用户名: 密码: 验证码:
菊芋全粉特性及功能强化机理与作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊芋(Jerusalem artichoke),俗称鬼子姜、洋姜。鲜菊芋中含有丰富的营养物质,包括碳水化合物为16.6%(其中78%为菊糖,又称菊芋多糖),此外,还含有少量蛋白质、粗纤维、氨基酸以及多种矿物质。菊芋种植分布广,耐寒旱耐贫瘠,在我国有广阔的栽种面积,在辽宁省内的阜新、大连瓦房店和鞍山岫岩地区更具有广泛的种植基础,是-种非常具有开发潜力的宝贵资源。在菊糖的加工过程中需要脱蛋白、除杂等复杂工艺,制备成本高,而且获得的产品中可能会有化学试剂的残留,导致菊糖使用时可能会有一定的安全隐患。将不易贮存的鲜菊芋经脱皮、干燥、粉碎后制成以菊糖为主要成分的菊芋全粉,即避免了加工溶剂的残留,保留了菊芋中大量的营养物质,又能更好地解决鲜菊芋存储和运输的问题。因此,与菊糖相比较,菊芋全粉的研究开发更具有现实意义。
     研究发现,菊糖具有非常好的加工特性,在食品工业中可以作为增稠剂替代品、脂肪替代品及保湿剂,广泛应用于速冻肉制品、发酵乳制品和糕点等食品的加工过程中,不仅能改变食品的流变及质构特性,而且还具有膳食纤维和促进益生菌增殖等生理功能。以往的研究主要集中在菊糖上,而对于菊芋全粉的研究则未见报道,因此,菊芋全粉能否替代菊糖的某些重要加工特性,需要进行比较分析后才能得出结论。本文通过比较分析菊芋全粉与菊糖的基本性质,进一步了解菊芋全粉的加工特性,同时分别对两种重要加工特性凝胶特性和发酵特性进行了基础研究,在菊芋全粉特性研究基础上,对其进行改性,利用改性后菊芋全粉具有的螯合特性,制备出螯合钙产品,并对其增加钙吸收的效果和机理进行研究,既为菊芋全粉的应用提供了技术支持,又实现了菊芋产品高附加值的合理利用,研究项目具有一定的社会效益、经济效益,更有利于提高人民健康水平,对推进我国高效农业和绿色食品的发展具有重要意义。主要结论如下:
     一、在辽宁大连地区种植的三种主要菊芋品种中,辽东小红更适合用作生产菊糖的原料。通过热风干燥并粉碎制得的菊芋全粉中,淀粉、蛋白质、脂肪、灰分和粗纤维含量比菊糖中相应含量高,纯菊糖含量为73.70±3.65%,比菊糖中纯菊糖含量低14%左右,但菊芋全粉中纯菊糖仍占主要成分,自制的菊芋全粉呈淡黄色、粉末状。菊芋全粉和菊糖虽然二者的基本成分相差较大,但凝胶指数、凝胶时间、保水性、透光性、冻融稳定性、粘度在一定程度上差异不大,二者在一定程度上可以相互替代。菊芋全粉的持油性要好于菊糖,差异极显著(P<0.001),可以应用到含油脂原料的加工食品中。
     二、菊芋全粉具有良好的凝胶性。其主要凝胶参数即凝胶强度、黏性、弹性、黏聚性、咀嚼性和恢复性随菊芋全粉浓度增加而增大,增加菊糖浓度是改善菊芋全粉体系凝胶性能的有效手段。凝胶强度和黏性随菊芋全粉浓度的提高呈线性关系,菊芋全粉浓度≤50%时,凝胶强度变化较显著;菊芋全粉浓度≤60%时,咀嚼性变化较显著。其余参数受菊芋全粉浓度影响差异不显著。放置时间对凝胶质构性能影响不显著,放置温度可以显著影响全粉的凝胶性能,当温度介于60℃~80℃范围时,全粉形成凝胶。酸、糖、盐能显著影响菊芋全粉凝胶的形成,当pH=6时,凝胶强度达到最大,比自然条件下全粉凝胶体系(pH=6.6)时凝胶强度提高了8%;多糖与二糖和单糖相比,改善全粉凝胶性能的作用更明显;低浓度的食盐可以促进全粉的凝胶性,而高浓度食盐促进凝胶性的增幅有所降低。
     三、菊芋全粉分别对乳酸菌、双歧杆菌、保加利亚乳杆菌和嗜酸乳杆菌具有良好的发酵性,其做为乳酸菌培养基的增值效果是菊糖的2倍,是葡萄糖的9.7倍;作为碳源对双歧杆菌的增殖效果是菊糖的5.3倍,是葡萄糖的16.8倍;作为碳源对保加利亚乳杆菌的增殖效果是菊糖的4.8倍,是葡萄糖的9.6倍;作为碳源对嗜酸乳杆菌的增殖效果是菊糖的3.7倍,是葡萄糖的9.3倍;菊糖对嗜热链球菌的发酵性较差,使用菊糖作为培养基碳源对嗜热链球菌起不到增殖的效果,但是在菊芋全粉作为碳源的培养基中,嗜热链球菌生长状况与MC培养基的生长状况相差不大。通过单因素试验和响应面曲面分析确定乳酸菌在菊芋全粉替代葡萄糖培养基的最佳发酵条件为:碳源的浓度为2.1%,发酵温度为38℃,接种量为10%,实际测得发酵后的乳酸菌的菌落总数为2.48×109cfu/mL。
