, Los Angeles County, Calif) 2011;27:3-20.
    [6]Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer's disease. Journal of Alzheimer's disease:JAD 2009;16:741-61.
    [7]Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science (New York, NY) 2002;297:353-6.
    [8]Correia SC, Santos RX, Carvalho C, Cardoso S, Candeias E, Santos MS, et al. Insulin signaling, glucose metabolism and mitochondria:major players in Alzheimer's disease and diabetes interrelation. Brain research 2012;1441:64-78.
    [9]Hardy J. Has the amyloid cascade hypothesis for Alzheimer's disease been proved? Curr Alzheimer Res 2006;3:71-3.
    [10]Tam JH, Pasternak SH. Amyloid and Alzheimer's disease:inside and out. Can J Neurol Sci 2012;39:286-98.
    [11]Cole GM, Frautschy SA. The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer's Disease. Experimental gerontology 2007;42:10-21.
    [12]Moreira PI, Santos MS, Sena C, Nunes E, Seica R, Oliveira CR. CoQ10 therapy attenuates amyloid beta-peptide toxicity in brain mitochondria isolated from aged diabetic rats. Experimental neurology 2005;196:112-9.
    [13]Wada A, Yokoo H, Yanagita T, Kobayashi H. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics. Journal of pharmacological sciences 2005;99:128-43.
    [14]Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature medicine 2008;14:837-42.
    [15]Poling A, Morgan-Paisley K, Panos JJ, Kim EM, O'Hare E, Cleary JP, et al. Oligomers of the amyloid-beta protein disrupt working memory:confirmation with two behavioral procedures. Behavioural brain research 2008;193:230-4.
    [16]Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. The Journal of neuroscience:the official journal of the Society for Neuroscience 2007;27:2866-75.
    [17]Han X, Ma Y, Liu X, Wang L, Qi S, Zhang Q, et al. Changes in insulin-signaling transduction pathway underlie learning/memory deficits in an Alzheimer's disease rat model. Journal of neural transmission (Vienna, Austria:1996) 2012;119:1407-16.
    [18]Carro E, Torres-Aleman I. The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer's disease. European journal of pharmacology 2004;490:127-33.
    [19]Lee HK, Kumar P, Fu Q, Rosen KM, Querfurth HW. The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid. Molecular biology of the cell 2009;20:1533-44.
    [20]Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 2008;22:246-60.
    [21]Townsend M, Mehta T, Selkoe DJ. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. The Journal of biological chemistry 2007;282:33305-12.
    [22]de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system:relevance to Alzheimer's disease. Journal of Alzheimer's disease:JAD 2005;7:45-61.
    [23]Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, et al. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer's disease. Journal of Alzheimer's disease:JAD 2007; 11:97-116.
    [24]Lipton SA. Pathologically activated therapeutics for neuroprotection. Nature reviews Neuroscience 2007;8:803-8.
    [25]McNay EC, Recknagel AK. Brain insulin signaling:a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiology of learning and memory 2011;96:432-42.
    [26]Chiu SL, Chen CM, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 2008;58:708-19.
    [27]Li L, Holscher C. Common pathological processes in Alzheimer disease and type 2 diabetes:a review. Brain research reviews 2007;56:384-402.
    [28]de la Monte SM. Insulin resistance and Alzheimer's disease. BMB reports 2009;42:475-81.
    [29]Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature 2010;464:529-35.
    [30]Hallschmid M, Schultes B. Central nervous insulin resistance:a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 2009;52:2264-9.
    [31]Ott V, Benedict C, Schultes B, Born J, Hallschmid M. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism. Diabetes, obesity & metabolism 2012; 14:214-21.
    [32]Laron Z. Insulin and the brain. Arch Physiol Biochem 2009;115:112-6.
    [33]Pearson-Leary J, McNay EC. Intrahippocampal administration of amyloid-beta(1-42) oligomers acutely impairs spatial working memory, insulin signaling, and hippocampal metabolism. J Alzheimers Dis 2012;30:413-22.
    [34]Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. The Journal of pathology 2011;225:54-62.
    [35]Moloney AM, Griffin RJ, Timmons S, O'Connor R, Ravid R, O'Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiology of aging 2010;31:224-43.
    [36]Lopez-Colome AM, Martinez-Lozada Z, Guillem AM, Lopez E, Ortega A. Glutamate transporter-dependent mTOR phosphorylation in Muller glia cells. ASN Neuro 2012.
    [37]Manning BD, Cantley LC. AKT/PKB signaling:navigating downstream. Cell 2007; 129:1261-74.
    [38]Wu X, Kihara T, Akaike A, Niidome T, Sugimoto H. PI3K/Akt/mTOR signaling regulates glutamate transporter 1 in astrocytes. Biochem Biophys Res Commun 2010;393:514-8.
