用户名: 密码: 验证码:
去神经支配后对鼠肺神经内分泌细胞影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经内分泌细胞(PNEC)系统是由单个PNEC及成簇的PNEC形成的神经上皮小体(NEB)组成。已知PNEC具有气道氧化学感受器,调节气道反应性,促进肺的生长发育的功能。近来还发现PNEC可作为气道上皮干细胞促进肺损伤后修复,PNEC与小细胞肺癌密切相关。这些功能的发挥主要通过迷走神经节的感觉传入神经纤维支配。
     NEB中存在双重感觉神经纤维支配。一是由迷走神经结状神经节的钙结合蛋白D28K和P2X3受体免疫神经纤维组成的感觉神经纤维;另一是由背根神经节的P物质和降钙素基因相关肽(CGRP)免疫反应性神经纤维组成。CGRP在神经节中合成后随之被转运到神经末梢,通过迷走神经传入神经元调节其行为。从气道近端至远端双重感觉神经纤维的密度逐渐降低直至单个神经纤维穿过气道上皮及上皮下层,单个PNEC及NEB可能通过粘膜下层的微细神经纤维相互连接。单侧迷走神经切断后会出现同侧的神经末梢退化或消失,PNEC及NEB也可能会出现相应改变。
     临床在气管、支气管成形术及肺移植过程中,由于切断了支配支气管粘膜及肌肉的神经纤维,去神经支配后肺神经内分泌细胞的数量、分布及神经活性物质分泌功能的改变;PNEC对于神经刺激的应答,PNEC产生的神经免疫、神经内分泌的功能,以及这些改变对于气管、支气管粘膜的修复有何影响?目前尚不清楚。因此,研究去神经支配后肺神经内分泌细胞数量、分布及神经活性物质的分泌功能的改变,具有十分重要的意义。
     研究目的
     通过切断鼠单侧迷走神经和支气管重建观察去神经后PNEC和NEB的数量、形态结构及其分泌神经活性物质的变化,以探讨PNEC的功能及其在气道损伤及修复中的作用。
     实验方法
     1.30只SD大鼠切断左侧迷走神经,术后按取样时间随机分为术后一周、一月、三月组,每组10只;另设10只正常SD大鼠作为对照组。电镜观察肺神经内分泌细胞的超微结构;采用Grimelius银染色法观察肺神经内分泌细胞数量及分布;免疫组化法检测五羟色胺阳性神经内分泌细胞、降钙素基因相关肽阳性神经内分泌细胞的表达;采用放射免疫分析法测定血清中CGRP浓度;RT-PCR法测定肺组织CGRP mRNA表达。
     2.30只SD大鼠左侧支气管重建术,术后按取样时间随机分为术后一周、一月、三月组,每组10只;另设10只正常SD大鼠作为对照组。HE切片观察支气管重建术后支气管愈合情况;采用Grimelius银染色法观察肺神经内分泌细胞数量及分布;免疫组化法检测五羟色胺阳性神经内分泌细胞、降钙素基因相关肽阳性神经内分泌细胞的表达;采用放射免疫分析法测定血清中CGRP浓度;RT-PCR法测定肺组织CGRP mRNA表达。
     实验结果
     1.PNEC超微结构:电镜下见PNEC分布于肺内支气管和细支气管上皮内,PNEC呈烧瓶样、卵圆形和锥型,细胞从上皮基底膜延伸至支气管管腔或者沿基底膜在相邻气道上皮间伸展,顶端狭窄形成尖形突起抵达管腔,有些细胞顶端靠近腔面处常有短微绒毛。在细胞浆中富含具有特征性的致密核心小泡(DCV),一般呈球状,直径约70~200nm,外被单位膜,内含电子高密度的核心,核心和膜之间有一薄的光晕。PNEC内可见数量不等的游离核蛋白体、光面内质网与粗面内质网、成束的微丝和线粒体,线粒体较相邻细胞的更小,高尔基体位于细胞核靠上处。
     2.迷走神经切断术后一周和一月Grimelius银染色见神经内分泌细胞多位于肺内支气管上皮,其数量大幅度增加,且有多个神经内分泌细胞聚集形成神经上皮小体;至三月接近正常对照组;进一步免疫组化检测见迷走神经切断术后一周、一月大支气管内5-HT、CGRP阳性PNEC和NEB数量大量增加(P﹤0.01),至术后三月时接近正常对照组(P﹥0.05)。小支气管、周围细支气管内5-HT、CGRP阳性PNEC和NEB数量无显著差异(P﹥0.05)。
     3.迷走神经切断术后一周和一月血清CGRP含量比正常对照组显著降低(P﹤0.01),随着时间延长,血清中CGRP含量逐渐增加,至三月时接近正常对照组;而肺组织CGRP mRNA表达在术后一周和一月均明显高于对照组(P﹤0.01),随着时间的延长,其表达量逐渐减少,至术后三月时接近正常对照组(P﹥0.05)。
     4.支气管重建术后支气管吻合口肉芽组织增生,可见支气管粘膜中断,内皮细胞增生形成的实性细胞索及扩张的毛细血管,毛细血管周围可见大量的纤维母细胞及炎性细胞。
     5.支气管重建术后一周和一月Grimelius银染色见神经内分泌细胞多位于肺内支气管上皮,其数量大幅度增加,且有多个神经内分泌细胞聚集形成神经上皮小体;至三月接近正常对照组;进一步免疫组化检测见支气管重建术后一周、一月大支气管内5-HT、CGRP阳性PNEC和NEB数量大量增加(P﹤0.01),至术后三月时接近正常对照组(P﹥0.05)。小支气管、周围细支气管内5-HT、CGRP阳性PNEC和NEB数量无显著差异(P﹥0.05)。
     6.支气管重建术后一周和一月血清CGRP含量比正常对照组显著降低(P﹤0.01),随着时间延长,血清中CGRP含量逐渐增加,至三月时接近正常对照组;而肺组织CGRP mRNA表达在术后一周和一月均明显高于对照组(P﹤0.01),随着时间的延长,其表达量逐渐减少,至术后三月时接近正常对照组(P﹥0.05)。
     结论
     1.神经内分泌细胞的超微结构特征——细胞浆中致密核心小泡(DCV)可作为PNEC特征性标志。
     2.迷走神经切断后可明显影响肺神经内分泌细胞数量、分布及神经活性物质的分泌,从而表明迷走神经具有支配、调节肺神经内分泌细胞分化及分泌神经活性物质的功能。
     3.迷走神经切断后血清内CGRP浓度下降及肺内CGRP mRNA表达量增加之变化,表明迷走神经对CGRP基因的表达和神经活性物质CGRP的分泌具有调节作用。
     4.支气管重建术后PNEC的数量增加及5-HT,CGRP阳性PNEC和NEB大量增生,一方面表明PNEC受其支配的神经纤维调节,另一方面表明PNEC可能参与了气道的损伤与修复。
     5.支气管重建术后近期血清内CGRP浓度下降及肺内CGRP mRNA表达量增加之变化,表明肺内CGRP-IR神经纤维调节CGRP基因的表达和神经活性物质CGRP的分泌;推测CGRP具有局部调节因子刺激内皮细胞增生,参与了气道的损伤与修复。
The pulmonary neuroendocrine cells (PNEC) system consists of solitary cells and distinctive cell clusteres termed neuroepithelial bodies (NEB). The pulmonary neuroendocrine system is still regarded as an oxygen sensitive chemoreceptor with local and reflex-mediated regulatory functions, and as a regulator of airway reactivity, and as a regulator of lung growth and development. A novel role of PNEC or NEB is emerging as guardians of lung stem cell niches. This has potential implications for carcinogenesis and injury repair. These functions are always played a part in afferent sensory fibers of vagal originating with cell bodies residing in the nodose ganglion.