     四、制备羧甲基菊芋全粉的因素中,碱化时间、氢氧化钠与菊芋全粉质量比、一氯乙酸与菊芋全粉质量体积比对羧甲基取代度的影响效果显著,最佳工艺条件为:一氯乙酸与菊芋全粉质量比为1.6:1,氢氧化钠与菊芋全粉质量比为1.1:1,醚化时间3h,此时取代度为1.3。制备羧甲基菊芋全粉螯合钙过程中,溶液pH值、CaCl2与羧甲基菊芋全粉的质量比和螯合时间三个因素对取代度有显著影响,最佳螯合工艺为pH值7,CaCl2与羧甲基菊芋全粉的质量比9:100,螯合时间30min,此时螯合率为63.7%。不同取代度的羧甲基菊芋全粉螯合钙离子的能力不同,在低取代度范围内(0.2     五、液相质谱和取代度测试可知,羧甲基菊芋全粉螯合钙可能有三种螯合形式,即果糖内螯合、菊芋全粉分子内螯合和菊芋全粉分子间螯合,果糖内螫合结构所占比例很低,螯合以后两种结构为主。红外光谱测试可知,羧甲基特征主体峰1596cm-1和1425.14cm-1,分别分裂成1608.34cm-1和1562.06cm-1及1450.21cm-1和1425.14cm-1两个特征吸收峰;核磁质谱测试羧甲基化及螯合钙并未改变菊糖的主体结构,羧甲基菊芋全粉螯合钙仍为呋喃型多糖,C-3、C-4和C-6上的羟基具有反应活性,均能被羧甲基取代,羰基碳化学位移由螯合前的175.1变为螯合后的181.9;X-射线衍射测试可知,螯合钙离子后,2θ=5.3°、10.3°和10.7°等处出现新的尖锐衍射峰,7.6°、25.4°和27.2°处衍射峰仍存在,而8.2°、21.3°和29.7°处衍射峰强度较羧甲基菊芋全粉而言减弱;电子显微镜测试可知,羧甲基菊芋全粉螯合钙离子后,丧失了原来的形貌,颗粒表面出现了很多白色钙晶粒“镶嵌”在羧甲基菊糖表面;差式量热扫描和热重分析可知,羧甲基菊芋全粉螯合钙后,热力学性质发生了变化,钙离子螯合量为4.99mmol/g (20.01mg/g)。
     六、采用双侧卵巢摘除的方法,给成年雌性大鼠去势,建立大鼠骨质疏松模型并以骨质疏松模型大鼠作为载体进行研究,模型组大鼠双侧卵巢摘除10周后,股骨重量、血钙含量、尿钙UCa含量、股骨骨密度FTD指标全部低于空白对照组,且差异显著,组织切片发生减少。从模型组大鼠股骨组织病理切片的形态学改变和测定结果可判断,该模型复制成功。菊芋全粉钙组股骨干重、湿重、血钙、骨密度均显著高于高钙片组,尿钙含量显著低于高钙片组。对大鼠股骨进行切片,切片中较模型组骨小梁明显增多、变粗,骨小梁表面破骨细胞也较少,而成骨细胞较模型组显著增多、增生活跃。羧甲基菊芋全粉螯合钙可有效提高骨质疏松模型大鼠血钙水平,增高骨密度,减轻骨质疏松,其对钙制剂的吸收度优于传统碳酸钙制剂。
     七、采用羧甲基菊芋全粉螯合钙干预肠道菌群失调模型小鼠,建立肠道菌群失调小鼠模型。通过测试可知,羧甲基菊芋全粉螯合钙具有调节肠道菌群的功能,可以改善小鼠的活动状态,使活动度较低小鼠的精神状态转好,使水样便转为正常;可以使模型组小鼠血清中SOD活性显著上升,MDA活性显著下降;可以降低模型小鼠肠道大肠杆菌DNA水平,升高模型小鼠肠道乳酸菌DNA水平。对于在大肠内钙才被吸收的羧甲基菊芋全粉螯合钙,提高机体抗氧化能力和调整大肠内菌群平衡是可能促进钙离子吸收的机制之一。
Jerusalem artichoke, known as Helianthus tuberosus, is rich in nutrients, including16.6%carbohydrate (among which78%are inulin) when it is fresh. In addition, it contains a small amount of protein, crude fiber, amino acids, vitamin and a variety of minerals. Inulin is widely-grown, highly-adaptable, frigostable, drought-enduring and barren-tolerable. It has been broadly planted in China. It is especially suitable for being planting in Fuxin, Wangfangdian of Dalian and Xiulian of Anshan. It's a precious resource with huge development potential.The processing of inulin needs such complicated processes as deproteinization and edulcoration, which makes its production cost pretty high. In addition, the product obtained has residual chemical reagent, which makes the use of inulin a certain kind of security risk. After decrustation, desiccation and