    [39]Bekinschtein P, Katche C, Slipczuk LN, Igaz LM, Cammarota M, Izquierdo I, et al. mTOR signaling in the hippocampus is necessary for memory formation. Neurobiology of learning and memory 2007;87:303-7.
    [40]Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau:effects on cognitive impairments. The Journal of biological chemistry 2010;285:13107-20.
    [41]Abbott JJ, Howlett DR, Francis PT, Williams RJ. Abeta(l-42) modulation of Akt phosphorylation via alpha7 nAChR and NMDA receptors. Neurobiol Aging 2008;29:992-1001.
    [42]Lafay-Chebassier C, Paccalin M, Page G, Bare-Pain S, Perault-Pochat MC, Gil R, et al. mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer's disease. Journal of neurochemistry 2005;94:215-25.
    [43]Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Experimental neurology 2006;199:265-73.
    [44]Reger MA, Watson GS, Frey WH,2nd, Baker LD, Cholerton B, Keeling ML, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiology of aging 2006;27:451-8.
    [45]Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. Journal of Alzheimer's disease:JAD 2008;13:323-31.
    [46]Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone:a preliminary study. The American journal of geriatric psychiatry:official journal of the American Association for Geriatric Psychiatry 2005;13:950-8.
    [47]Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain:a journal of neurology 2008;131:3311-34.
    [48]Gerozissis K. Brain insulin:regulation, mechanisms of action and functions. Cellular and molecular neurobiology 2003;23:1-25.
    [49]Cardoso S, Correia S, Santos RX, Carvalho C, Santos MS, Oliveira CR, et al. Insulin is a two-edged knife on the brain. Journal of Alzheimer's disease:JAD 2009;18:483-507.
    [50]Gerozissis K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. European journal of pharmacology 2008;585:38-49.
    [51]Lizcano JM, Alessi DR. The insulin signalling pathway. Current biology:CB 2002;12:R236-8.
    [52]Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain. Trends in endocrinology and metabolism:TEM 2005; 16:59-65.
    [53]Moult PR, Harvey J. Hormonal regulation of hippocampal dendritic morphology and synaptic plasticity. Cell adhesion & migration 2008;2:269-75.
    [54]Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, et al. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. The Journal of neuroscience:the official journal of the Society for Neuroscience 2001;21:2561-70.
    [55]Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocrine reviews 2008;29:494-511.
    [56]Trudeau F, Gagnon S, Massicotte G. Hippocampal synaptic plasticity and glutamate receptor regulation:influences of diabetes mellitus. European journal of pharmacology 2004;490:177-86.
    [57]de la Monte SM. Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer's disease. Drugs 2012;72:49-66.
    [58]Wang X, Zheng W, Xie JW, Wang T, Wang SL, Teng WP, et al. Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Molecular neurodegeneration 2010;5:46.
    [59]Raffaitin C, Feart C, Le Goff M, Amieva H, Helmer C, Akbaraly TN, et al. Metabolic syndrome and cognitive decline in French elders:the Three-City Study. Neurology 2011;76:518-25.
    [60]Verkhratsky A, Olabarria M, "Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer's disease. Neurotherapeutics:the journal of the American Society for Experimental NeuroTherapeutics 2010;7:399-412.
    [61]Perea G, Araque A. GLIA modulates synaptic transmission. Brain Res Rev 2010;63:93-102.
    [62]Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M. Role of astrocytes in brain function and disease. Toxicol Pathol 2011;39:115-23.
    [63]Henneberger C, Papouin T, Oliet SH, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010;463:232-6.
    [64]Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 2003;23:5088-95.
    [65]Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res 2003;140:1-47.
    [66]Verkhratsky A, Kirchhoff F. Glutamate-mediated neuronal-glial transmission. Journal of anatomy 2007;210:651-60.
    [67]Danbolt NC. Glutamate uptake. Progress in neurobiology 2001;65:1-105.
    [68]Harris ME, Wang Y, Pedigo NW, Jr., Hensley K, Butterfield DA, Carney JM. Amyloid beta peptide (25-35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem 1996;67:277-86.
    [69]Guo ZH, Mattson MP. Neurotrophic factors protect cortical synaptic terminals against amyloid and oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function. Cerebral cortex (New York, NY 1991) 2000;10:50-7.
    [70]Scott HL, Pow DV, Tannenberg AE, Dodd PR. Aberrant expression of the glutamate transporter excitatory amino acid transporter 1 (EAAT1) in Alzheimer's disease. The Journal of neuroscience:the official journal of the Society for Neuroscience 2002;22:RC206.