     NEB is under dual sensory innervation. A vagal sensory component with origin in the nodose ganglion revealed calbinding D28K and P2X3 purinoreceptor immunoreactive nerve fibers that were myelinated. Another sensory nerve fiber system is consisted of thin unmyelinated, nonvagal substance P/CGRP immunoreactive nerves that have their origin in dorsal root ganglia. CGRP was synthetized in neural ganglion and transported to nerve ending, the secretion of CGRP was regulated afferent neuron of vagus. There is a decreasing nerve density from proximal to more distal conducting airways, while there remains a frequent interchange of single nerve fibers across epithelial and subepithelial compartments without termination. NEB and solitary PNEC may be actually interconnected via fine submucosal nerve fibers. Unilateral vagotomy led to degeneration and disappearance of ipsilateral NEB,and NEB and solitary PNEC may be changed.
     The nerve fiber of broncho-mucosa and muscles would be cut in the process of tracheoplasty, bronchoplasty and lung transplantation in clinic. The response of neurostimulation would be changed, likewise neuro-immunity and the function of neuroendocine. These changes would be bought about extremely significant effect in the process of trachea-mucosal and broncho-mucosal repair. Hence, it will be important to investigate the effects and significance of amount, distribution and their secreting function of pulmonary neuroendocrine cells (PNEC) following denervation.
     AIM:
     To study the effects and changes of amount, distribution, secretion of pulmonary neuroendocrine cells after vagotomy and reconstruction of bronchus to explore the function of PNEC and the role of PNEC in damage and repair of airway after denervation.
     METHODS:
     1. 30 male sprague dawley rats were randomly divided into three groups according to sample taking time after left cervical vagotomy:1 week, 1 month, 3 months with 10 animals in each, and another 10 rats without vagotomy were used as normal control. The ultramicrostructure of PNEC were observed with electron microscope. The quantity and distribution of PNEC were studied by Grimelius silver stain. Both serotonin (5-HT) positive PNEC and calcitonin gene-related peptide (CGRP) positive PNEC were studied by immunohistochemistry. The serous concentration of CGRP was detected by radio-immunity analysis method. The level of expression of CGRP mRNA was measured by RT-PCR method.
     2. 30 male sprague dawley rats were randomly divided into three groups according to sample taking time after left reconstruction of bronchus: 1 week, 1 month, 3 months with 10 animals in each, and another 10 rats without surgery were taken as normal control. The broncho-healing states were observed with HE staining slice after after left reconstruction of bronchus. The quantity and distribution of PNEC were studied by Grimelius silver stain. Both serotonin (5-HT) positive PNEC and calcitonin gene-related peptide (CGRP) positive PNEC were studied by immunohistochemistry. The serous concentration of CGRP was detected by radio-immunity analysis method. The level of expression of CGRP mRNA was measured by RT-PCR method.
     RESULTS:
     1. The electron microscopic studies have shown that PNEC were mainly found in the epithelium of trachea, bronchus and bronchioles. The cells are usually flask, oval or pyramidalshaped with most of them concentrated at the lumina of respiratory tract from basal lamina or extended along the lamina of the contiguous epitheliums. Occasionally, the lateral dendriteike cytoplasmic processes extend between adjacent epithelial cells. The apical region of the cell reached the lumen where the microvilli were revealed on surface of some cells. The identification of small, cytoplasmic, generally spherical granules, otherwise known as dense-core vesicles (DCV), has been served as the major ultrastructural characteristic of the PNEC. The appearance of DCV was shown as globular. The diameters of these DCVs can range from 70 to 200 nm. The DCV contain a high electronic density core, there is a thin, electron-lucent zone or“halo”betweem core and membrane. Other ultrastructural characteristics associated with PNEC are variable amounts of free ribosomes,smooth and rough endoplasmic reticulum, bundles of cytoplasmic filaments and mitochondria. The latter are usually smaller than those of adjacent cells. The Golgi apparatus is usually visible and present in a supranuclear position.
     2. PNECs were mainly found in the epithelium of intra pulmonary bronchus and terminal bronchioles and some of them were assembled to form into neuroepithelial bodies (NEBs). 1 week and 1month after vagotomy, the number of PNEC was significantly increased in larger bronchi, and nearly approached the lever of normal controls after 3 months later. Except their location in the larger bronchi, the changes of 5-HT and CGRP positive PNECs presented the same as PNEC in number. The NEBs were formed by 5-HT positive PNEC or CGRP positive PNEC also.