smash, the difficult-to-be-preserved fresh inulin will become inulin granules, the essential component of which is inulin, which both avoids residual solvent from process, maintains lots of nutrients of inulin and better resolve the storage and transportation problem of inulin. So, compared with inulin, the research and development of inulin granules has more practical significance.
     According to research, inulin is extremely processable. It can be used as a replacement of thickener, fat and humectants and is broadly used in processing of frozen mean product, fermented dairy products and pastry etc. It can not only change rheological and texture characteristics of food but also has such physiological functions as promoting proliferation of probiotics and that dietary fiber has. Previous study mainly focused on inulin and we have not yet seen any reports of studies about inulin granules. So, it should be compared and analyzed in order to get the conclusion of whether inulin granules can be used to replace some major processing characteristics of inulin. The processing characteristics of inulin granules are further studied and the gel and fermentative property are fundamentally studied in this paper through the comparison of basic characteristics between inulin granules and inulin. Based on studied characters of inulin granules, its characters have been changed. The chelating character of inulin granules, after character change, is used to make chelated calcium product. Calcium absorption increase effect and mechanism of calcium preparation which use inulin granules as its chelate substrate is also studied, which not only provide technical support for the application of processing character of inulin granules but also reasonably applied high added value of jerusalem artichoke products. The research project has certain social benefit, economy benefit and benefits the improvement of people's health level. It is of great importance in promoting the development of highly-effective agriculture and green products.
