用户名: 密码: 验证码:
碱卤母液电渗析精制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然碱母液为Na_2CO_3-NaCl-Na_2SO_4-H_2O四元体系,为保证蒸发结晶过程的顺利进行,及提高产品质量,需要适时适量排放母液,才可使溶液固相点始终保持在Na_2CO_3·H_2O结晶区,这样就损失大量的有效成份Na_2CO_3。
     电渗析是电驱动的建立在离子交换膜的选择性透过阴、阳离子的特性基础上的膜分离过程,适用于不同离子特性物质的分离。开展电渗析处理由强电解质和弱电解质组成的天然碱母液研究,将NaCl和Na_2SO_4强电解质从母液中取出的同时,保留Na_2CO_3等有效成份,能够减少天然碱母液的排放,将取得巨大的经济和社会效益。
     试验对各离子组分初始浓度均为0.0625mol/L的溶液进行的试验显示,当膜对电压0.5V时, Cl~-与1/2总碱的选择透过比在1.6—2之间,SO_4~(2-)与1/2总碱的选择透过比在0.8—1.4之间。这说明用电渗析处理天然碱母液主要成分组成的溶液时,能够选择性的实现强电解质和弱电解质的分离。论文进一步对天然碱卤模拟溶液进行了电渗析处理试验,研究了不同膜对电压、浓室及淡室液体流量、浓室及淡室流体温度、淡室初始浓度、极水浓度及不同离子交换膜对电渗析处理天然碱卤离子迁移量、选择透过比及系统能量消耗的影响。发现各离子的迁移量随膜对电压的升高而增大,选择透过比随温度的升高而下降,淡水初始浓度对能耗、迁移量、选择透过比影响不大;增加极水浓度有利于去除碱卤母液的Cl~-和SO_4~(2-),并且能耗降低;使用含水率较低的膜,选择透过比有较大的提高,能耗也降低。在浓﹑淡水流量为60L/h时,膜对电压0.5V时,温度28℃,极水浓度0.05mol/L,Cl~-与1/2总碱的选择透过比在1.76—3.27之间,SO_4~(2-)与1/2总碱的选择透过比在1.3—1.7之间,可以实现Cl~-和SO_4~(2-)与母液中总碱组分的分离。
The trona solution is a Na_2CO_3- NaCl - Na_2SO_4 - H_2O four components system . To ensure the evaporation and crystallization carry through completely, and improve production quality, suitable amount trona solution needs to be discharged timely in the production process, which make solution solid phase maintain at crystallizing region of Na_2CO_3·H_2O.But lots of Na_2CO_3 in the trona solution is lost at the same time.
     Electrodialysis is an electrically driven membrane separation process that is capable of separating ions from aqueous solutions. Refining of trona solution which make up of strong and weak ions was studied by electrodialysis. In this paper strong ions such as NaCl and Na_2SO_4 were separated from trona solution while the available components remains in the process, thus it can reduce the volume of ejection, and will gain great social and economic benefits.
     At first , solution with initial concentration of every component at 0.0625 mol / L was tested. The result shown that when membrane voltage at 0.5V,the selective ratio of Cl~- and half total alkali was between 1.6—2, and the selective ratio of of SO_4~(2-) and half total alkali was between 0.8—1.4. It shown refining of solution which had a same components with trona by electrodialysis could achieve the goals of separating the strong and weak ions. Furthermore an experimental investigation was presented to determine the influence of membranes voltage, the flux of concentrate、diluent , the temperature of concentrate、diluent, the initial concentration ratio of diluent room, the concentration of electrode solution, the performance of ion exchange membrane on the irons transport、the selective ratio and energy consumption. The results also shown that the volume of the irons transport increased with the raising of membrane voltage, The selective ratio descends with the raising of temperature. The concentration ratio of diluent had little influence on energy consumption、the volume of the irons transport、the selective ratio. Increase of electrode solution concentration had good effect on removal of Cl~-and SO_4~(2-) from trona solution, and reduction of the energy consumption. When the flux of concentrate、diluent at 60L/h,membrane voltage at 0.5V,temperature at 28℃,the concentration of electrode solution at 0.05mol/L, the ratio of selectivity of Cl~- and half total alkali was between 1.76—3.27, and the ratio of selectivity of SO_4~(2-) and half total alkali was between 1.3—1.7, It can achieve the goals of separating of Cl~- and SO_4~(2-) from total alkali in trona solution.