     3. At 1 week and 1 month after vagotomy, the serous concentration of CGRP was significantly decreased than that in the normal controls (P﹤0.01) and gradually increased nearly to the normal level in 3 months after vagotomy. The expression of CGRP mRNA was significantly higher than that in the normal control at 1 week and 1 month after vagotomy (P﹤0.01) and gradually declined to the normal control after 3 months (P﹥0.05).
     4. Light microscopic studies have shown granulation tissue hyperblastosis on broncho-shama after reconstruction of bronchus, discontinued Mucosa of bronchus and stuffed bundles of hyperplasia endothelial cells and expanded blood capillary. There were massive fibroblast and inflammatory cells around blood capillaries.
     5. The changes of PNEC and 5-HT and CGRP positive PNECs in number, location, formation of NEB after left reconstruction of bronchus were similar as after vagotomy.
     6. At 1 week and 1 month after left reconstruction of bronchus, the serous concentration of CGRP was significantly decreased than that in the normal controls (P﹤0.01) and gradually increased nearly to the normal level in 3 months after left reconstruction of bronchus. The expression of CGRP mRNA was significantly higher than that in the normal control at 1 week and 1 month after left reconstruction of bronchus (P﹤0.01) and gradually declined to the normal control after 3 months (P﹥0.05).
     CONCLUSION:
     1. DCV has served as the major ultrastructural characteristic of the PNEC.
     2. The quantity and distribution and their secreting function of PNEC and 5-HT positive PNEC and CGRP positive PNEC were significantly changed after vagotomy. It indicated that PNEC might be dominated and their secreting function might be regulated by vagus fibres.
     3. The serous concentration of CGRP and expression of CGRP mRNA were significantly changed after vagotomy. It indicated that the expression of CGRP mRNA and the secretion of CGRP were dominated and regulated by vagus.
     4. The quantity of PNEC and 5-HT positive PNEC and CGRP positive PNEC were significantly increased after reconstruction of bronchus. It indicated that PNEC might be dominated by vagus fibres. Meanwhile, it deduced that PNEC might be taken part in damage and repair of airway.
     5. The serous concentration of CGRP and expression of CGRP mRNA were significantly changed after reconstruction of bronchus. It indicated that the expression of CGRP mRNA and the secretion of CGRP were dominated and regulated by CGRP-immunoreactive (IR) fibers of vagus. Meanwhile, it indicated that CGRP was considered as local regulatory factor to stimulate hyperplasia endothelialis and participated in damage and repair of airway.
引文
[1] DiAugustine RP, Sonstegard KS. Neuroendocrinelike (small granule) epithelial cells of the lung. Environ Health Perspect. 1984 Apr; 55:271-95.
    [2] Moosavi H, Smith P, Heath D. The Feyrter cell in hypoxia. Thorax. 1973 Nov; 28(6):729-741.
    [3] Bensch KG, Gordon GB, Miller LR. Studies on the bronchial counterpart of the Kultschitzky (argentaffin) cell and innervation of bronchial glands. J Ultrastruct Res. 1965 Jun; 12(5):668-86.
    [4] Pearse AG. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem. 1969 May; 17(5):303-13.
    [5] Keith IM, Wiley LA, Will JA. Pulmonary neuroendocrine cells: decreased serotonin fluorescence and stable argyrophil-cell numbers in acute hypoxia. Cell Tissue Res. 1981; 214(1):201-5.
    [6] Lauweryns JM, Cokelaere M, Theunynck P, Deleersnyder M. Neuroepithelial bodies in mammalian respiratory mucosa: light optical, histochemical an ultrastructural studies. Chest. 1974 Apr; 65:Suppl:22-29.
    [7] Owman C, Rüdeberg C. Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine. Z Zellforsch Mikrosk Anat. 1970; 107(4):522-50.
    [8] Falck B, Owman C. 5-hydroxytryptamine and related amines in endocrine cell systems. Adv Pharmacol. 1968; 6:211-31.
    [9] Eaton JA Jr, Fedde MR. Identification of two populations of biogenic amine-containg cells in the mouse lung. Cell Tissue Res. 1977 Jan 12; 176(2):243-9.
    [10] Lauweryns JM, Cokelaere M, Deleersynder M, Liebens M. Intrapulmonary neuro-epithelial bodies in newborn rabbits. Influence of hypoxia, hyperoxia, hypercapnia, nicotine, reserpine, L-DOPA and 5-HTP. Cell Tissue Res.1977 Sep 5; 182(4):425-40.
    [11] Cutz E, Chan W, Track NS. Bombesin, calcitonin and leu-enkephalin immunoreactivity in endocrine cells of human lung.Experientia. 1981 Jul 15; 37(7):765-7.
    [12] Cutz E, Conen PE. Endocrine-like cells in human fetal lungs: an electron microscopic study. Anat Rec. 1972 May; 173(1):115-22.
    [13] Cutz E, Chan W, Sonstegard KS. Identification of neuro-epithelial bodies in rabbit fetal lungs by scanning electron microscopy: a correlative light, transmission and scanning electron microscopic study. Anat Rec. 1978 Nov; 192(3):459-66.
    [14] Cutz E, Chan W, Wong V, Conen PE. Endocrine cells in rat fetal lungs. Ultrastructural and histochemical study. Lab Invest. 1974 Apr; 30(4):458-64.
    [15] Weichselbaum M, Sparrow MP, Hamilton EJ, Thompson PJ, Knight DA. A confocal microscopic study of solitary pulmonary neuroendocrine cells in human airway epithelium. Respir Res. 2005 Oct 10; 6:115.
    [16] Larson SD, Schelegle ES, Hyde DM, Plopper CG. The three-dimensional distribution of nerves along the entire intrapulmonary airway tree of the adult rat and the anatomical relationship between nerves and neuroepithelial bodies. Am J Respir Cell Mol Biol. 2003 May; 28(5):592-9.
    [17] Van Lommel A, Bollé T, Fannes W, Lauweryns JM. The pulmonary neuroendocrine system: the past decade. Arch Histol Cytol. 1999 Mar; 62(1):1-16.
