用户名: 密码: 验证码:
超超临界机组动态模型与控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力需求的不断增长,大容量、高参数、高自动化技术的超超临界机组已经成为我国主要建设的火电机组。火电单元机组是一类具有典型非线性特征的多变量被控对象,它具有大迟延、大惯性、强耦合以及参数的时变性等特点。并且随着电力工业可持续发展战略的实施,电网综合自动化对单元机组协调控制系统的性能提出了更高的要求。建立单元机组模型并深入研究其动态特性是协调控制系统优化的工作基础。本文研究了超超临界直流炉的动态建模以及将线性自抗扰控制引入火电机组协调控制系统的解耦控制。
     论文的研究内容包括以下几个方面。
     提出一种基于稀疏化核偏最小二乘法的软测量方法。在不同状态下的水和水蒸气的热力性质差异很大,特别是在临界区表现出很强的非线性。基于一定范围内水和水蒸气的本质特性,通过该方法对工质的热力状态参数进行软测量,并将其应用于直流锅炉的机理建模。
     建立直流锅炉蒸发受热面和过热器的动态模型,通过仿真实验和运行数据分析得到模型中各参数随负荷变化的规律。根据水和水蒸气的热力性质,确定划分汽水区域的标准,通过求解锅炉蒸发受热面物性代数方程、动量和能量微分方程,得到工质参数沿受热面流程的数值解。金属的蓄热占超超临界直流锅炉的蓄热的主要部分,将锅炉金属蓄热表达式转化为随中间点焓值和主汽压力变化简便的计算式。利用风量氧量构造的热量信号对制粉系统的惯性系数和迟延时间进行闭环辨识。
     研究超超临界机组各个组成部分的特点,依据基本物质平衡和能量平衡关系建立各个部分机理模型,通过合理简化,获得具有解析形式的模型表达式。通过仿真实验和机组运行数据的对比分析,验证了模型的准确性。
     提出一种基于线性自抗扰控制器的超超临界单元机组三输入三输出协调控制系统。得到了典型热工对象的基于降阶观测器的线性自抗扰控制系统的等效控制结构形式,根据改进的D-分割法,确定出控制参数域。在控制器与机组对象间设计了全解耦补偿器,可实现锅炉侧与汽机侧、燃料侧与给水侧的解耦,保证系统的全局控制品质,仿真研究验证了该方法的有效性。
With the increasing demand for electricity in China, Ultra supercritical units which have large capacity, high parameters and advance automation currently accounted for the major part in thermal power construction. The thermal power unit is a kind of multivariable nonlinear plant with large time delay, large inertia, strong coupling, time-varying parameters characteristics. With the implementation of the strategy of sustainable development in power industry, the power grid integrated automation system has put forward higher requirements to coordinated control system (CCS) of power unit. Therefore, building the power unit non-linear model and further research of its dynamic characteristics are the basis of coordinated control system optimization. This paper studies the dynamics modeling of ultra-supercritical once-through boiler, and linear ADRC will be introduced to decoupling control for thermal power unit coordinated control system.
     The main contribution of this dissertation are summarized as follows:
     According to the properties of water and steam within limits, Sparse kernel partial least squares (SKPLS) method was used for soft measurement of the thermal properties of the working medium in relevant subcooling, evaporating and superheating section. Under different working conditions the thermodynamic properties of water and steam varies greatly, especially in the region3of IAPWS-IF97, which shows strong nonlinearity. The method was applied to mechanism modeling of the once-through boiler.
     The heat storage of boiler and the coal-pulverizing system's inertia coefficient and time-delay were important affecting factors for boiler load instruction variation rate. The momentum and energy differential equations were coupled with the algebraic equations of properties of water and steam, approaches for solutions of the coupled algebraic and differential equations were presented, water and steam parameters profiles along it's journey were settled out. According to the boundary equations of IAPWS-IF97, the evaporating heating surface was divided into3sections,such as subcooling, evaporating and superheating section. The model of the evaporating heating surface and the superheater was built through the mechanism analysis, the calculation result shows that metal heat storage accounts for the main part of ultra supercritical boiler. The metal heat storage was substitute for the boilers' in the simplified model, the released heat was calculated by knowing the amount air and oxygen concerned, which was used to identified the inertia coefficient and delay time of coal-pulverizing system in closed loop.
