用户名: 密码: 验证码:
基于遗传规划的生产混合物产品的分离过程综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对混合物原料经过多种操作以生产不同组成的多个混合物产品的分离过程称为非清晰分离过程,它广泛存在于化工及石油工业中。因此,非清晰分离过程综合问题一直是过程综合领域的热门课题,但由于可能的分离计划数量会因流程中分流器、混合器和精馏塔间的强相互交联而呈几何级数递增,使该类问题具有极度组合复杂性。因此,目前对该类问题的研究水平只是停留在简单分离计划的制定上,而该类问题的重要性使我们有必要从流程水平上对其综合方法和策略进行深入研究开发。本文旨在建立一套基于遗传规划-复合形法联合综合方法,以年度总费用最低为优化目标,求解热集成非清晰分离最优流程,给出重要设备的主要工艺参数,为实际生产提供准确的理论依据。本文主要内容概括如下:
     1.为了探讨遗传规划求解非清晰分离综合问题的理论基础,本文首先提出了求解生产纯组份产品的清晰分离问题的遗传规划-复合形法联合算法。在化工分离专业要求指导下,算法利用遗传规划求解以复杂精馏塔结构并结合热集成技术表示的清晰分离过程结构变量,提出适用于该类问题的编码模型和进化方案,并建立了一个随机匹配系统冷凝器和再沸器的热集成策略,可以产生不同精馏结构间的复杂热匹配方案;同时,采用复合形法优化分离系统中的所有连续变量,明显提高了计算效率。
     2.在对清晰分离过程研究基础上,提出了求解非清晰分离问题的遗传规划-复合形法联合算法。首先,提出了化工节点模型,将精馏分离、分流及混合任务分别用精馏塔节点、分流器节点及混合器节点三类节点表示。其中,精馏塔节点和分流器节点均产生左右分支以分别表示对物流的分离及分流操作,设置相应的节点属性以分别表示它们的操作特性;对于混合器节点,本文建立了独特的多层混合器网格结构,该结构由若干行列的混合器排列构成,可以灵活表示任意混合操作。为了清楚表示每个混合器在网格结构中所处位置,在混合器节点中设置一对属性参数分别记录该混合器在网格结构中所处行及列数。
     3.为了准确利用上述三类节点生成表示非清晰分离流程的遗传规划代码,本文建立了多层交叉树状编码结构,以多层混合器网格为基本框架,以网格中每个混合器为子根节点而随机生长出一棵遗传规划子树,子树由精馏塔节点和分流器节点随机连接构成。由于本文设定每个子树中任何精馏塔节点或分流器节点的分支可以随机连接到位于该层下方混合器网格中任意层面的任意位置混合器上,所以不同层次的子树之间可能有物流交叉,物流也可以越过多层混合器网格而直达终端产品混合器,则最终整个遗传规划代码树是由层层子树叠加而构成复杂的多交叉树状结构,用以描述非清晰分离流程中分流器、混合器和精馏塔间可能出现的各类复杂交联流程,使算法能够发现很难为其它算法所知的更优流程结构。
     同时,提出了适用于非清晰分离问题的改进遗传规划进化策略,尤其对于交换和变异操作,不同操作步骤中分别定义不同的可操作节点类,以充分保证新生代码的专业有效性,从而显著提高算法的进化效率。
     4.采用了结构变量与连续变量同步优化的综合策略。在利用遗传规划搜索最优流程结构的同时,利用复合形法优化系统的连续变量。其中,对于分流器的分配比及非清晰精馏塔中轻、重关键组份回收率,利用复合形法将其彻底优化,保证产生符合指定混合物产品要求的有效代码;对于精馏塔的操作压力及回流比,利用复合形法进行有限次搜索寻优。上述对不同类型连续变量的分策略优化方法,不但有效促进了结构变量优化的进程,而且明显提高了计算效率。
     5.利用本文建立的适用于非清晰分离问题的遗传规划-复合形法联合算法,针对不同目标函数,从不同层次研究了该类问题。首先,以简单非线性函数为目标,对该类问题进行物流决策流程水平的搜索寻优,发现了比文献值更优解,证明了算法的有效性。
     在此基础上,首次以年度总费用为目标函数,给出了非清晰分离系统的设备设计和费用模型,同时,提出了热集成策略,可以产生一个精馏塔的冷凝器和再沸器同时与多个其它塔的再沸器及冷凝器热匹配的复杂热集成方案。本文利用以上策略,首次求解了包括酯、烃及醇三类物系的典型非清晰分离问题。同时,与文献报道的5组份算例相比,求解了更大规模算例(最多11组份)。计算结果表明:基于本文建立的综合算法,流程中采用非清晰精馏塔并配合热集成研究,可以求得非清晰分离问题的最优结构决策流程。算法具有简单易行、计算量小及快速准确的优点,求解过程不需给出任何提示信息及不必给出系统超结构,求解问题范围广,是非清晰分离系统综合的有效方法。
Separation process that deals with multicomponent products produced from mixture materials through various operations is called nonsharp separation and used widely in the chemical industry and the petroleum industry. Nonsharp separation process synthesis is always the focus in the process synthesis domain. The amount of the possible separation plans, however, will increase exponentially due to the strong interrelation between the splitter, mixer and the distillation column in the flowsheet which makes the problem being extremely combinatorial complex. The current research work for this kind of problem is to the decision of the simple separation plan, but the importance of this kind of problem lets us study the synthesis method and strategy in depth from the flowsheet level. This paper addresses a sort of united synthesis method that based on Genetic Programming(GP)and complex method. The proposed method regards minimizing the annually total cost as optimization objective and seeks the heat integration nonsharp separation optimal flowsheet to give the major technological parameters of the important equipments which provide the accurate theoretical basis for actual production. The main content of this paper is as follows:
     1. The united synthesis method that based on GP and complex method to solve the sharp separation problem for pure component products is firstly proposed in order to probe into the theoretical basis solving the nonsharp separation synthesis problem using GP. The algorithm, under the guide of chemical engineering separation professional requirements, utilizes GP to solve the sharp separation process structural variables that expressed by the complex distillation column configurations combing with the heat integration method. The encoding model and evolutionary scheme that applicable to this problem are proposed and the heat integration strategy that matches system condenser and reboiler randomly is built to produce complex match scheme between various distillation structures. At the same time, the algorithm adopts complex method to optimize the entire continuous variable in the separation system which improves the computational efficiency obviously.
     2. The united synthesis method that based on GP and complex method to solve the nonsharp separation problem is proposed based on the sharp separation process research. The chemical engineering node model is proposed to denote distillation separation, splitting and mixing task as distillation column node, splitter node and mixer node separately. Both the distillation column node and splitter node generate left and right branch to denote separation and splitting operation for all streams and the corresponding node property is set to denote their operation specialty. As for mixer node, unique multilayer mixer grid structure that made up of many mixers is established to denote arbitrary mixing operation. To clearly denote the location of every mixer in the grid structure, a pair of property parameters is set in the mixer node to record the number of the row and column where the mixer located in separately.
     3. Multilayer cross tree encoding structure is established in this paper to accurately express the GP code that produced from the above three kind of nodes to denote nonsharp separation flowsheet. A GP sub-tree is randomly produced from every mixer as sub-root node and it is made up of distillation column nodes and splitter nodes that randomly connected each other. The branch of distillation column node or splitter node of every sub-tree can joint to any mixer of the inferior mixer grid at random in this paper. Many GP sub-trees at different layer may have stream cross and the streams can pass through all layers of the mixer grid to arrive at terminal product mixer directly. So, the overall GP code tree is made up of layer upon layer sub-trees and forms complex multi-cross tree structure to describe all sorts of complex jointed flowsheet possibly produced between splitter, mixer and distillation column in nonsharp separation flowsheet. This enable the algorithm to discovery better flowsheet structure that is difficult found by other algorithms.