    [18] Van Lommel A.Pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEB): chemoreceptors and regulators of lung development. Paediatr Respir Rev. 2001 Jun; 2(2):171-6.
    [19] Adriaensen D, Brouns I, Van Genechten J, Timmermans JP. Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors. Anat Rec A Discov Mol Cell Evol Biol. 2003 Jan; 270(1):25-40.
    [20] Cutz E. Neuroendocrine cells of the lung. An overview of morphologiccharacteristics and development. Exp Lung Res. 1982 Nov; 3(3-4):185-208.
    [21] van Lommel A, Lauweryns JM. Neuroepithelial bodies in the Fawn Hooded rat lung: morphological and neuroanatomical evidence for a sensory innervation. J Anat. 1993 Dec; 183:553-66.
    [22] Kusindarta DL, Atoji Y, Yamamoto Y. Nerve plexuses in the trachea and extrapulmonary bronchi of the rat. Arch Histol Cytol. 2004 Mar;67(1):41-55.
    [23] Cutz E, Jackson A. Neuroepithelial bodies as airway oxygen sensors. Respir Physiol. 1999 Apr 1; 115(2):201-14.
    [24] Van Lommel A, Lauweryns JM, Berthoud HR. Pulmonary neuroepithelial bodies are innervated by vagal afferent nerves: an investigation with in vivo anterograde DiI tracing and confocal microscopy. Anat Embryol (Berl). 1998 Apr; 197(4):325-30.
    [25] Linnoila RI. Functional facets of the pulmonary neuroendocrine system. Lab Invest. 2006 May; 86(5):425-44.
    [26] Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983 Jul 14-20; 304(5922):129-35.
    [27] Morris HR, Panico M, Etienne T, Tippins J, Girgis SI, MacIntyre I. Isolation and characterization of human calcitonin gene-related peptide. Nature. 1984 Apr 19-25; 308(5961):746-8.
    [28] Burg M, Zahm DS, Knuepfer MM. Intrathecal capsaicin enhances one-kidney renal wrap hypertension in the rat. J Auton Nerv Syst. 1994 Dec 15; 50(2):189-99.
    [29] Seybold VS, Galeazza MT, Garry MG, Hargreaves KM. Plasticity of calcitonin gene related peptide neurotransmission in the spinal cord during peripheral inflammation. Can J Physiol Pharmacol. 1995 Jul; 73(7):1007-14.
    [30] Gardiner SM, March JE, Kemp PA, Bennett T. Influence of CGRP (8-37), but not adrenomedullin (22-52), on the haemodynamic responses tolipopolysaccharide in conscious rats. Br J Pharmacol. 1999 Aug; 127(7):1611-8.
    [31] Hirata Y, Takagi Y, Takata S, Fukuda Y, Yoshimi H, Fujita T. Calcitonin gene-related peptide receptor in cultured vascular smooth muscle and endothelial cells. Biochem Biophys Res Commun. 1988 Mar 30; 151(3):1113-21.
    [32] Vesely DL, Overton RM, McCormick MT, Schocken DD. Atrial natriuretic peptides increase calcitonin gene-related peptide within human circulation. Metabolism. 1997 Jul; 46(7):818-25.
    [33] Sakuta H, Inaba K, Muramatsu S. Calcitonin gene-related peptide enhances cytokine-induced IL-6 production by fibroblast. Cell Immunol. 1995 Oct 1; 165(1):20-5.
    [34] Bracci-Laudiero L, Aloe L, Caroleo MC, Buanne P, Costa N, Starace G, Lundeberg T. Endogenous NGF regulates CGRP expression in human monocytes, and affects HLA-DR and CD86 expression and IL-10 production. Blood. 2005 Nov 15; 106(10):3507-14.
    [35] Wang X, Fiscus RR, Tang Z, Yang L, Wu J, Fan S, Mathews HL. CGRP in the serum of endotoxin-treated rats suppresses lymphoproliferation. Brain Behav Immun. 1994 Dec; 8(4):282-92.
    [36] Sakuta H, Inaba K, Muramatsu S. Calcitonin gene-related peptide enhances apoptosis of thymocytes. J Neuroimmunol. 1996 Jul; 67(2):103-9.
    [37] Stahlman MT, Gray ME. Immunogold EM localization of neurochemicals in human pulmonary neuroendocrine cells. Microsc Res Tech. 1997 Apr 1; 37(1):77-91.
    [38] Brouns I, Van Genechten J, Hayashi H, Gajda M, Gomi T, Burnstock G, Timmermans JP, Adriaensen D. Dual sensory innervation of pulmonary neuroepithelial bodies. Am J Respir Cell Mol Biol. 2003 Mar; 28(3):275-85.
    [39] Brouns I, De Proost I, Pintelon I, Timmermans JP, Adriaensen D. Sensory receptors in the airways: neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial bodyinnervation. Auton Neurosci. 2006 Jun 30; 126-127:307-19.
    [40] Brouns I, Van Genechten J, Scheuermann DW, Timmermans JP, Adriaensen D. Neuroepithelial bodies: a morphologic substrate for the link between neuronal nitric oxide and sensitivity to airway hypoxia? J Comp Neurol. 2002 Aug 5; 449(4):343-54.
    [41] Wang YY, Cutz E. Localization of cholecystokinin-like peptide in neuroendocrine cells of mammalian lungs: a light and electron microscopic immunohistochemical study. Anat Rec. 1993 May; 236(1):198-205.
    [42] Stahlman MT, Gray ME. Colocalization of peptide hormones in neuroendocrine cells of human fetal and newborn lungs: an electron microscopic study. Anat Rec. 1993 May; 236(1):206-12.
    [43] Seldeslagh KA, Lauweryns JM. Endothelin in normal lung tissue of newborn mammals: immunocytochemical distribution and co-localization with serotonin and calcitonin gene-related peptide. J Histochem Cytochem. 1993 Oct; 41(10):1495-502.