    [71]Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR. Glutamate transporter variants reduce glutamate uptake in Alzheimer's disease. Neurobiology of aging 2011;32:553 el-11.
    [72]Beart PM, O'Shea RD. Transporters for L-glutamate:an update on their molecular pharmacology and pathological involvement. British journal of pharmacology 2007;150:5-17.
    [73]Cross AJ, Slater P, Simpson M, Royston C, Deakin JF, Perry RH, et al. Sodium dependent D-[3H]aspartate binding in cerebral cortex in patients with Alzheimer's and Parkinson's diseases. Neuroscience letters 1987;79:213-7.
    [74]Liang Z, Valla J, Sefidvash-Hockley S, Rogers J, Li R. Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer's disease patients. Journal of neurochemistry 2002;80:807-14.
    [75]Ryan DA, Narrow WC, Federoff HJ, Bowers WJ. An improved method for generating consistent soluble amyloid-beta oligomer preparations for in vitro neurotoxicity studies. Journal of neuroscience methods 2010; 190:171-9.
    [76]Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, et al. Globular amyloid beta-peptide oligomer-a homogenous and stable neuropathological protein in Alzheimer's disease. Journal of neurochemistry 2005;95:834-47.
    [77]De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, et al. Protection of synapses against Alzheimer's-linked toxins:insulin signaling prevents the pathogenic binding of Abeta oligomers. Proceedings of the National Academy of Sciences of the United States of America 2009; 106:1971-6.
    [78]Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC. Amyloid beta peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell calcium 2012;51:95-106.
    [79]Fuentealba J, Dibarrart A, Saez-Orellana F, Fuentes-Fuentes MC, Oyanedel CN, Guzman J, et al. Synaptic silencing and plasma membrane dyshomeostasis induced by amyloid-beta peptide are prevented by Aristotelia chilensis enriched extract. Journal of Alzheimer's disease:JAD 2012;31:879-89.
    [80]Ito S, Menard M, Atkinson T, Gaudet C, Brown L, Whitfield J, et al. Involvement of insulin-like growth factor 1 receptor signaling in the amyloid-beta peptide oligomers-induced p75 neurotrophin receptor protein expression in mouse hippocampus. Journal of Alzheimer's disease:JAD 2012;31:493-506.
    [81]Khan A, Vaibhav K, Javed H, Khan MM, Tabassum R, Ahmed ME, et al. Attenuation of Abeta-induced neurotoxicity by thymoquinone via inhibition of mitochondrial dysfunction and oxidative stress. Molecular and cellular biochemistry 2012;369:55-65.
    [82]Kimura N, Takahashi M, Tashiro T, Terao K. Amyloid beta up-regulates brain-derived neurotrophic factor production from astrocytes:rescue from amyloid beta-related neuritic degeneration. Journal of neuroscience research 2006;84:782-9.
    [83]Zhou L, Chan KH, Chu LW, Kwan JS, Song YQ, Chen LH, et al. Plasma amyloid-beta oligomers level is a biomarker for Alzheimer's disease diagnosis. Biochemical and biophysical research communications 2012;423:697-702.
    [84]Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease-associated Abeta oligomers. The Journal of clinical investigation 2012;122:1339-53.
    [85]Heras-Sandoval D, Ferrera P, Arias C. Amyloid-beta protein modulates insulin signaling in presynaptic terminals. Neurochemical research 2012;37:1879-85.
    [86]Ji YF, Xu SM, Zhu J, Wang XX, Shen Y. Insulin increases glutamate transporter GLT1 in cultured astrocytes. Biochemical and biophysical research communications 2011;405:691-6.
    [87]Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade:implications for Alzheimer's disease intervention. The Journal of neuroscience:the official journal of the Society for Neuroscience 2004;24:11120-6.
    [88]Heni M, Hennige AM, Peter A, Siegel-Axel D, Ordelheide AM, Krebs N, et al. Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. PloS one 2011;6:e21594.
    [89]Cotrina ML, Nedergaard M. Astrocytes in the aging brain. Journal of neuroscience research 2002;67:1-10.
    [90]Wharton SB, O'Callaghan JP, Savva GM, Nicoll JA, Matthews F, Simpson JE, et al. Population variation in glial fibrillary acidic protein levels in brain ageing: relationship to Alzheimer-type pathology and dementia. Dement Geriatr Cogn Disord 2009;27:465-73.
    [91]Sofroniew MV, Vinters HV. Astrocytes:biology and pathology. Acta neuropathologica 2010;119:7-35.
    [92]Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiology of aging 2004;25:663-74.
    [93]Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? Journal of Alzheimer's disease:JAD 2005;7:63-80.