     Besides, modified GP evolutionary strategy that is applicable for nonsharp separation problem is proposed in this paper. Different operable node classes are defined in various operation steps, especially for cross and mutation operation, to insure the professional validity of all GP codes, which improves the evolutionary efficiency evidently.
     4. Synthesis strategy that adopts simultaneously optimization of structural variables and continuous variables is proposed in this paper. Complex method is used to optimize system continuous variables when using the GP to search the optimal flowsheet structure. As for the distribution ratio of the splitter, light and heavy key component recovery ratio of nonsharp distillation column, complex method is used to optimize them thoroughly to ensure generating valid codes that suitble to the required mixture products. As for the operation pressure and reflux ratio of the distillation column, complex method is used to search the optimum within the limited times. The above optimization method that using different strategy for various types of continuous variables not only accelerates the process of structural variable optimization effectively but also improves the computational efficiency.
     5. To the various objective functions, the united synthesis method that based on GP and complex method to solve the nonsharp separation problem is used to study the problem from different level. A kind of simple linear function is used as the objective firstly and the better solutions are found through optimization of the problems at the stream decision flowsheet level which demonstrate the validity of the algorithm.
     In this paper, annually total cost, for the first time, is used as optimization objective and the equipment design and cost model of nonsharp separation system is given. Heat integration is proposed simultaneously to generate complex heat exchange scheme that can express the condenser and reboiler of one distillation column matching with some condensers and reboilers of other distillation columns simultaneously. Typical nonsharp separation problems that include ester, hydrocarbon and alcohol mixtures, for the first time, are solved using above strategy. Bigger size of example, as much as 11 components, is solved comparing with the reported 5 components example. The computational results demonstrate that, based on the synthesis algorithm proposed in this paper, the optimal structural decision flowsheet can be obtained by using nonsharp distillation column and heat integration in the flowsheet. The proposed algorithm features simple to use, small amount of calculation and fast and accurate. The superstructure of separation system is not required in solving process and the solution bound is far and wide that shows the united synthesis algorithm proposed in this paper is an effective method for nonsharp separation system synthesis.
引文
1. Thompson R W, King C J. Systematic synthesis of separation schemes. A.I.Ch.E. J., 1972, 18:941-948
    2. Stephanopoulos G, Westerberg A W. Studies in process synthesis II: Evolutionary syntgesis of optimal process flowsheets. Chem. Eng. Sci., 1976, 31:195-204
    3. Seader J D, Westerberg A W. A combined heuristic and evolutionary strategy for synthesis of simple separation sequences. A.I.Ch.E. J., 1977, 23 (6):951-954
    4. Nath R, Motard. Evolutionary synthesis of separation processes. A.I.Ch.E. J., 1981, 27(4):578-588
    5. Meszaros I, Fonyo Z. A new bounding strategy for synthesis distillation schemes with energy integration. Comput.Chem.Engng., 1986, 10 (6):545-550
    6. Meszaros I, Fonyo Z. Extensive state optimization for heat integrated distillation columns. Comput.Chem.Engng., 1988, 12 (2):225-229