     Studying the characteristic of various components of ultra-supercritical unit, according to the mass and energy balance to build up the mechanistic model,using the operating parameters in the vicinity of their units to simplify and fitting the model, and to obtain the analytic model of the form of expression. Through simulation experiments and comparative analysis of plant running data to verify the accuracy of the model.
     Research on linear ADRC for the typical thermal process--first order plus dead-time, the linear ADRC equivalent control system is presented, and analysis the Stability of the closed-loop system in the linear feedback control, the stability region of the controller parameters were determined on the basis of the improved D-partition approach. For MIMO nonlinear unit coordinated control system, the linear ADRC was introduced for each decoupled subsystem closed-loop controller design, the method is applied for1000MW ultra-supercritical unit coordinated system, simulation results show that the proposed coordinated control system is effective.
引文
[1]苗金,危师让.超临界火电技术及其发展[J].热力发电.2002,31(5):2-6.
    [2]杨丽君,孟子川.洁净煤发电技术的发展概况[J].黑龙江电力技术.2000,22(2):37-39.
    [3]姜成洋.超大容量超超临界燃煤发电机组的现状及发展趋势[J].锅炉制造,2006,7(3):46-49.
    [4]De Mello. F. P., Fellow. Dynamic Models for fossil fueled system units in power system studies[J]. IEEE Transactions on Power Systems.1991,6(2):78-83.
    [5]De Mello. F. P., Fellow. Boiler models for system dynamic performance studies[J]. IEEE Transactions on Power Systems.1991,6(1):66-73.
    [6]Astrom. K. J., Bell. R. D. Drum Boiler dynamics[J]. Automatica,2000(36): 363-378.
    [7]Astrom. K. J, Eklund. K. A simplified nonlinear model of a drum boiler turbine unit[J]. International Journal of Control,16(1972):145-169.
    [8]王娜哪,边小君,曹云娟.600MW级超临界与亚临界锅炉技术比较[J].浙江电力,2003(6):21-24.
    [9]黄锦涛,陈听宽.超临界直流锅炉蒸发受热面动态过程特性[J].西安交通大学学报,1999,33(9):71-75.
    [10]黄锦涛,陈听宽.超临界直流锅炉螺旋管圈水冷壁动态特性[J].锅炉技术,2000,31(1):13-14.
    [11]刘树清,余圣方,周龙.900MW超临界直流锅炉的数学模型与仿真研究[J].计算机仿真,2005,22(10):215-217.
    [12]陈立甲,王子才.自然循环锅炉汽水系统两相区数学模型的建立[J].系统仿真学报,2001,13(3):370-371.
    [13]王广军,吴彦历,徐家骏.电站锅炉两类受热面通用动态计算模型[J].东北电力大学学报,1995,15(1):18-23.
    [14]王广军,章臣樾.直流锅炉受热面运行分析及实时仿真通用数学模型[J].中国电机工程学报,1995,15(10):61-66.
    [15]王广军,章臣樾.锅炉单相面受热面动态过程建模与仿真的一种新方法[J].中国电机工程学报,1993,13(4):20-24.
    [16]刘远鹏.超临界压力锅炉汽水系统分布参数动态数学模型[硕士学位论文]重庆:重庆大学,2005.
    [17]章臣樾.锅炉动态特性及其数学模型.北京:水利电力出版社,1987.
    [18]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(一)[J].中国电机工程学报,1998,18(4):246-253.
    [19]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(二)[J].中国电机工程学报,1998,18(5):350-256.
    [20]范永胜.600MW超临界机组直流锅炉的全工况建模与仿真研究[D].东南大学博士学位论文,1997.
    [21]范永胜,程芳真,睢喆,等.600MW超临界直流锅炉动态特性研究[J].清华大学学报,2000,40(10):104-107.
    [22]范永胜,睢喆,姜学智,等.一种高精度的锅炉单相区段集总参数修正模型[J].中国电机工程学报,2000,20(1):50-54.
    [23]曾德良,闫姝,刘吉臻,等.直流锅炉简化非线性模型及仿真应用[J].中国电机工程学报,2012,32(11):126-134.