    [44] Sorokin SP, Hoyt RF Jr, Grant MM. Development of neuroepithelial bodies in fetal rabbit lungs. I. Appearance and functional maturation as demonstrated by high-resolution light microscopy and formaldehyde- induced fluorescence. Exp Lung Res. 1982 Nov; 3(3-4):237-59.
    [45] Widdicombe J. Airway receptors. Respir Physiol. 2001 Mar; 125(1-2):3-15.
    [46] Lauweryns JM, Cokelaere M, Lerut T, Theunynck P. Cross-circulation studies on the influence of hypoxia and hypoxaemia on neuro-epithelial bodies in young rabbits. Cell Tissue Res. 1978 Oct 30; 193(3):373-86.
    [47] Keith IM, Wiley LA, Will JA. Pulmonary neuroendocrine cells: decreased serotonin fluorescence and stable argyrophil-cell numbers in acute hypoxia. Cell Tissue Res. 1981; 214(1):201-5.
    [48] Lauweryns JM, Cokelaere M. Hypoxia-sensitive neuro-epithelial bodies. Intrapulmonary secretory neuroreceptors, modulated by the CNS. Z Zellforsch Mikrosk Anat. 1973 Dec 21; 145(4):521-40.
    [49] Youngson C, Nurse C, Yeger H, Curnutte JT, Vollmer C, Wong V, Cutz E. Immunocytochemical localization on O2-sensing protein (NADPH oxidase)in chemoreceptor cells. Microsc Res Tech. 1997 Apr 1; 37(1):101-6.
    [50] Fu XW, Wang D, Nurse CA, Dinauer MC, Cutz E. NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci U S A. 2000 Apr 11; 97(8):4374-9.
    [51] Youngson C, Nurse C, Yeger H, Cutz E. Oxygen sensing in airway chemoreceptors. Nature. 1993 Sep 9; 365(6442):153-5.
    [52] Kazemian P, Stephenson R, Yeger H, Cutz E. Respiratory control in neonatal mice with NADPH oxidase deficiency. Respir Physiol. 2001 Jun; 126(2):89-101.
    [53] Thompson RJ, Farragher SM, Cutz E, Nurse CA. Developmental regulation of O(2) sensing in neonatal adrenal chromaffin cells from wild-type and NADPH-oxidase-deficient mice. Pflugers Arch. 2002 Jul; 444(4):539-48.
    [54] Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, Weir EK. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci U S A. 1999 Jul 6; 96(14):7944-9.
    [55] Cutz E, Yeger H, Pan J. Pulmonary neuroendocrine cell system in pediatric lung disease-recent advances. Pediatr Dev Pathol. 2007 Nov-Dec; 10(6):419-35.
    [56] Sorokin SP, Hoyt RF Jr, Shaffer MJ. Ontogeny of neuroepithelial bodies: correlations with mitogenesis and innervation. Microsc Res Tech. 1997 Apr 1; 37(1):43-61.
    [57] Stahlman MT, Gray ME. Ontogeny of neuroendocrine cells in human fetal lung. I. An electron microscopic study. Lab Invest. 1984 Oct; 51(4):449-63.
    [58] Avadhanam KP, Plopper CG, Pinkerton KE. Mapping the distribution of neuroepithelial bodies of the rat lung. A whole-mount immunohistochemical approach. Am J Pathol. 1997 Mar; 150(3):851-9.
    [59] Speirs V, Wang YV, Yeger H, Cutz E. Isolation and culture of neuroendocrine cells from fetal rabbit lung using immunomagnetic techniques. Am J Respir Cell Mol Biol. 1992 Jan; 6(1):63-7.
    [60] Yeger H, Speirs V, Youngson C, Cutz E. Pulmonary neuroendocrine cells in cultures of human infant airway mucosa from postmortem tissues. Am J Respir Cell Mol Biol. 1996 Aug; 15(2):232-6.
    [61] Ito T, Nogawa H, Udaka N, Kitamura H, Kanisawa M. Development of pulmonary neuroendocrine cells of fetal hamster in explant culture. Lab Invest. 1997 Nov; 77(5):449-57.
    [62] Perl AK, Wert SE, Nagy A, Lobe CG, Whitsett JA. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci U S A. 2002 Aug 6; 99(16):10482-7.
    [63] Li K, Nagalla SR, Spindel ER. A rhesus monkey model to characterize the role of gastrin-releasing peptide (GRP) in lung development. Evidence for stimulation of airway growth. J Clin Invest. 1994 Oct; 94(4):1605-15.
    [64] Sunday ME, Hua J, Dai HB, Nusrat A, Torday JS. Bombesin increases fetal lung growth and maturation in utero and in organ culture. Am J Respir Cell Mol Biol. 1990 Sep; 3(3):199-205.
    [65] King KA, Hua J, Torday JS, Drazen JM, Graham SA, Shipp MA, Sunday ME. CD10/neutral endopeptidase 24.11 regulates fetal lung growth and maturation in utero by potentiating endogenous bombesin-like peptides. J Clin Invest. 1993 May; 91(5):1969-73.
    [66] McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 2003; 53:1–114.
    [67] Miller LA, Wert SE, Whitsett JA. Immunolocalization of sonic hedgehog (Shh) in developing mouse lung. J Histochem Cytochem. 2001 Dec; 49(12):1593-604.
    [68] Unger S, Copland I, Tibboel D, Post M. Down-regulation of sonic hedgehog expression in pulmonary hypoplasia is associated with congenital diaphragmatic hernia. Am J Pathol. 2003 Feb; 162(2):547-55.
    [69] Perl AK, Tichelaar JW, Whitsett JA. Conditional gene expression in the respiratory epithelium of the mouse. Transgenic Res. 2002 Feb; 11(1):21-9.
    [70] Boers JE, den Brok JL, Koudstaal J, Arends JW, Thunnissen FB. Number and proliferation of neuroendocrine cells in normal human airwayepithelium. Am J Respir Crit Care Med. 1996 Sep; 154:758-63.
    [71] Schuller HM, Plummer HK 3rd, Jull BA. Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat Rec A Discov Mol Cell Evol Biol. 2003 Jan; 270(1):51-8.