    7. Barnicki Scott D, Jame R Fair. Separation System Synthesis:A Knowledge-Based Approach 1. Liquid Mixture Separation. Ind. Eng. Chem. Res., 1990, 29 (3):421-432
    8. Kirkwood R L, Locke H M, Douglas J M. A prototype expert system for synthesizing chemical process flowsheets. Comput.Chem.Engng., 1988, 12 (4):329-343
    9. Schuttenhelm W, Simmrock K H. Knowledge based synthesis of energy integrated distillation column and sequences. Inst. Chem. Engng. Symp, 1992, 28:461-482
    10. Schembecker G, Schuttenhelm W, Simmrock K H. Cooperating knowledge integrating systems for the synthesis of energy-integrated distillation processes. Comput.Chem.Engng., 1994, 18 (2) :131-135
    11. Crowe C, Douglas P L. Development of an expert system for process synthesis. Trans. I.Chem.E, 1992, 70(A):110-117
    12.董宏光,韩志忠,高建喜,等.智能搜索算法实现分离序列综合整体框架.应用科技,2006, 33(1): 55-58
    13.Raman R, Grossmann I E. Relation between MILP modeling and logical inference for chemical process synthesis. Comput.Chem.Engng., 1991, 15 (2):73-84
    14. Huang Y W, Fan L T. Fuzzy logic rule based system for separation sequence synthesis: Anobject oriented approach. Comput.Chem.Engng., 1988, 12 (6):601-607
    15.吴以准,张瑞生.多组分精馏序列的模糊合成法.化工学报,1993,44(1):117-121
    16. Flowers T, Harrison B K. Automated synthesis of distillation sequences using fuzzy logic and simulation. A.I.Ch.E. J., 1994, 40:1341-1347
    17. Qian Y, Lien K M. Application of fuzzy match inference strategy in synthesis of separation systems. Can. J. Chem. Engng., 1994, 72 (4):711-721
    18. Qian Y, Lien K M. Rule based synthesis of separation systems by a predictive best first search with rules represented as trapezoidal numbers. Comput.Chem.Engng., 1995, 19 (11): 1185-1205
    19.董宏光,秦立民,王涛,等.基于模糊逻辑推理的精馏分离序列优化综合.过程工程学报, 2004, 4(2): 173-177
    20.董宏光,秦立民,匡国柱,等.基于自适应神经模糊推理的精馏分离序列综合.广州大学学报, 2004, 3(1): 36-40
    21.苏明,房鼎业,唐宏青.利用基于模糊综合评判的数据包络分析优化分离序列.高校化学工程学报, 2003, 17(5): 545-551
    22. Rong B G, Kraslawski A, Nystrom L. The synthesis of thermally coupled distillation flowsheet for separation of five-component mixture. Comput.Chem.Engng., 2000, 24: 247~252
    23. Rong B G, Kraslawski A, Nystrom, L. Design and synthesis of multicomponent thermally coupled distillation flowsheets. Comput.Chem.Engng., 2001, 25: 807-820
    24. Rong B G, Kraslawski A, Turunen I. Synthesis of Functionally Distinct Thermally Coupled Configurations for Quaternary Distillations. Ind. Eng. Chem. Res., 2003, 42 (6):1204-1214
    25. Rong B G, Kraslawski A, Turunen I. Synthesis of Heat-Integrated Thermally Coupled Distillation Systems for Multicomponent Separations. Ind. Eng. Chem. Res.,2003, 42 (19): 4329-4339
    26. Rong B G, Kraslawski A, Turunen I. Synthesis and Optimal Design of Thermodynamically Equivalent Thermally Coupled Distillation Systems. Ind. Eng. Chem. Res.,2004, 43 (18):5904-5915
    27. Shah P B, Kokossis A C. Knowledge based models for the analysis of complex separationprocesses. Comput.Chem.Engng., 2001, 25:967-878
    28. Shah P B, Kokossis A C. New synthesis Framework for the optimization of complex distillation systems. A.I.Ch.E. J., 2002, 48 (3):527-550
    29. Stephanopolous G, Han C H. Intelligent systems in Process Engineering. A Review, In proc 5th intern Symp., Process Systems Engineering, 1994,1:1319-1336
    30. Umeda T, Harada T, Shiroko K. A thermodynamic approach to the synthesis of heat integration systems in chemical processes. Comput.Chem.Engng., 1979, 3:273-282
    31. Linnhoff B, D R Vredeve. Pinch Technology has Come of Age. CEP7, 1984, 33-40
    32. Smith R,B Linnhoff. The design of separators in the context of overall processes. Chem. Eng. Res. Des.,1988, 66 (3):195-228