    [94]Frolich L, Blum-Degen D, Riederer P, Hoyer S. A disturbance in the neuronal insulin receptor signal transduction in sporadic Alzheimer's disease. Annals of the New York Academy of Sciences 1999;893:290-3.
    [95]Mothe I, Van Obberghen E. Phosphorylation of insulin receptor substrate-1 on multiple serine residues,612,632,662, and 731, modulates insulin action. The Journal of biological chemistry 1996;271:11222-7.
    [96]Goldstein BJ, Dudley AL. Heterogeneity of messenger RNA that encodes the rat insulin receptor is limited to the domain of exon 11. Analysis by RNA heteroduplex mapping, amplification of cDNA, and in vitro translation. Diabetes 1992;41:1293-300.
    [97]Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. The Journal of clinical investigation 2012;122:1316-38.
    [98]Jolivalt CG, Lee CA, Beiswenger KK, Smith JL, Orlov M, Torrance MA, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice:parallels with Alzheimer's disease and correction by insulin. Journal of neuroscience research 2008;86:3265-74.
    [99]Magrane J, Rosen KM, Smith RC, Walsh K, Gouras GK, Querfurth HW. Intraneuronal beta-amyloid expression downregulates the Akt survival pathway and blunts the stress response. The Journal of neuroscience:the official journal of the Society for Neuroscience 2005;25:10960-9.
    [100]Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proceedings of the National Academy of Sciences of the United States of America 2004; 101:3100-5.
    [101]Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nature reviews Molecular cell biology 2006;7:85-96.
    [102]Hulmi JJ, Silvennoinen M, Lehti M, Kivela R, Kainulainen H. Altered REDD1, myostatin, and Akt/mTOR/FoxO/MAPK signaling in streptozotocin-induced diabetic muscle atrophy. Am J Physiol Endocrinol Metab 2012;302:E307-15.
    [103]Machado-Neto JA, Favaro P, Lazarini M, Costa FF, Olalla Saad ST, Traina F. Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta 2011;1813:1404-11.
    [104]Jaworski J, Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol 2006;34:205-19.
    [105]Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 1999;99:221-37.
    [106]Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, et al. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nature medicine 2008;14:843-8.
    [107]Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nature neuroscience 2009;12:1152-8.
    [108]Tischmeyer W, Schicknick H, Kraus M, Seidenbecher CI, Staak S, Scheich H, et al. Rapamycin-sensitive signalling in long-term consolidation of auditory cortex-dependent memory. The European journal of neuroscience 2003;18:942-50.
    [109]Li S, Mallory M, Alford M, Tanaka S, Masliah E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. Journal of neuropathology and experimental neurology 1997;56:901-11.
    [110]Matos M, Augusto E, Oliveira CR, Agostinho P. Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes:involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 2008; 156:898-910.
    [111]Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, et al. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain:the role of Abetal-42. Journal of neurochemistry 2001;78:413-6.
    [112]Freychet P. Insulin receptors and insulin actions in the nervous system. Diabetes/metabolism research and reviews 2000; 16:390-2.
    [113]Teplow DB. Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid:the international journal of experimental and clinical investigation:the official journal of the International Society of Amyloidosis 1998;5:121-42.
    [114]Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. The American journal of pathology 1999; 155:853-62.
    [115]Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002;416:535-9.
    [116]Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006;440:352-7.
    [117]Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 2008; 192:106-13.
    [118]de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer's disease. Current Alzheimer research 2012;9:35-66.
    [119]Chen TJ, Wang DC, Chen SS. Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons. J Neurosci Res 2009;87:2297-307.
    [120]Tower DB, Young OM. The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. Journal of neurochemistry 1973;20:269-78.
    [121]Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A. Glia:the fulcrum of brain diseases. Cell Death Differ 2007; 14:1324-35.
    [122]Heneka MT, Rodriguez JJ, Verkhratsky A. Neuroglia in neurodegeneration. Brain research reviews 2010;63:189-211.
    [123]ladecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007; 10:1369-76.
    [124]Gibbs ME, Hutchinson D, Hertz L. Astrocytic involvement in learning and memory consolidation. Neuroscience and biobehavioral reviews 2008;32:927-44.
    [125]Allaman I, Gavillet M, Belanger M, Laroche T, Viertl D, Lashuel HA, et al. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype:impact on neuronal viability. The Journal of neuroscience:the official journal of the Society for Neuroscience 2010;30:3326-38.
    [126]Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia 2010;58:831-8.
    [127]Allaman I, Belanger M, Magistretti PJ. Astrocyte-neuron metabolic relationships:for better and for worse. Trends in neurosciences 2011;34:76-87.
    [128]DeWitt DA, Perry G, Cohen M, Doller C, Silver J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer's disease. Experimental neurology 1998; 149:329-40.