    [24]Mark.Enns. Comparison of dynamic models of superheater [J]. Transactions of the ASME. Series C.1962, No.4
    [25]Ray A, Bowman H F. A Nonlinear Dynamic Model of a Once-Through Subcritica steam Generator[J]. Transactions of ASME, Journal of dynamic System, Measurement, and Control.1976,13(5):332-339.
    [26]Smith L P. Modular Modeling System (MMS):A Code for the Dynamic Simulation of Fossil and Nuclear power plants.1983, EPRICS/NP-2989.
    [27]Adams J, Clark D R, Louis J R, et al. Mathematical model of once-through boiler dynamic [J]. IEEE Transations on Power Systems,1965,84:146-156.
    [28]Shinohara W, Koditschek D. A simplified model for a supercritical power plant[R]. Michigan:University of Michigan,1995.
    [29]W. Shinohara, D. E. Kotischek. A simplified model based supercritical power plant controller[C]. Proceeding of the 35th IEEE conference on decision and control,1996, (4):4486-4491.
    [30]Yutaka Suzuki, Pyong Sik Pak, Yoshihisa Uchida. Simulation of a Supercritical Once-through Boiler[J], Simulation,1979(9).
    [31]Yutaka. S, Pyong. S. P, Yoshihisa U. Simulation of a supercritical once-through boiler[J]. Electrical Engineering in Japan,1978,98(3):189-196.
    [32]Ali C, Ali G, S. Ali A M. A simulated model for a once-through boiler by parameter adjustment based on genetic algorithms [J]. Simulation Modeling Practice and Theory,2007,15(9):1029-1051.
    [33]李运泽,杨勇献.超临界直流锅炉长期动态特性的建模与仿真[J].热能动力工程,2003,18(1):23-26.
    [34]张小桃,倪维斗,李政等.基于主元分析与现场数据的过热气温动态建模研究[J].中国电机工程学报,2005,25(3):131-135.
    [35]陈立甲,伞冶,王子才,等.锅炉过热器系统机理与神经网络组合建模方法[J].中国电机工程学报,2001,21(1):73-76.
    [36]杨献勇.热工过程自动控制[M].北京:清华大学出版社,2001.
    [37]王东风,韩璞,曾德良.单元机组协调控制系统的发展和现状[J].中国电力,2002,35(11):69-73.
    [38]Tan W, Niu YG, Liu JZ. Robust control for a nonlinear boiler-turbine system[J]. Control Theory and Applications.1999,16(6):863-867.
    [39]Tan W, Marquez, HJ, Chen T W. Multivariable Robust Controller Design for a Boiler System. IEEE Transactions on Control Systems Technology,2002, 10(5):735-742
    [40]刘建江,李政,倪维斗,等.基于H∞理论的状态变量控制在主蒸汽温度控制中的应用[J].动力工程,2000,20(3):669-673.
    [41]刘建江,倪维斗,张法文,等.基于H∞理论的状态变量控制在再热温度控制中的应用[J].动力工程,2000,20(5):867-871.
    [42]恒庆海,鲁婧,周海,路阳.锅炉燃烧系统鲁棒控制研究[J].中南大学学报(自然科学版),2011,42(1):213-218.
    [43]Zhao H P, Li W, Taft C, at el. Robust control design for simultaneous control of throttle pressure and megawatt output in a power plant unit[C]. Proceedings of the 1999 IEEE International Conference on Control Applications. USA,1999,1: 802-807.
    [44]金以慧.过程控制[M]北京:清华大学出版社,1991.
    [45]朱齐丹,冷欣.基于约束预测控制的增压锅炉汽包水位系统研究[J].哈尔滨工程大学学报,2009,30(11):1246-1250.
    [46]Rovnak J A, Corlis R. Dynamic matrix based control of fossil power plants. IEEE Transactions on Energy Conversion[J].1991,6(2):320-326.
    [47]Li D, Chen T, Marquez, at el. Life extending control of boiler-turbine systems via model predictive methods[J]. Control Engineering Practice.2006,14(4): 319-326.