    33. Carlberg N A, Westerberg A W. Temperature heat diagrams for complex columns.1: Intercooled/interheated distillation columns. Ind. Eng. Chem. Res.,1989, 28 (4):1369-1378
    34. Carlberg N A, Westerberg A W. Temperature heat diagrams for complex columns. 2: Underwood’s method for side strippers and enrichers. Ind. Eng. Chem. Res., 1989, 28 (4):1379-1385
    35. Carlberg N A, Westerberg A W. Temperature-heat diagrams for complex columns. 3: Underwood’s method for the Petlyuk configuration. Ind. Eng. Chem. Res.,1989, 28 (4):1386-1397
    36. Hendry J E, Hughes R R. Generating separation process flowsheets. Chem. Eng. Prog., 1972, 68:71-76
    37. Rathore R , Van Wormer K A, Powers G J. Synthesis strategies for multicomponent separation systems with energy integration. A.I.Ch.E. J., 1974a, 20 (2):491-501
    38. Rathore R, Van Wormer K A, Powers G J. Synthesis distillation systems with energy integration. A.I.Ch.E. J., 1974b, 20 (4):940-950
    39. Andrecovich M J, Westerberg A W. A simple synthesis method based on utility bounding for heat integrated distillation sequences. A.I.Ch.E. J., 1985, 31 (9):363-375
    40. Kakhu A I, Flower J R. Heat integrated distillation sequences using mixed integer programming. Chem. Eng. Res. Des., 1988,66 (5):241-254
    41. Duran M A, Grossmann I E. A mixed integer nonlinear approach for process synthesis.A.I.Ch.E. J., 1986, 32 (3):592-615
    42. Floudas C A, Paules G E. A mixed integrated nonlinear programming formulation for the synthesis of heat integrated distillation sequences. Comput.Chem.Engng., 1988, 12 (6):531-546
    43. Yuan X G, Pibouleau L, Domenech S. An optimization method for mixed integer nonlinear programming in process design. Chem. Eng. Process., 1989, 25:99-116
    44.袁希钢.混合整数非线性规划与化学工程系统最优化设计(II):换热网络的最优合成.化工学报,1991,42(1):40-46
    45.魏哲如,董宏光,钱建华.基于神经网络混合整数线性规划的精馏分离序列优化综合.当代化工, 2004, 33(5): 297-300
    46. Papoulias S A, I E Grossmann. A Structural Optimization Approach in Process synthesis-1. Utility Systems. Comput.Chem.Engng.,1983, 7(6):695-707
    47. Grossman I E. Mixed-Integer Programming Approach for th Synthesis of Integrated Process Flowsheets. Comput.Chem.Engng.,1985, 9(5):463-482
    48. Novak A, Kravanja A, Grossmann I E. Simultaneous synthesis of distillation sequences in overall process schemes using an improved MINLP approach. Comput.Chem.Engng., 1996, 20 (12):1425-1440
    49. Yeomans H, Grossmann I E. A systematic modeling framework of superstructure optimization in process synthesis. Comput.Chem.Engng., 1999, 23:709 -731
    50. Caballero J A, Grossmann I E. Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Ind. Eng. Chem. Res., 2001, 40 (10):2260-2274
    51. Mariana Barttfeld, P A Aguirre, I E Grossmann. A decomposition method for synthesizing complex column configurations using tray-by-tray GDP models. Comput.Chem.Engng., 2004,28 (11):2165-2188
    52. I E Grossmann, P A Aguirre, Mariana Barttfeld. Optimal synthesis of complex distillation columns using rigorous models. Comput.Chem.Engng., 2005, 29 (6):1203–1215
    53. J A Caballero, M Y Daniel, I E Grossmann. Rigorous Design of Distillation Columns: Integration of Disjunctive Programming and Process Simulators. Ind. Eng. Chem. Res., 2005, 44 (17):6760-6775
    54. J A Caballero, I E Grossmann. Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput.Chem.Engng., 2004, 28(11):2307–2329
    55. Petros Proios, Efstratios N,Pistikopoulos. Generalized Modular Framework for the Representation and Synthesis of Complex Distillation Column Sequences. Ind. Eng. Chem. Res., 2005, 44 (13):4656-4675
    56. Holland J H. Adaptaton in Natural and Artificial System. Ann Arbor:University of Michigan Press, 1975.
    57. Coldberg G E. Genetic algorithms in search, optimization, and machine learning, reading. Wesleg:Addison A M Press, 1989.