    [129]Rossi D, Volterra A. Astrocytic dysfunction:insights on the role in neurodegeneration. Brain research bulletin 2009;80:224-32.
    [130]Sastre M, Klockgether T, Heneka MT. Contribution of inflammatory processes to Alzheimer's disease:molecular mechanisms. Int J Dev Neurosci 2006;24:167-76.
    [131]Carter SF, Scholl M, Almkvist O, Wall A, Engler H, Langstrom B, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl:a multitracer PET paradigm combining HC-Pittsburgh compound B and 18F-FDG. J Nucl Med 2012;53:37-46.
    [132]Kimura N, Negishi T, Ishii Y, Kyuwa S, Yoshikawa Y. Astroglial responses against Abeta initially occur in cerebral primary cortical cultures:species differences between rat and cynomolgus monkey. Neurosci Res 2004;49:339-46.
    [133]Matyash V, Kettenmann H. Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 2010;63:2-10.
    [134]Sukhorukova EG, Alekseeva OS, Kirik OV, Grudinina NA, Korzhevskii DE. [Comparative aspects of structural organization of astrocytes of the first layer of the human and rat cerebral cortex]. Zh Evol Biokhim Fiziol 2012;48:280-6.
    [135]Wang Y, Shi W, Song W, Wang L, Liu X, Chen J, et al. Tumor cell targeted delivery by specific peptide-modified mesoporous silica nanoparticles. Journal of Materials Chemistry 2012;22:14608.
    [136]Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, et al. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 2013; 135:4799-804.
    [137]Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends in neurosciences 2009;32:638-47.
    [138]Rodriguez JJ, Olabarria M, Chvatal A, Verkhratsky A. Astroglia in dementia and Alzheimer's disease. Cell death and differentiation 2009; 16:378-85.
    [139]Wickelgren I. Tracking insulin to the mind. Science (New York, NY) 1998;280:517-9.
    [140]Gasparini L, Netzer WJ, Greengard P, Xu H. Does insulin dysfunction play a role in Alzheimer's disease? Trends in pharmacological sciences 2002;23:288-93.
    [141]Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL. Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 2001;74:270-80.
    [142]Park CR, Seeley RJ, Craft S, Woods SC. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiology & behavior 2000;68:509-14.
    [143]Olsson Y, Save-Soderbergh J, Sourander P, Angervall L. A patho-anatomical study of the central and peripheral nervous system in diabetes of early onset and long duration. Pathologia Europaea 1968;3:62-79.
    [144]Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes:implications for brain function. European journal of pharmacology 2002;441:1-14.
    [145]Kroner Z. The relationship between Alzheimer's disease and diabetes:Type 3 diabetes? Alternative medicine review:a journal of clinical therapeutic 2009;14:373-9.
    [146]Devaskar SU, Giddings SJ, Rajakumar PA, Carnaghi LR, Menon RK, Zahm DS. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 1994;269:8445-54.
    [147]Lawlor MA, Alessi DR. PKB/Akt:a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001;114:2903-10.
    [148]Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B:identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999;344 Pt 2:427-31.
    [149]Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment:a pilot clinical trial. Arch Neurol 2012;69:29-38.
    [150]Taubes G Neuroscience. Insulin insults may spur Alzheimer's disease. Science 2003;301:40-1.
    [151]Candeias E, Duarte AI, Carvalho C, Correia SC, Cardoso S, Santos RX, et al. The impairment of insulin signaling in Alzheimer's disease. IUBMB Life 2012;64:951-7.
    [152]Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system:more than just a peripheral hormone. Journal of aging research 2012;2012:384017.
    [153]Arab L, Sadeghi R, Walker DG, Lue LF, Sabbagh MN. Consequences of Aberrant Insulin Regulation in the Brain:Can Treating Diabetes be Effective for Alzheimer's Disease. Curr Neuropharmacol 2011;9:693-705.
    [154]Zhao WQ, Townsend M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochimica et biophysica acta 2009;1792:482-96.
    [155]van der Heide LP, Ramakers GM, Smidt MP. Insulin signaling in the central nervous system:learning to survive. Prog Neurobiol 2006;79:205-21.
    [156]Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. European journal of pharmacology 2004;490:115-25.
    [157]Flati V, Caliaro F, Speca S, Corsetti G, Cardile A, Nisoli E, et al. Essential amino acids improve insulin activation of AKT/MTOR signaling in soleus muscle of aged rats. Int J Immunopathol Pharmacol 2010;23:81-9.
    [158]Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nature reviews Molecular cell biology 2010;11:9-22.
    [159]Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 2009; 122:3589-94.
    [160]Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 2000;60:3504-13.