    [48]Hogg B W, Ei-Rabaie N H. Generalized predictive control of steam pressure in a drum boiler[J]. IEEE Transactions on Energy Conversion.1990,5(3). 485-492.
    [49]Hogg B W. Ei-Rabaie N H. Multivariable generalized predictive control of a boiler system[J]. IEEE Transactions on Energy Conversion.1991,6(2): 282-288.
    [50]Hogg B W, Lu S, Ni W D. Generalized predictive control of steam temperature control for power plant systems[J]. Proceedings of the IEEE International Conference on Power System Technology. Beijing, China,1994,266-270.
    [51]多模型块结构Laguerre函数预测控制在再热汽温系统中的应用[J].东南大学学报(自然科学版),2013,43(4):803-808.
    [52]张嘉英,武欣梅.大型单元机组锅炉燃烧系统改进型预测控制的研究[J].锅炉技术.2012,43(2):21-24.
    [53]朱红霞,沈炯,丁轲轲.单元机组负荷非线性预测控制及其仿真研究[J].中国电机工程学报,2006,26(23):72-77.
    [54]Isidori A. Nonlinear Control Systems (Second Edition) [M]. New York, Springer,1989.
    [55]魏乐,孙万云,韩璞.基于反馈线性化的二自由度协调控制系统设计[J].华北电力大学学报,2005,32(5):66-70.
    [56]葛友,李春文.反馈线性化在锅炉-汽轮机系统控制中的应用[J].清华大学学报(自然科学版),2001,41(7):125-128.
    [57]房方,刘吉臻,谭文.单元机组协调控制系统的非线性内模控制[J].中国电机工程学报,2004,24(4):195-199.
    [58]王东风.锅炉-汽轮机系统的逆系统控制方法[J].自动化与仪器仪表,2001,27(1):12-13.
    [59]Yu Daren, Xu Zhiqing. Nonlinear Coordinated Control of Drum boiler Power unit Based on Feedback Linearization[J]. IEEE Transactions on Energy Conversion.2005,20(1):204-210.
    [60]王军,李东海,薛亚丽.一种锅炉系统模型分析及其非线性控制[J].中国电机工程学报.2007,27(14):6-12.
    [61]Rugh W J, Shamma J S. Research on gain scheduling. Automatica.2000, 36(10):1401-1425.
    [62]张铁军,吕剑虹,华志刚.机炉协调系统的模糊增益调度预测控制[J].中国电机工程学报,2005,25(4):158-165.
    [63]陈彦桥,刘吉臻,谭文.模糊多模型控制及其对500MW单元机组协调控制系统的仿真研究[J].中国电机工程学报,2003,239(10):199-203.
    [64]齐辉,张凯锋,戴先中.基于发电单元完整模型的增益调度协调控制[J].电力系统保护与控制.2011,39(7):1-8.
    [65]Rasad G, Swidenbank E, Hogg S W. A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control[J]. IEEE Transactions on Energy Conversion.1998,13(2):176-182.
    [66]Marcelle K A W, Chiang K H, Houpt PK, at el. Optimal load cycling of large steam turbines[J]. Proceedings of the IEEE International Conference on Fuzzy Systems.1994,667-672.
    [67]张化光,吕剑虹,陈来九.模糊广义预测控制及其应用[J].自动化学报,1993,19(1):9-17.
    [68]雌刚,陈来九.模糊预测控制及其在过热汽温控制中的应用[J].中国电机工程学报,1996,16(1):17-21.
    [69]张建明.火力单元机组的前馈模糊神经非模型单元机组协调控制[J].动力工程,2000,(3):664-668.
    [70]张建华,董菲,侯国莲,袁桂丽.基于神经网络预测控制的单元机组协调控制策略[J].动力工程,2006,26(3):393-395.
    [71]牛培峰,张密哲,陈贵林,等.自适应模糊神经网络控制在锅炉过热汽温控制中的应用[J].动力工程学报,2011,31(2):115-119.
    [72]Li S Y, Liu H B, Cai W J, at el. A new coordinated control strategy for boiler-turbine system of coal-fired power plant. IEEE Transactions on Control Systems Technology.2005,13(6):943-954.