    58. Kirkpatrick S, Gelatt D D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220 (4598):671-680
    59.鄢烈祥,麻德贤.用列队竞争算法求解分离序列综合问题. 1999,13(5):470-475
    60. Glover F. New future path for integer programming and links to artificial intelligence. Comput.Pos Res., 1986, 13(5):533-549
    61. Glover F. Tabu search-Part I and PartII. ORSA. J. Computer, 1989, 1 (3):190-206
    62. Glover F. A user’s guide to Tabu search. Annals of operatoions research, 1993, 41:3-28
    63. Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Trans On Systems Man and Cybernetics, 1996, 26(1):29-41
    64. Floquet P, Pibouleau L, Domenech S. Separation sequenecs synthesis: How to use simulated annealing procedure. Comput.Chem.Engng.,1994, 18 (6):1141-1148
    65.钟志军.带有热集成的非清晰精馏网络的最优综合:[硕士学位论文].天津:天津大学,1997
    66.安维中.基于随机优化的复杂精馏系统综合研究:[博士学位论文].天津:天津大学,2003
    67. Wang K F, Qian Y, Yuan Y, Yao P J. Synthesis and optimization of heat integrated distillation systems using an improved genetic algorithm. Comput.Chem.Engng.,1998, 23 (12):125-136
    68.伊洪超,袁一.过程系统能量集成同步最优综合法.化工学报,1997,48(1):35-40
    69.俞红梅,方海鹏,姚平经,等.大规模过程系统能量优化综合的遗传模拟退火算法.化工学报,1998,49(5):655-661
    70.王延敏,姚平经.热偶精馏过程模拟优化方法的改进——人工神经网络-遗传算法.化工学报,2003, 54(9): 1246-1250
    71.董宏光,秦立民,王涛,等.应用无性繁殖单亲遗传算法实现精馏分离序列优化综合.大连理工大学学报, 2004, 44(6): 781-785
    72.鄢烈祥,麻德贤.全局优化搜索新算法——列队竞争算法(Ⅱ)解网络综合问题.化工学报,2000,51(2):221-226
    73.董宏光,秦立民,王涛,等.基于自适应并行禁忌搜索的精馏分离序列优化综合.化工学报, 2004,55(10):1669-1673
    74. Marcooulaki E, Kokossis A. Design of separation trains and reaction-separation networks using stochastic optimization methods. Chem. Eng. Res. Des, 2001, 79:25-32
    75.安维中,袁希钢.用于热集成精馏序列综合的改进模拟退火算法.化工学报, 2005,56(3):506-510
    76.安维中,袁希钢.基于随机优化的热耦合复杂精馏系统的综合(Ⅰ)模型化方法.化工学报, 2006,57(7):1591-1598
    77.安维中,袁希钢.基于随机优化的热耦合复杂精馏系统的综合(Ⅱ)计算举例与分析.化工学报, 2006,57(7):1599-1604
    78. Nath R. Studies in the Synthesis of Separation Process:[Ph.D. Dissertation]. Texas: University of Houston, 1977
    79. Muraki M, Hayakawa T. Separation process synthesis for multicomponent products. J. Chem. Engng. Japan., 1984, 17 (3):533-537
    80. Muraki M, Kataoka K, HayakawaT. Evolutionary synthesis of a multicomponent multiproduct separation process. Chem. Engng. Sci., 1986, 41(7):1843-1851
    81. Muraki M, Hayakawa T. Synthesis of a multicomponent multiproduct separation process with nonsharp separators. Chem.Engng. Sci., 1988, 43 (2):259-268
    82.刘智勇,郭柱山.改进的物料分配图用于非清晰精馏过程合成.高校化学工程学报,1993,7(3):276-280
    83.刘智勇,郭柱山,陈之川.采用分块物料分配图研究多原料非清晰精馏序列合成.化工学报,1994,45(3):321-326
    84. Bamopoulos G. Synthesis of nonsharp separation sequences:[Ph.D. dissertation]. Washington:Washington University, 1984
    85. Bamopoulos G, Nath R, Motard R L. Heuristic synthesis of nonsharp separation sequences. A.I.Ch.E. J., 1988, 34 (5):763-780
    86. Cheng S H. Systematic synthesis of sloppy multicomponent separation sequences: [Ph.D.dissertation]. Blacksburg:Virginia Polytechnic Institute and State University, 1987