     The major conclusions are as follows:
     I. Among the three major kinds of jerusalem artichokes which are planted in Dalian of Lioaning province, Liaodong Xiaohong is more suitable for being used as the raw material of inulin. Hot air dried and smashed inulin granules has higher content of starch, protein, fat, ash and crude fiber. Synanthrin content in inulin granules is73.70±3.65, nearly14%lower than that in inulin. However, synanthrin is still the major content of inulin granules. Self-made inulin granules is faint yellow and in powder form. Also basic content of inulin granules differs from that of inulin largely, such characters as VGI, gelation time, water holding capability, transmittancy, freeze-thaw stability and viscosity are similar, which makes the two to be used to replace each other. Oil holding capability of inulin granules is better than that of inulin, or we can say their difference is substantial (P<0.001). Inulin granules can be used in the processing of fatty ray materials.
     II. Inulin granules have better gel capacity. Its major gel capacity parameters, like gel strength, adhesiveness, elasticity, cohesiveness, chewiness and estorative increases with density of inulin granules. Increasing density of inulin granules is an effective way to increase gel capacity of inulin granules system. Gel capacity depends linearly on mass fraction of inulin granules. When inulin granules'density is equal or lesser than50%, gel capacity changes substantially. When inulin granules'density is equal or lesser than60%, chewiness changes substantially. Other parameters are not evidently influenced by inulin granules' density. Texture performance of inulin granules is not evidently influenced by storage time. Storage temperature can affect gel capacity of inulin granules. When the temperature ranges from60℃to80℃, inulin granules gels. Acid, salt and sugar can affect the formation of inulin granules gel substantially. When PH=6, the intensity of gel reaches its peak, an improvement of6%when compared with the intensity of naturally-formed (pH=6.6) gel of inulin granules system. Polysaccharide and disaccharide, compared with monosaccharide. affects gel capacity of inulin granules more. Low concentration salt affects gel capacity of inulin granules largely while high concentration salt's impact on gel capacity is small.
     III. Inulin granules have higher fermentation performance on lactic acid bacteria, bifidobacterium, lactobacillus bulgaricus and lactobacillus acidophilus. Its propagation effect is2fold of that of Inulin and9.7fold of that of glucose when used as lactic acid bacteria substrate. Its propagation effect on bifidobacterium is5.3fold of that of inulin and16.8fold of that of glucose when used as carbon source. Its propagation effect on lactobacillus bulgaricus is4.8fold of that of inulin and9.6fold of that of glucose when used as carbon source. Its propagation effect on lactobacillus acidophilus is3.7fold of that of inulin and9.3fold of that of glucose when used as carbon source. Inulin has poor fermentation performance on streptococcus thermophilus. Inulin has no propagation effect on streptococcus thermophilus when used as substrate carbon source. Growth status of streptococcus thermophilus in substrate carbon source of inulin granules has small difference than that in MRS substrate. Through single factor experiment and respond surface analysis, fermentation conditions of lactobacillus, when glucose substrate is replaced with inulin granules substrate, are determined:concentration of carbon source is2.1%, fermentation temperature is38℃, inoculation size is10%and actual measured fermented total lactobacillus count is2.48×109cfu/mL.