    [161]C ON. PI3-kinase/Akt/mTOR signaling:Impaired on/off switches in aging, cognitive decline and Alzheimer's disease. Exp Gerontol 2013.
    [162]Havrankova J, Brownstein M, Roth J. Insulin and insulin receptors in rodent brain. Diabetologia 1981;20 Suppl:268-73.
    [163]Pardridge WM, Kang YS, Buciak JL, Yang J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharmaceutical research 1995;12:807-16.
    [164]Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature medicine 1996;2:864-70.
    [165]Klein WL, Krafft GA, Finch CE. Targeting small Abeta oligomers:the solution to an Alzheimer's disease conundrum? Trends in neurosciences 2001;24:219-24.
    [166]Li LB, Toan SV, Zelenaia O, Watson DJ, Wolfe JH, Rothstein JD, et al. Regulation of astrocytic glutamate transporter expression by Akt:evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype. Journal of neurochemistry 2006;97:759-71.
    [167]Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science (New York, NY) 1997;275:661-5.
    [168]Lee CC, Kuo YM, Huang CC, Hsu KS. Insulin rescues amyloid beta-induced impairment of hippocampal long-term potentiation. Neurobiology of aging 2009;30:377-87.
    [169]Yang Y, Ma D, Wang Y, Jiang T, Hu S, Zhang M, et al. Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimers Dis2013;33:329-38.
    [170]Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, et al. Tuberous sclerosis complex proteins control axon formation. Genes & development 2008;22:2485-95.
    [171]Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. The Journal of neuroscience:the official journal of the Society for Neuroscience 2005;25:11288-99.
    [172]Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway. The Journal of neuroscience:the official journal of the Society for Neuroscience 2005;25:11300-12.
    [173]Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL. Regulation of neuronal morphology and function by the tumor suppressors Tscl and Tsc2. Nature neuroscience 2005;8:1727-34.
    [174]Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America 2002;99:467-72.
    [175]Dash PK, Orsi SA, Moore AN. Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-Mammalian target of rapamycin pathway. The Journal of neuroscience:the official journal of the Society for Neuroscience 2006;26:8048-56.
    [176]Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem 2005;93:105-17.
    [177]Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 1992;6:3338-44.
    [178]Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Molecular neurobiology 2001;24:107-29.
    [179]Herman MA, Jahr CE. Extracellular glutamate concentration in hippocampal slice. The Journal of neuroscience:the official journal of the Society for Neuroscience 2007;27:9736-41.
    [180]Benarroch EE. Neuron-astrocyte interactions:partnership for normal function and disease in the central nervous system. Mayo Clinic proceedings Mayo Clinic 2005;80:1326-38.
    [181]Bernardinelli Y, Magistretti PJ, Chatton JY. Astrocytes generate Na+-mediated metabolic waves. Proceedings of the National Academy of Sciences of the United States of America 2004; 101:14937-42.
    [182]Woltjer RL, Duerson K, Fullmer JM, Mookherjee P, Ryan AM, Montine TJ, et al. Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in Alzheimer disease. Journal of neuropathology and experimental neurology 2010;69:667-76.
    [183]Pardo AC, Wong V, Benson LM, Dykes M, Tanaka K, Rothstein JD, et al. Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Experimental neurology 2006;201:120-30.
    [184]Tsvetkov E, Shin RM, Bolshakov VY. Glutamate uptake determines pathway specificity of long-term potentiation in the neural circuitry of fear conditioning. Neuron 2004;41:139-51.
    [185]Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science (New York, NY) 1997;276:1699-702.
    [186]Masliah E, Alford M, Mallory M, Rockenstein E, Moechars D, Van Leuven F. Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Experimental neurology 2000;163:381-7.
    [187]Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, et al. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of aging 2010;31:578-90.
    [188]Rodriguez-Kern A, Gegelashvili M, Schousboe A, Zhang J,-Sung L, Gegelashvili G. Beta-amyloid and brain-derived neurotrophic factor, BDNF, up-regulate the expression of glutamate transporter GLT-1/EAAT2 via different signaling pathways utilizing transcription factor NF-kappaB. Neurochemistry international 2003;43:363-70.
    [189]Peters O, Schipke CG, Philipps A, Haas B, Pannasch U, Wang LP, et al. Astrocyte function is modified by Alzheimer's disease-like pathology in aged mice. J Alzheimers Dis 2009; 18:177-89.
    [190]Pertusa M, Garcia-Matas S, Rodriguez-Farre E, Sanfeliu C, Cristofol R. Astrocytes aged in vitro show a decreased neuroprotective capacity. J Neurochem 2007;101:794-805.
    [1]Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer's disease. Archives of medical research 2012;43:600-8.