引文
[1]王学松,现代膜技术及其应用指南,北京:化学工业出版社:2
    [2]龚燕,电渗析法用于1,3-丙二醇发酵液脱盐的实验与模型研究:[博士学位论文],北京;清华大学,2004
    [3]张维润,电渗析工程学,北京:科学出版社
    [4]罗铁红,陈碧娥,乳酸的电渗析提取法研究进展,福建化工,2005(1):34-37
    [5] Azzeddine El Midaoui,Optimization of nitrate removal operation from ground water by electrodialysis,Separation and Purification Technology,2002(29):235~244
    [6] N.Kabay,Removal of calcicum and magnesium hardness by electrodialysis, desalination,2002,149:343~349
    [7]中国海水淡化与水再利用学会办公室,电渗析工程基础讲义,国家海洋局第二研究所:1
    [8]祁鲁梁,李永存,工业用水节水与水处理技术术语大全,北京:中国水利水电出版社
    [9]朱长乐,膜科学技术(第二版),北京:高等教育出版社:293
    [10]姚汝华,微生物工程工艺原理,广州:华南理工大学出版社,289~290
    [11]俞俊棠等,新编生物工艺学,北京:化学工业出版社:129
    [12] L.J.J.Janssen,L.Koene,The role of electrochemistry and electrochemical tech- nology in environmental protection,Chemical Engineering Journal[J],85(2002): 137~146
    [13] B.Van.der.Bruggen,A.Koninckx,C.Vandecasteele,Separation of monovaient and divalentions from a queous solution by electrodialysis and nanofiltration, Water Research[J],38(2004):1347~1353
    [14] V.E.Santarosa,F.Pereti,V.Caldart,Study of ion-selective membranes from electro- dialysis removal of industrial effluent metals,Desalination[J],149(2002): 389~391
    [15] B.Schlichter,V. Mavrov,T.Erwe,Regeneration of bonding agents loaded with heavy metals by electrodialysis with bipolar membranes,Journal of Membrane Science [1],232(2004):99~105
    [16] Parise Paul L, Reverse osmosis system trouble shooting-Diagnoses and Remedies [J] ,Proceedings of western pennsylvania,1992(1W C-92-36):310~314
    [17] Mann R A, Fane A G,Bartlet J, Woolfrey J L,“Proceedings of IMSTEC' 92”(Sydney Australia)1992:313~315
    [18]冯敏,石松,工业水处理技术,北京:海洋出版社,1992:521
    [19]梁轩平,浓水循环频繁倒极电渗析工艺应用,工业水处理,2004,24(7):71~73
    [20] Katz.W E ,The Electrodialysis Reversal(EDR) Process,Desalination,1979,28: 31
    [21] Wilkins FR,Mcconnelee PA,Continuous deionization in the preparation of micro- electronics-grade water[J],Solid State Technol,1988,31(8):87~92
    [22] Ganzi GC,Parise PL,The production of pharmaceutical grades of water using continuous deionization post-reverse osmosis[J],J Parenter Sci Technol,1990, 44 (4):231~241
    [23]汤兵,石太宏,张秀娟,乳状液膜技术在处理重金属废水中的研究和应用,环境科学研究,1998,ii(4):19~23
    [24]陈立丰,孙一卫,液膜法除电镀废水中铬的最佳条件和传质机理,水处理技术,1993,19(4):187~190
    [25]王士柱,姜长印,张泉荣等,乳状液型液膜的工业过程研究,膜科学与技术,1992,12(1):8~15
    [26]陈靖,王士柱,朱永赠,乳状液膜法处理含锌废水的研究进展,水处理技术,1995,21(4):187~192
    [27] Daiminger UA,Geist AG,Waiter Nitsch,el a1,Efficiency of hollow fiber modules for non-dispersibe chemical extraction,Ind Eng Chem Res,1996,35(1):184~191
    [28]何伟春,杨长春,高铁酸钠快速电合成及其分解动力学研究,2003,35(4):17~19
    [29]黄万抚,罗凯,李新冬,电渗析技术研究现状与进展,过滤与分离,2003,13(4): 20~23
    [30] Xu tongwen,Development of a bipolarmembrane-based processes,Desalination, 2001,140(3):247~258
    [31] Walther J,Skaneateles N Y,Process for production of electrical energy from the neutralization of acid and base in abipolar membrane cell,uSPatent:4311771,1982-01-19
    [32] Alvarez F,Alvarez R,Jose C,et al,Salicylic acid production by electrodialysis with bipolar membranes,J.Membr.Sci,1997,123:61~69
    [33] Novalic S, Kongbangkerd T, Kulbe, K D, et al. Recovery of organic acids with high molecular weight using a combined electrodialytic process, J. Membr. Sci., 2000, 166: 99~104
    [34] Hong Li, Roberta Mustacchi,Christopher et al,An electrokinetic bioreactor:using direct electric current for enhanced lactic acid fermentation and product recovery [J],Tetrahedron, 2004, 60: 655~661
    [35] Datta R,Tsai S P,Bonsignore P, et al,Technological and economic potential of poly (lactic acid) and lactic acid derivatives, PEMS Microbiology Reviews, 1995, 16: 221~231
    [36] H.K. Hansen, A. Rojo, L.M. Ottosen, Electrodialytic remediation of coppers mine tailings, J. Hazard. Mater, B117 (2005):179~183
    [37] V.Geraldes, M. N.De Pinho, Process water recovery from pulp bleaching effluents by an NF/ED hybrid process,J. Membr. Sci., 102 (1995):209~221
    [38] A.Guveng, B.Karabacakoglu, Use of electrodialysis to remove silver ions from model solutions and wastewater,Desalination,172 (2005) :7~17
    [39] C.L. Lia, H.X. Zhaoa, T. Tsurua, D. Zhoub, M. Matsumuraa, Recovery of spent electroless nickel plating bath by electrodialysis. J. Membr, Sci., 157 (1999): 241-249.