    87. Liu Z Y, Xu X E. Mareix-based heuristic synthesis for production of mixed products via sharp distillation sequences with bypass. Chem. Engng. Res. Des., 1995, 73 (Part A): 13-19
    88. Liu Z Y, Xu X E. Heuristic procedure for the synthesis of distillation sequences with multicompoent products. Chem. Engng. Sci., 1995, 50 (12):1997-2004
    89.刘智勇,胡琳娜,邹晋,许锡恩.非清晰精馏序列的两步合成法.高校化工学报, 1999,13 (1):66-72
    90. Aggarwal A, Floudas C A. Synthesis of general distillation sequences -nonsharp separations. Comput.Chem.Engng.,1990, 14 (6):631-653
    91. Hu Z, Chen B, He X. Heuristic synthesis for multicomponent products with simple and sharp separators. Comput.Chem.Engng.,1993, 17(4):379-397
    92. Chen Y M, Fan L T. Synthesis of complex separation schemes with stream splitting. Chem. Engng. Sci.,1993, 48 (7):1251-1264
    93. Chen Y M, Huang Y W, Fan L T. An approximation formula evaluating the number of possible alternative schemes for 1FmP separation sequencing problems. Sep.Technol., 1991,1 (4):222-230
    94. Cheng S H, Liu Y A. Studies in chemical process design and synthesis:8. A simple heuristic method for the synthesis of initial sequences for sloppy multicomponent separations. Ind. Eng. Chem. Res.,1988, 27 (12):2304-2322
    95. Liu Y A, Quantrille T E, Cheng S H. Studies in chemical process design and synthesis:9. A unifying method for the synthesis of multicomponent separation sequences with sloppy product streams. Ind. Eng. Chem. Res.,1990, 29 (11):2227-2241
    96. Chen Y M, Fan L T. Comments on“Heuristic synthesis for multicomponent products with simple and sharp separators”. Comput.Chem.Engng., 1994, 18 (8):773-774
    97. Feng G Y, Fan LT. On stream splitting in separation system sequencing. Ind. Eng. Chem.Res.,1996, 35 (6):1951-1958
    98. Sargent R W H, Gaminibandara K. Introduction: Approaches to chemical process synthesis in Optimization in Action. Washington:Academic Press, 1976
    99. Wehe R R, Westerberg A W. An algorithmic procedure for the synthesis of distillation sequences with bypass. Comput.Chem.Engng.,1987, 11(6):619-627
    100. Wehe R R, Westerberg A W. A bounding procedure of distillation sequences. Chem. Engng Sci., 1990, 45 (1):1-11
    101. Floudas C A. Separation synthesis of multicomponent feed streams into multicomponent product streams. A.I.Ch.E. J., 1987,33 (4):540-550
    102. Floudas C A, Anastasiadis S H. Synthesis of distillation sequences with several multicomponent feed and product streams. Chem. Eng Sci., 1988, 43 (9):2407-2419
    103. Aggarwal A, Floudas C A. Synthesis of heat integrated nonsharp distillation sequences. Comput.Chem.Engng.,1992, 16 (2):89-108
    104.袁希钢.非清晰精馏网络系统MINLP整体最优化方法.天津大学学报,1995,28(2):146-154
    105.陈中州,袁希钢,钟志军.具有能量集成的非清晰精馏网络最优综合.计算机与应用化学,1997,14(4):247-254
    106. Sheppard C M, Beltramini L J, Motard R L. Constraint-directed nonsharp separation sequences design. Chem. Eng. Comm., 1991, 106 (1):1-32