    [73]Dimeo R, Lee K Y. Boiler-turbine control design using a genetic algorithm. IEEE Transactions on Energy Conversion.1995,10(4):752-759.
    [74]荣雅君,窦春霞,袁石文.过热汽温模糊神经网络预测控制器的设计[J].中国电机工程学报,2003,23(1):177-180.
    [75]曾德良.基于速率优化的智能协调控制系统的研究和应用[D].华北电力大学博士学位论文,河北保定,2000.
    [76]韩京清.自抗扰控制技术[J].前沿科学,2007,1:24-31.
    [77]Zhongzhou Chen, Qing Zheng, Zhiqiang Gao. Active Disturbance Rejection Control of Chemical Processes[C].16th IEEE International Conference on Control Applications Part of IEEE Multi-conference on Systems and Control. Singapore,2007:854-861.
    [78]黄焕袍,武利强,韩京清,高峰,林永君.火电单元机组协调系统的自抗扰控制方案研究[J].中国电机工程学报,2004,24(10).168-173.
    [79]焦连伟,陈寿孙,王晓丰.电力系统自抗扰控制器[J].清华大学学报(自然科学版),1999,39(3):27-29.
    [80]雷春林,吴捷,陈渊睿,杨金明.白抗扰控制在永磁直线电机控制中的应用[J].控制理论与应用,2005,22(3):423-428.
    [81]王丽君,童朝南,孙一康.自抗扰控制在监控精轧宽度控制系统中的应用[J]. 系统仿真学报,2006,18(6):1615-1622.
    [82]熊治国,孙秀霞,尹晖,胡孟权.飞机俯仰运动自抗扰控制器设计[J].信息与控制,2005,34(5):576-579.
    [83]陈国栋,贾培发.基于扩张状态观测的机器人分散鲁棒跟踪控制[J].自动化学报,2008,34(7):828-832.
    [84]老大中,刘艳芬,李东海,唐多元.基于Monte-Carlo方法的自抗扰控制系统优化设计[J].北京理工大学学报,2004,24(3):226-229.
    [85]Jiuhong Ruan, Zuowei Li, Fengyu Zhou, Yibin Li. ADRC Based Ship Tracking Controller Design and Simulations[C]. Proceedings of the IEEE International Conferenceon Automation and Logistics. Qingdao,2008:1763-1768.
    [86]Gao Z. Z. Active Disturbance Rejection Control:A Paradigm in Feedback Control System Design. Proceedings of the American Control Conference, Minneapolis, Minnesota,2006:2399-2405.
    [87]Kun M. W, Chen Z. O, Yuan Z. Z. A Practical Solution to Some Problems in Hight Control. Proceedings of 48th IEEE Control&Decision Conference, Shanghai, China,2009:1482-1487.
    [88]王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355.
    [89]樊泉桂.锅炉原理[M].北京:中国电力出版社,2008.
    [90]瓦格纳W,克鲁泽A.水和蒸汽的性质[M].北京:科学出版社,2003.
    [91]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
    [92]余岳溪.基于偏最小二乘法的火电厂实时数据预测[J].能源工程,2010(4):62-68.
    [93]陈俊.基于核偏最小二乘特征提取的垃圾邮件过滤方法的研究[D].硕士学位论文,华东交通大学,2012.
    [94]Rosipal R, Trejo L. J. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space[J]. Journal of Machine Learning Research,2001(2):97-123.
    [95]Rosipal R. Kernel Partial Least Squares for Nonlinear Regression and Discrimination[J]. Neural Network World,2003,13(3):291-300.
    [96]Y. Engel, S. Mannor, R. Meir. Sparse online greedy support vector regression [C].13th European Conference on Machine Learning,2002, Helsinki, Finland.
    [97]Y. Engel, S. Mannor, R. Meir. The Kernel Recursive Least Squares Algorithm [J]. IEEE Transactions on Signal Processing,2004,52(8):2275-2285.
    [98]T. Downs, K. Gates, A. Masters. Exact simplification of support vector solutions[J]. Journal of Machine Learning Research,2001(2):293-297.
    [99]樊泉桂.超临界参数锅炉水冷壁及启动系统分析[J].华北电力技术,2000(1):9-12.