    [2]Thies W, Bleiler L.2013 Alzheimer's disease facts and figures. Alzheimer's & dementia:the journal of the Alzheimer's Association 2013;9:208-45.
    [3]2012 Alzheimer's disease facts and figures. Alzheimer's & dementia:the journal of the Alzheimer's Association 2012;8:131-68.
    [4]Mattson MP. Pathways towards and away from Alzheimer's disease. Nature 2004;430:631-9.
    [5]Lehericy S, Hirsch EC, Cervera-Pierot P, Hersh LB, Bakchine S, Piette F, et al. Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer's disease. The Journal of comparative neurology 1993;330:15-31.
    [6]Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. European journal of pharmacology 2004;490:115-25.
    [7]Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer's disease. Cell calcium 2003;34:385-97.
    [8]Vina J, Lloret A, Valles SL, Borras C, Badia MC, Pallardo FV, et al. Mitochondrial oxidant signalling in Alzheimer's disease. Journal of Alzheimer's disease:JAD 2007; 11:175-81.
    [9]Wirths O, Multhaup G, Bayer TA. A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide--the first step of a fatal cascade. Journal of neurochemistry 2004;91:513-20.
    [10]Selkoe DJ. Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. The Journal of clinical investigation 2002; 110:1375-81.
    [11]McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Annals of neurology 1999;46:860-6.
    [12]Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abetal-42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America 1998;95:6448-53.
    [13]Hardy JA, Higgins GA. Alzheimer's disease:the amyloid cascade hypothesis. Science (New York, NY) 1992;256:184-5.
    [14]Morris JC, Storandt M, McKeel DW, Jr., Rubin EH, Price JL, Grant EA, et al. Cerebral amyloid deposition and diffuse plaques in "normal" aging:Evidence for presymptomatic and very mild Alzheimer's disease. Neurology 1996;46:707-19.
    [15]Yankner BA. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 1996;16:921-32.
    [16]De Felice FG, Vieira MN, Saraiva LM, Figueroa-Villar JD, Garcia-Abreu J, Liu R, et al. Targeting the neurotoxic species in Alzheimer's disease:inhibitors of Abeta oligomerization. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 2004; 18:1366-72.
    [17]Klein WL, Krafft GA, Finch CE. Targeting small Abeta oligomers:the solution to an Alzheimer's disease conundrum? Trends in neurosciences 2001;24:219-24.
    [18]Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, et al. Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain research 2002;924:133-40.
    [19]Hallschmid M, Schultes B. Central nervous insulin resistance:a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 2009;52:2264-9.
    [20]Ott V, Benedict C, Schultes B, Born J, Hallschmid M. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism. Diabetes, obesity & metabolism 2012;14:214-21.
    [21]Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, et al. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. The Journal of biological chemistry 1999;274:34893-902.
    [22]Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system:more than just a peripheral hormone. Journal of aging research 2012;2012:384017.
    [23]Unger JW, Livingston JN, Moss AM. Insulin receptors in the central nervous system:localization, signalling mechanisms and functional aspects. Progress in neurobiology 1991;36:343-62.
    [24]Townsend M, Mehta T, Selkoe DJ. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. The Journal of biological chemistry 2007;282:33305-12.
    [25]Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 2008;22:246-60.
    [26]Blass JP, Sheu RK, Gibson GE. Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Annals of the New York Academy of Sciences 2000;903:204-21.
    [27]de la Monte SM. Therapeutic targets of brain insulin resistance in sporadic Alzheimer's disease. Frontiers in bioscience (Elite edition) 2012;4:1582-605.
    [28]Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? Journal of Alzheimer's disease:JAD 2005;7:63-80.
    [29]Hoyer S, Lee SK, Loffler T, Schliebs R. Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Annals of the New York Academy of Sciences 2000;920:256-8.
    [30]Stine WB, Jr., Dahlgren KN, Krafft GA, LaDu MJ. In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. The Journal of biological chemistry 2003;278:11612-22.
    [31]Begum AN, Yang F, Teng E, Hu S, Jones MR, Rosario ER, et al. Use of copper and insulin-resistance to accelerate cognitive deficits and synaptic protein loss in a rat Abeta-infusion Alzheimer's disease model. Journal of Alzheimer's disease:JAD 2008;15:625-40.
    [32]Frautschy SA, Yang F, Calderon L, Cole GM. Rodent models of Alzheimer's disease:rat A beta infusion approaches to amyloid deposits. Neurobiology of aging 1996;17:311-21.
    [33]Nitta A, Itoh A, Hasegawa T, Nabeshima T. beta-Amyloid protein-induced Alzheimer's disease animal model. Neuroscience letters 1994; 170:63-6.