    107. Koza J R. Genetic Programming: on the Programming of Computer by Means of Natural Selection. Cambridge:The MIT Press, 1992
    108. Koza J R. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge:The MIT Press, 1994
    109. Koza J R, Goldberg D E, Fogel D B, Riolo R L(Eds.). Genetic Programming: Proceedings of the First Annual Conference. Cambridge:MA: MIT Press, 1996
    110. Banzhaf W, et al. Genetic Programming:An Introduction On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann Publishers, 1998
    111. Petlyuk F B, Platonov C M, Slavinskii D M. Thermodynamically optimal method for separating multicomponent mixtures. International Chemical Engineering, 1965, 5 (3):555-565
    112. Kaibel G. Distillation columns with vertical partitions. Chem. Eng. Techn., 1987, 10:92-98
    113. Lestak F, Smith R. The control of a dividing wall column. Chem. Eng. Res. Des., 1993, 71 (3):307-314
    114. Halvorsen I J, Skogestad S. Minimum Energy consumption in multicomponent Distillation, a: Vmin Diagram for a two-product column. Ind. Eng. Chem. Res., 2003, 42 (3):596-604
    115. Halvorsen I J, Skogestad S. Minimum Energy consumption in multicomponent Distillation, b: Three-product Peltyuk columns. Ind. Eng. Chem. Res., 2003, 42 (3): 604-618
    116. Halvorsen I J, Skogestad S. Minimum Energy consumption in multicomponent Distillation, c: More than three Products and Generalized Petlyuk arrangements. Ind. Eng. Chem. Res., 2003, 42 (3):618-634
    117. Triantafyllou C, Smith R. The design and optimization of fully thermally coupled distillation columns. Trans. I. Chem.E, 1992, 70 (5):118-126
    118. Malone M F, Glinos K, Douglas J M. Simple analytical criteria for the sequencing of distillation column. A.I.Ch.E. J., 1985, 31:683-689
    119. Annakou O, Mizaey P. Rigorous comparative study of energy integrated distillation schemes. Ind. Eng. Chem. Res., 1996, 35 (6):1877-1885
    120. Porter K E, Mormoh S O. Finding the optimum sequence of distillation columns– an equation to replace the“rules of thumb”(heuristics). The Chem. Eng. J., 1991, 46:97-108
    121. Jobson M, Hildebrandt D, Glasser D. Variables indicating the cost of vapour-liquid equilibrium separation processes. Chem. Eng. Sci., 1996, 51 (21):4749-4757
    122. Sophos A, Stephanopoulos G, Morari M. Synthesis of optimum distillation sequences with heat integration schemes. 71th Annual A.I.Ch.E Meeting, Miami, FL, 1978
    123. Stephanopoulos G, Linnhoff B, Sophos A. Synthesis of heat integrated distillation sequences. I.chemE.Symp , 1982, 74:111-130
    124.周理,何志敏,余国琮.能量集成蒸馏塔系列的合成.化工学报,1986,2(2):67-77
    125.周理,何志敏,余国琮.蒸馏序列和塔间热集成的研究.化工学报,1987,3(3):80-88
    126. Douglas J M. Conceptual Design of Chemical Processes. McGraw-Hill, 1988
    127. Morari M, Faith D C. The synthesis of distillation trains with heat integration. A.I.Ch.E. J., 1980, 26(6):916-928

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700