    [100]王定成,姜斌.在线稀疏最小二乘支持向量机回归的研究[J].控制与决策,2007,22(2):132-137.
    [101]唐飞,董斌,赵敏.超超临界机组在我国的发展及应用[J].电力建设,2010,31(1):80-82.
    [102]石磊.浅析直流锅炉的特点及运行控制[J].云南电力技术,2007,35(4):54-56.
    [103]胡武奇,忻建华,叶敏.600MW超临界锅炉基于中间点焓校正的给水控制系统[J].能源技术,29(3):136-139.
    [104]田丹,田亮,刘鑫屏,等.中速磨直吹式制粉系统的动态模型[J].电力科学与工程,2008,24(9):4144.
    [105]刘鑫屏.热力发电过程建模与状态参数检测研究[D].华北电力大学博士学位论文,北京:2010.
    [106]刘福国,董信光,侯凡军,等.超临界直流锅炉蒸发受热面静态数学模型[J].中国电机工程学报.2009,29(20):12-16.
    [107]上海发电设备成套设计院.电站锅炉水动力计算方法标准[M].北京:机械工业出版社,1995.
    [108]刘福国.超临界压力直流锅炉蒸发管超温预报[J].中国电机工程学报.2010,30(35):18-25.
    [109]吴海凤,袁益超,刘聿拯.超临界锅炉单相受热面不同动态数学模型的比较[J].锅炉技术,2010,41(6):1-5.
    [110]范永胜,徐治皋,陈来九.锅炉单相区的嵌套建模方法[J].动力工程.1995,15(5):7-12.
    [111]任挺进,李志刚,谢茂清.锅炉单相区链式结构的集总参数数学模型[J].清华大学学报(自然科学版),1999,39(10):28-30
    [112]卓旭升,周怀春,文忠林.火电机组过热器压力和温度的动态研究[J].中国电机工程学报.2007,27(14):72-76.
    [114]刘吉臻,秦志明,张栾英,谷俊杰.汽包锅炉蓄热分析与计算[J].动力工程学报.2012,32(2):96-100.
    [113]刘鑫屏,田亮,赵征,等.汽包锅炉蓄热系数的定量分析[J].动力工程,2008,28(2):216-220.
    [115]范从振.锅炉原理[M].北京:水利电力出版社,1986.
    [116]刘鑫屏,热力发电过程建模与状态参数检测研究[D].华北电力大学博士学位论文,2005.
    [117]田亮,刘鑫屏,赵征,等.一种新的热量信号构造方法及实验研究[J].动力工程,2006,26(4):499-502.
    [118]房方,谭文,刘吉臻.机炉协调系统的非线性输出跟踪控制[J].中国电机工程学报,2005,25(1):147-151.
    [119]房方,魏乐,谭文,等.基于动态扩展算法的大型燃煤机组非线性协调控制系统设计[J].中国电机工程学报,2007,27(26):102-107.
    [120]田亮.单元机组非线性动态模型的研究[D].华北电力大学博士学位论文,2005.
    [121]杨献勇.热工过程自动控制[M].北京:清华大学出版社,2001.
    [122]韩京清,王伟.非线性跟踪-微分器[J].系统科学与数学,1994,14(2):177-183.
    [123]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88.
    [124]陈增强,孙明玮,杨瑞光.线性自抗扰控制的稳定性研究[J].自动化学报,2013,39(5):574-580.
    [125]管志敏.自抗扰控制技术在大型火电机组控制系统中的应用研究[D].华北电力大学博士学位论文,2010.
    [126]杨瑞光.线性自抗扰控制的若干问题研究[D].南开大学博士学位论文,2011.
    [127]欧林林.线性时滞系统的低阶控制器镇定性与设计方法研究[D].上海交通大学博士学位论文,2006.
    [128]谢谢.基于电网AGC性能指标的单元机组协调控制系统研究[D].华北电力大学博士学位论文,2012.
    [129]朱齐丹,冷欣.基于约束预测控制的增压锅炉汽包水位系统研究[J].哈尔滨工业大学学报,2009,30(11):1246-1250.
    [130]田亮,曾德良,刘吉臻,等.简化的330 MW机组非线性动态模型[J].中国电机工程学报,2004,24(8):180-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700