    [40] T.A. Vetter, E.M. Perdue, E. Ingall, J.-F. Koprivnjak,Combining reverse osmosis and electrodialysis for more complete recovery of dissolved organic matter from seawater, Separation and Purification Technology,2007
    [41] M. Mondor a, L.Masse b, D. Ippersiel a, F. Lamarche a, D.I. Masse′b,Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure,Bioresource Technology,2007
    [42] S.K. Nataraj, S. Sridhar, I.N. Shaikh, D.S. Reddy, Membrane-based microfiltration /electrodialysis hybrid process for the treatment of paper industry waste- water,Separation and Purification Technology,2007
    [43] Khaled Walhaa, Raja Ben Amara, Loubna Firdaousb, Francis Quéméneurb, Pascal Jaouenb,Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia:performance and cost comparison,Desalination,207 (2007): 95~106
    [44] V.V. Slesarenko,Thermal and membrane systems for combined desalination plants,Desalination,182 (2005): 497~502
    [45]王立新,郭颜威,王秀明,苦咸水淡化处理方法探讨,2006, l3(1):66~69
    [46]张雷,大钦岛电渗析苦咸水淡化工程长期运行探析,水处理技术, 2001, 27(4): 236~238
    [47]俞卫丽,电渗析法分离中性有机物、强酸和弱酸的实验研究,净水技术,2003,22(6):15~16
    [48]张国亮,孟琴,汤晓,左文蕊,利用油田废水电渗析脱盐液发酵制备鼠李糖脂的研究,高校化学工程学报,2005,5(19):664~669
    [49]叶微微,章樟红,朱江,樊明涛,电渗析法处理苹果酸废水溶液的研究学报,2006,5(3):216~219
    [50]王方堃,电渗析和反渗析-水处理,上海:上海科学技术出版社,1990
    [51]马建虹,薛德明,海藻工业中电渗析除盐技术的改进[J],水处理技术,1991,17(6):69~73
    [52]张永奇,赵瑞华等,电渗析处理氨基酸废水的实验研究,太原理工大学学报,2002,33(5):537~539
    [53] V.Montiel,V.Gaecia- Gaecia,J.Gonzalez-Garcia,F.Carmona,A.Aldaz,Recovery by means of electrodialysis of an armomatic amino acid from a solution with a high concentration of sulphates and phosphates,Journal of membrane science,140 (1998) :243~250
    [54]大连化工研究设计院,纯碱工学(第二版),北京:化学工业出版社:66
    [55]赵师琦,无机物工艺(第2版),北京:化学工业出版社
    [56]卢达溶,工业系统概论(第二版),北京:清华大学出版社:129
    [57]李武,中国天然碱工业,北京:化学工业出版社:197~198
    [58]彭雪娇,EDTA-铅滴定法测定水中SO42-条件实验,华东地质学院学报,2003(9):281~283
    [59]朱涛,李崇明,佛尔哈德法测定复混肥料中Cl-的含量,化肥工业,29(1):23~26
    [60] Toshikatsu Sata,Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis-effect of hydrophilicity of anion exchange membranes on permselectivity of anions,Journal of Membrane Science,167 (2000):1~31
    [61] Mohtada Sadrzadeh, Amir Razmi, Toraj Mohammadi, Separation of different ions from wastewater at various operating conditions using electrodialysis, Separation and Purification Technology, 54 (2007):147~156
    [62] Mohtada Sadrzadeh, Amir Razmi,Toraj Mohammadi, Separation of different ions from wastewater at various operating conditions using electrodialysis, Separation and Purification Technology, 54 (2007) :147~156
    [63] N. Kabay, M. Demircioglu, E. Ersiiz, I. Kurucaovali, Removal of calcium and magnesium hardness by electrodialysis, Desalination 149 (2002): 343~349
    [64] M. Nishimura, M. Sugihara, M. Morioka, K. Okita, Preparation of homogeneous and strongly basic anion exchange membranes by cross-linking reactions between reactive polymers, Kogyo Kagaku Zasshi, 70 (1967): 1040

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700