    [72] Willett CG, Shahsafei A, Graham SA, Sunday ME. CD10/neutral endopeptidase inhibition augments pulmonary neuroendocrine cell hyperplasia in hamsters treated with diethylnitrosamine and hyperoxia. Am J Respir Cell Mol Biol. 1999 Jul; 21(1):13-20.
    [73] Emanuel RL, Torday JS, Mu Q, Asokananthan N, Sikorski KA, Sunday ME. Bombesin-like peptides and receptors in normal fetal baboon lung: roles in lung growth and maturation. Am J Physiol. 1999 Nov; 277:1003-17.
    [74] Geiser T, Jarreau PH, Atabai K, Matthay MA. Interleukin-1beta augments in vitro alveolar epithelial repair. Am J Physiol Lung Cell Mol Physiol. 2000 Dec; 279(6):1184-90.
    [75] Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH. Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol. 2001 Jun; 24(6):662-70.
    [76] Hoyt RF Jr, McNelly NA, McDowell EM, Sorokin SP. Neuroepithelial bodies stimulate proliferation of airway epithelium in fetal hamster lung. Am J Physiol. 1991 Apr; 260:234-40.
    [77] Ito T, Ogura T, Ogawa N, Udaka N, Hayashi H, Inayama Y, Yazawa T, Kitamura H. Modulation of pulmonary neuroendocrine cells in idiopathic interstitial pneumonia. Histol Histopathol. 2002 Oct; 17(4):1121-7.
    [78] Sunday ME, Shan L, Subramaniam M. Immunomodulatory functions of the diffuse neuroendocrine system: implications for bronchopulmonary dysplasia. Endocr Pathol. 2004 Summer; 15(2):91-106.
    [79] Ijsselstijn H, Gaillard JL, de Jongste JC, Tibboel D, Cutz E. Abnormal expression of pulmonary bombesin-like peptide immunostaining cells in infants with congenital diaphragmatic hernia. Pediatr Res. 1997 Nov; 42(5):715-20.
    [80] Pan J, Copland I, Post M, Yeger H, Cutz E. Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am J Physiol Lung Cell Mol Physiol. 2006 Jan; 290(1):185-93.
    [81] Cullen A, Van Marter LJ, Allred EN, Moore M, Parad RB, Sunday ME. Urine bombesin-like peptide elevation precedes clinical evidence of bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2002 Apr 15; 165(8):1093-7.
    [82] Sunday ME, Yoder BA, Cuttitta F, Haley KJ, Emanuel RL. Bombesin-like peptide mediates lung injury in a baboon model of bronchopulmonary dysplasia. J Clin Invest. 1998 Aug 1; 102(3):584-94.
    [83] Subramaniam M, Sugiyama K, Coy DH, Kong Y, Miller YE, Weller PF, Wada K, Wada E, Sunday ME. Bombesin-like peptides and mast cell responses: relevance to bronchopulmonary dysplasia? Am J Respir Crit Care Med. 2003 Sep 1; 168(5):601-11.
    [84] Adriaensen D, Timmermans JP. Purinergic signalling in the lung: important in asthma and COPD? Curr Opin Pharmacol. 2004 Jun; 4(3):207-14.
    [85] Tsukiji J, Sango K, Udaka N, Kageyama H, Ito T, Saito H, Horie H, Inoue S, Kitamura H, Hagiwara E, Ikeda H, Okubo T, Ishigatsubo Y. Long-term induction of beta-CGRP mRNA in rat lungs by allergic inflammation. Life Sci. 2004 Nov 26; 76(2):163-77.
    [86] Stanislawski EC, Hernández-García J, de la Mora-Torres MC, Abraján-Polanco E. Lung neuroendocrine structures. Topography, morphology, composition and relation with intrinsic asthma (non-immune). Arch Invest Med (Mex). 1981; 12(4):559-77.
    [87] Bousbaa H, Fleury-Feith J. Effects of a long-standing challenge on pulmonary neuroendocrine cells of actively sensitized guinea pigs. Am Rev Respir Dis. 1991 Sep; 144:714-7.
    [88] Aita K, Doi M, Tanno K, Oikawa H, Myo-Thaik-Oo, Ohashi N, Misawa S. Pulmonary neuroendocrine cell distribution in sudden infant death syndrome. Leg Med (Tokyo). 2000 Oct; 2(3):134-42.
    [89] Cutz E, Perrin DG, Hackman R, Czegledy-Nagy EN. Maternal smoking and pulmonary neuroendocrine cells in sudden infant death syndrome. Pediatrics. 1996 Oct; 98:668-72.
    [90] Perrin DG, McDonald TJ, Cutz E. Hyperplasia of bombesin- immunoreactive pulmonary neuroendocrine cells and neuroepithelial bodies in sudden infant death syndrome. Pediatr Pathol. 1991 May-Jun; 11(3):431-47.
    [91] Gillan JE, Curran C, O'Reilly E, Cahalane SF, Unwin AR. Abnormal patterns of pulmonary neuroendocrine cells in victims of sudden infant death syndrome. Pediatrics. 1989 Nov; 84(5):828-34.
    [92] Cutz E, Ma TK, Perrin DG, Moore AM, Becker LE. Peripheral chemoreceptors in congenital central hypoventilation syndrome. Am J Respir Crit Care Med. 1997 Jan; 155(1):358-63.
    [93] Gosney JR. Pulmonary endocrine cells in native Peruvian guinea-pigs at low and high altitude. J Comp Pathol. 1990 Jan; 102(1):7-12.
    [94] Taylor W. Pulmonary argyrophil cells at high altitude. J Pathol. 1977 Jul; 122(3):137-44.
    [95] Coraux C, Nawrocki-Raby B, Hinnrasky J, Kileztky C, Gaillard D, Dani C, Puchelle E. Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol. 2005 Feb; 32(2):87-92.
    [96] Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990 Dec; 110(4):1001-20.
    [97] Liu X, Driskell RR, Engelhardt JF. Stem cells in the lung. Methods Enzymol. 2006; 419:285-321.
    [98] Otto WR. Lung epithelial stem cells. J Pathol. 2002 Jul; 197(4):527-35.