    [34]Richardson JC, Kendal CE, Anderson R, Priest F, Gower E, Soden P, et al. Ultrastructural and behavioural changes precede amyloid deposition in a transgenic model of Alzheimer's disease. Neuroscience 2003;122:213-28.
    [35]Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 2005;48:825-38.
    [36]Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. Journal of neural transmission (Vienna, Austria:1996) 1998;105:423-38.
    [37]Kinoshita A, Shah T, Tangredi MM, Strickland DK, Hyman BT. The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. The Journal of biological chemistry 2003;278:41182-8.
    [38]Moloney AM, Griffin RJ, Timmons S, O'Connor R, Ravid R, O'Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiology of aging 2010;31:224-43.
    [39]Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science (New York, NY) 1997;275:661-5.
    [40]Ryder J, Su Y, Ni B. Akt/GSK3beta serine/threonine kinases:evidence for a signalling pathway mediated by familial Alzheimer's disease mutations. Cellular signalling 2004; 16:187-200.
    [41]Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231-41.
    [42]Wang C, Yang XM, Zhuo YY, Zhou H, Lin HB, Cheng YF, et al. The phosphodiesterase-4 inhibitor rolipram reverses Abeta-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. The international journal of neuropsychopharmacology/official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP) 2012; 15:749-66.
    [43]Ma QL, Harris-White ME, Ubeda OJ, Simmons M, Beech W, Lim GP, et al. Evidence of Abeta-and transgene-dependent defects in ERK.-CREB signaling in Alzheimer's models. Journal of neurochemistry 2007;103:1594-607.
    [44]Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer's disease and its models. Neuroscience 2013;251:51-65.
    [45]Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ. Amyloid-beta oligomers:their production, toxicity and therapeutic inhibition. Biochemical Society transactions 2002;30:552-7.
    [46]Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, et al. Synaptic targeting by Alzheimer's-related amyloid beta oligomers. The Journal of neuroscience: the official journal of the Society for Neuroscience 2004;24:10191-200.
    [47]Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. The Journal of neuroscience:the official journal of the Society for Neuroscience 2007;27:2866-75.
    [48]Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity:a potent role for trimers. The Journal of physiology 2006;572:477-92.
    [49]Chiu SL, Chen CM, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 2008;58:708-19.
    [50]de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system:relevance to Alzheimer's disease. Journal of Alzheimer's disease:JAD 2005;7:45-61.
    [51]Gong X, Xie Z, Zuo H. Invivo insulin deficiency as a potential etiology for demyelinating disease. Medical hypotheses 2008;71:399-403.
    [52]Kasuga M, Zick Y, Blith DL, Karlsson FA, Haring HU, Kahn CR. Insulin stimulation of phosphorylation of the beta subunit of the insulin receptor. Formation of both phosphoserine and phosphotyrosine. The Journal of biological chemistry 1982;257:9891-4.
    [53]Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nature reviews Molecular cell biology 2006;7:85-96.
    [54]Zhong D, Liu X, Khuri FR, Sun SY, Vertino PM, Zhou W. LKB1 is necessary for Akt-mediated phosphorylation of proapoptotic proteins. Cancer research 2008;68:7270-7.
    [55]Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Progress in neurobiology 2001;65:391-426.
    [56]Hong M, Lee VM. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. The Journal of biological chemistry 1997;272:19547-53.
    [57]Doble BW, Woodgett JR. GSK-3:tricks of the trade for a multi-tasking kinase. Journal of cell science 2003; 116:1175-86.
    [58]Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M, Inestrosa NC. Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Experimental cell research 2004;297:186-96.
    [59]Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA:the journal of the American Medical Association 2000;283:1571-7.
    [60]Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America 2005; 102:2273-6.
    [61]Du YF, Yan P, Guo SG, Qu CQ. Effects of fibrillar Abeta(1-40) on the viability of primary cultures of cholinergic neurons and the expression of insulin signaling-related proteins. Anatomical record (Hoboken, NJ:2007) 2011;294:287-94.
    [62]Singh BS, Rajakumar PA, Eves EM, Rosner MR, Wainer BH, Devaskar SU. Insulin gene expression in immortalized rat hippocampal and pheochromocytoma-12 cell lines. Regulatory peptides 1997;69:7-14.
    [63]Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer's disease:implications for treatment. CNS drugs 2003; 17:27-45.
    [64]de la Monte SM. Insulin resistance and Alzheimer's disease. BMB reports 2009;42:475-81.
    [65]Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes:relevance to sporadic Alzheimer's disease. Journal of Alzheimer's disease:JAD 2006;9:13-33.
    [66]Freude S, Schilbach K, Schubert M. The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer's disease:from model organisms to human disease. Current Alzheimer research 2009;6:213-23.
    [67]de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer's disease. Current Alzheimer research 2012;9:35-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700