    [99] Engelhardt JF. Stem cell niches in the mouse airway. Am J Respir Cell Mol Biol. 2001 Jun; 24(6):649-52.
    [100] Reynolds SD, Hong KU, Giangreco A, Mango GW, Guron C, Morimoto Y, Stripp BR. Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol LungCell Mol Physiol. 2000 Jun; 278(6):1256-63.
    [101] Reynolds SD, Giangreco A, Power JH, Stripp BR. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol. 2000 Jan; 156(1):269-78.
    [102] Pan J, Yeger H, Cutz E. Neuronal developmental marker FORSE-1 identifies a putative progenitor of the pulmonary neuroendocrine cell lineage during lung development. J Histochem Cytochem. 2002 Dec; 50(12):1567-78.
    [103] Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol. 2001 Jun; 24(6):671-81.
    [104] Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol. 2002 Jul; 161(1):173-82.
    [105] Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH. Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol. 2001 Jun; 24(6):662-70.
    [106] Reynolds SD, Hong KU, Giangreco A, Mango GW, Guron C, Morimoto Y, Stripp BR. Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol. 2000 Jun; 278(6):L1256-63.
    [107] Reynolds SD, Giangreco A, Power JH, Stripp BR. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol. 2000 Jan; 156(1):269-78.
    [108] Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol. 2001 Jun; 24(6):671-81.
    [109] Stripp BR, Maxson K, Mera R, Singh G. Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. Am J Physiol. 1995 Dec; 269:791-9.
    [110] Stevens TP, McBride JT, Peake JL, Pinkerton KE, Stripp BR. Cell proliferation contributes to PNEC hyperplasia after acute airway injury. Am J Physiol. 1997 Mar; 272:486-93.
    [111] Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol. 2002 Jul; 161(1):173-82.
    [112] Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005 Jun 17; 121(6):823-35.
    [113] Ingham PW , McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001 Dec 1; 15(23):3059-87.
    [114] Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001 May 17; 411(6835):349-54.
    [115] Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol. 2000 Dec; 20(23):9055-67.
    [116] Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999 Jan; 22(1):103-14.
    [117] Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003 Mar 20; 422(6929):313-7.
    [118] Watkins DN, Berman DM, Baylin SB. Hedgehog signaling: progenitor phenotype in small-cell lung cancer. Cell Cycle. 2003 May-Jun; 2(3):196-8.
    [119] Cullen A, Van Marter LJ, Allred EN, Moore M, Parad RB, Sunday ME. Urine bombesin-like peptide elevation precedes clinical evidence of bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2002 Apr 15; 165(8):1093-7.
    [120] Gosney JR. Pulmonary neuroendocrine cell system in pediatric and adultlung disease. Microsc Res Tech. 1997 Apr 1; 37(1):107-13.
    [121] Gosney JR. Pulmonary Endocrine Pathology. Butterworth-Heinemann Ltd: Oxford, 1992.
    [122] Aguayo SM, Miller YE, Waldron JA Jr, Bogin RM, Sunday ME, Staton GW Jr, Beam WR, King TE Jr. Brief report: idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells and airways disease. N Engl J Med. 1992 Oct 29; 327(18):1285-8.
    [123] Adams H, Brack T, Kestenholz P, Vogt P, Steinert HC, Russi EW. Diffuse idiopathic neuroendocrine cell hyperplasia causing severe airway obstruction in a patient with a carcinoid tumor. Respiration. 2006; 73(5):690-3.
    [124] Felton WL, Liebow AA, Lindskog GE. Peripheral and multiple bronchial adenomas. Cancer. 1953 May; 6(3):555-67.
    [125] Miller RR, Müller NL. Neuroendocrine cell hyperplasia and obliterative bronchiolitis in patients with peripheral carcinoid tumors. Am J Surg Pathol. 1995 Jun; 19(6):653-8.
    [126] Fessler MB, Cool CD, Miller YE, Schwarz MI, Brown KK. Idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells in a patient with acromegaly. Respirology. 2004 Jun; 9(2):274-7.
    [127] Cohen AJ, King TE Jr, Gilman LB, Magill-Solc C, Miller YE. High expression of neutral endopeptidase in idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells. Am J Respir Crit Care Med. 1998 Nov; 158:1593-9.
    [128] Deterding RR, Pye C, Fan LL, Langston C. Persistent tachypnea of infancy is associated with neuroendocrine cell hyperplasia. Pediatr Pulmonol. 2005 Aug; 40(2):157-65.
    [129] Gosney JR. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia as a precursor to pulmonary neuroendocrine tumors. Chest. 2004 May; 125(5 Suppl):108.
    [130] Poletti V, Zompatori M, Cancellieri A. Clinical spectrum of adult chronic bronchiolitis. Sarcoidosis Vasc Diffuse Lung Dis. 1999 Sep; 16(2):183-96.
    [131] Ruffini E, Bongiovanni M, Cavallo A, Filosso PL, Giobbe R, Mancuso M, Molinatti M, Oliaro A.The significance of associated pre-invasive lesions in patients resected for primary lung neoplasms. Eur J Cardiothorac Surg. 2004 Jul; 26(1):165-72.
    [132] Gmelich JT, Bensch KG, Liebow AA. Cells of Kultschitzky type in bronchioles and their relation to the origin of peripheral carcinoid tumor. Lab Invest. 1967 Jul; 17(1):88-98.
    [133] Bensch KG, Corrin B, Pariente R, Spencer H. Oat-cell carcinoma of the lung. Its origin and relationship to bronchial carcinoid. Cancer. 1968 Dec; 22(6):1163-72.
    [134] Hattori S, Matsuda M, Tateishi R, Tatsumi N, Terazawa T. Oat-cell carcinoma of the lung containing serotonin granules. Gann. 1968 Apr; 59(2):123-9.
    [135] Sheard JD, Gosney JR. Endocrine cells in tumour-bearing lungs. Thorax. 1996 Jul; 51(7):721-6.
    [136] Gould VE, Linnoila RI, Memoli VA, Warren WH. Neuroendocrine components of the bronchopulmonary tract: hyperplasias, dysplasias, and neoplasms. Lab Invest. 1983 Nov; 49(5):519-37.
    [137] Schuller HM, Becker KL, Witschi HP. An animal model for neuroendocrine lung cancer. Carcinogenesis. 1988 Feb; 9(2):293-6.
    [138] Sunday ME, Willett CG, Patidar K, Graham SA. Modulation of oncogene and tumor suppressor gene expression in a hamster model of chronic lung injury with varying degrees of pulmonary neuroendocrine cell hyperplasia. Lab Invest. 1994 Jun; 70(6):875-88.
    [139] Schuller HM, Witschi HP, Nylen E, Joshi PA, Correa E, Becker KL. Pathobiology of lung tumors induced in hamsters by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and the modulating effect of hyperoxia. Cancer Res. 1990 Mar 15; 50(6):1960-5.
    [140] Sunday ME, Haley KJ, Sikorski K, Graham SA, Emanuel RL, Zhang F, Mu Q, Shahsafaei A, Hatzis D. Calcitonin driven v-Ha-ras induces multilineage pulmonary epithelial hyperplasias and neoplasms. Oncogene. 1999 Jul 29;18(30):4336-47.
    [141] Minna JD, Fong K, Z?chbauer-Müller S, Gazdar AF. Molecular pathogenesis of lung cancer and potential translational applications. Cancer J. 2002 May-Jun; 8 Suppl 1:S41-6.
    [142] Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell. 2003 Sep; 4(3):181-9.
    [143] Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet. 1994 Aug; 7(4):480-4.
    [144] Meuwissen R, Berns A. Mouse models for human lung cancer. Genes Dev. 2005 Mar 15; 19(6):643-64.
    [145] Classon M, Dyson N.p107 and p130: versatile proteins with interesting pockets. Exp Cell Res. 2001 Mar 10; 264(1):135-47.
    [146] Wikenheiser-Brokamp KA. Rb family proteins differentially regulate distinct cell lineages during epithelial development. Development. 2004 Sep; 131(17):4299-310.
    [147] Anbazhagan R, Tihan T, Bornman DM, Johnston JC, Saltz JH, Weigering A, Piantadosi S, Gabrielson E. Classification of small cell lung cancer and pulmonary carcinoid by gene expression profiles. Cancer Res. 1999 Oct 15; 59(20):5119-22.
    [148] McDowell EM, Trump BF. Pulmonary smell cell carcinoma showing tripartite differentiation in individual cells. Hum Pathol. 1981 Mar; 12(3):286-94.
    [149] Linnoila RI. Spectrum of neuroendocrine differentiation in lung cancer cell lines featured by cytomorphology, markers, and their corresponding tumors. J Cell Biochem Suppl 1996; 24:92–106.
    [150] Linnoila RI, Piantadosi S, Ruckdeschel JC. Impact of neuroendocrine differentiation in non-small cell lung cancer. The LCSG experience. Chest. 1994 Dec; 106(6 Suppl):367-71.
    [151] Linnoila RI, Naizhen X, Meuwissen R, Berns A, DeMayo FJ. Mouse lungneuroendocrine carcinomas: distinct morphologies, same transcription factors. Exp Lung Res. 2005 Jan-Feb; 31(1):37-55.
    [152] Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M, Baylin SB, Ball DW. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature. 1997 Apr 24; 386(6627):852-5.
    [153] Ito T, Udaka N, Yazawa T, Okudela K, Hayashi H, Sudo T, Guillemot F, Kageyama R, Kitamura H. Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development. 2000 Sep; 127(18):3913-21.
    [154] Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A. 2001 Nov 20; 98(24):13790-5.
    [155] Tavakoli R, Buvry A, Le Gall G, Barbet JP, Houssin D, Lockhart A, Frossard N. In vitro bronchial hyperresponsiveness after lung transplantation in the rat. Am J Physiol. 1992 Mar; 262: 322-6.
    [156] Buvry A, Garbarg M, Dimitriadou V, Rouleau A, Newlands GF, Tavakoli R, Poaty V, Lockhart A, Schwartz JC, Frossard N. Phenotypic and quantitative changes in mast cells after syngeneic unilateral lung transplantation in the rat. Clin Sci (Lond). 1996 Sep; 91(3):319-27.
    [157] Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A. 1994 Apr 26; 91(9):3739-43.
    [158] Buvry A, Yang YR, Tavakoli R, Frossard N. Calcitonin gene-related peptide-immunoreactive nerves and neuroendocrine cells after lung transplantation in the rat. Am J Respir Cell Mol Biol. 1999 Jun; 20(6):1268-73.
    [159] Wharton J, Polak JM, Bloom SR, Ghatei MA, Solcia E, Brown MR, PearseAG. Bombesin-like immunoreactivity in the lung. Nature. 1978 Jun 29; 273(5665):769-70.
    [160] Pan J, Yeger H, Cutz E. Innervation of pulmonary neuroendocrine cells and neuroepithelial bodies in developing rabbit lung. J Histochem Cytochem 2004 Mar; 52:379–389.
    [161] Tay SS, Wong WC, Ling EA. An ultrastructural study of the effects of right cervical sympathectomy on the sinuatrial and atrioventricular nodes in the heart of the monkey (Macaca fascicularis). J Anat. 1984 Oct; 139 :449-61.
    [162] McQueen DS, Donaldson K, Bond SM, McNeilly JD, Newman S, Barton NJ, Duffin R. Bilateral vagotomy or atropine pre-treatment reduces experimental diesel-soot induced lung inflammation. Toxicol Appl Pharmacol. 2007 Feb 15; 219(1):62-71.
    [163] Dakhama A, Larsen GL, Gelfand EW. Calcitonin gene-related peptide: role in airway homeostasis. Curr Opin Pharmacol. 2004 Jun; 4(3):215-20.
    [164] Sakaguchi M, Inaishi Y, Kashihara Y, Kuno M. Degeneration of motor nerve fibers enhances the expression of calcitonin gene-related peptide in rat sensory neurons. Neurosci Lett. 1992 Mar 16; 137(1):61-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700