     Ⅳ. Among all the factors of the processing of CMIG, basification time, quantity ratio between sodium hydroxide and inulin granules, quantity and size ratio between MAC and inulin granules have substantial effect on degree of carboxymethyl substitution. The optimal processing condition is:quantity ratio between monochloroacetic acid and inulin granules is1.6:1; quantity ratio between sodium hydroxide and inulin granules is1.1:1; etherification time is3hours, based on which the substitution degree is1.3. During the process of CMIG production, the following three factors:solution pH value, quantity ratio between CaCl2and CMIG, chelation time, have significant influence on substitution degree. The optimal chelation process is:pH value is7, quantity ratio between CaCl2and carboxymethyl inulin granules is9:100, chelation time is30minutes, based on which the chelation degree is63.7%. Chelating calcium ion capacity of CMIG with different substitution degree differs from each other:in lower substitution degree range (0.2     V. CMIGC may have three chelation forms:chelation within fructose, chelation within inulin granules and chelation between inulin granules. According to liquid mass spectrometry test, percentage of chelation within fructose structure is low and most chelation belongs to the later two structures. According to infrared spectroscopy test,1596cm-1and1425.14cm-1characteristic peaks of carboxymethyl divide into two characteristic absorption peaks:1608.34cm-1and1562.06cm-1as well as1450.21cm-1and1425.14cm-1. According to NMR and MS test, carboxymethylation and chelated calcium have not changed major structure of synanthrin. CMIGC is still furanoid polysaccharose. Oxhydryl in C-3, C-4and C-6is reactive and can be replaced by carboxymethyl. Chemical shift of carbonyl carbon changes from175.1(before chelation) to181.9(after chelation). According to x-ray diffraction test, after chelating calcium ion, sharp diffraction peak will show when2θis5.3°,10.3°and10.7°etc. Diffraction peaks still exists when20is7.6°,25.4°and27.2°. Diffraction peak intensity decreases when8.2°,21.3°and29.7°, compared with CMIG According to electron microscope test, morphological structure of CMIG disappears after it chelates calcium ion. Granules surface see tremendous of calcium grains which inlay in the surface of CMI. According to Differential Scanning Calorimeter and Thermogravimetric Analysis, thermodynamic property of CMIG changes after it chelates calcium ion. Chelation amount of calcium ion is4.99mmol/g(20.01mg/g).
     Ⅵ. Castrating adult female rat through bilateral ovariectomy method to build rat osteoporosis model and use osteoporosis model rat as carrier. After the application of bilateral ovariectomy on rats in model group, femur quality, blood calcium content, UCa content and femur intesntiy FTD indicator are all lower than that of rats in blank control group and the difference is significant. Tissue slice sees pathologic changes as osteocyte decrease. According to morphological changes and measure results of femur tissue pathological slice of rats in model group, the copy of this model is a success. Dry weight, wet weight, blood calcium and bone mineral density of femur in inulin granules calcium group are higher than that in high calcium group while urinary calcium content is lower than that in high calcium group. Slice femur of rats and bone trabecula in the slice increases significantly and thickens, compared with that in model group, and has less osteoclast on the surface of bone trabecula, while osteoblast is higher in volume and more active in proliferation than that in model group. CMIGC can effectively improve blood calcium level, bone mineral density and relieve osteoporosis of osteoporosis model rat. Its absorbance of calcium preparation is superior to traditional carbonic acid calcium preparation.
     Ⅶ. Use CMIGC to intervene rats in intestinal bacilli illness group to establish intestinal bacilli illness rats model. According to test, CMIGC can adjust intestinal flora, improve active state of rat and make those inactive rats in good spirit, turn watery stool into normal; enhance SOD activity of rat's serum and lower MDA content; lower DNA level of colibacillus inside intestinal tract of rats in model group. In terms of CMIGC which can only be absorbed inside large intestine, improving antioxidation ability and adjusting flora balance inside large intestine is one of the mechanisms that is likely to help calcium ion absorption.
引文
1. 白鹏,吕玉敏,顾芳.细菌16S rDNA荧光定量PCR法分析溃疡性结肠炎患者肠道群变化[J].胃肠病学和肝病学杂志,2008,17(7):566-571.
    2. 白卫东,赵文红,梁桂凤等.保加利亚乳杆菌的特性及其应用[J].中国酿造,2009,209(8):10-14.
    3. 蔡文娣,王常红,韩宝芹等.羧甲基壳聚糖钙的制备及性质结构分析[J].化学研究与应用,2006,18(6):726-728.
    4. 陈晋安,刘蓉,郑忠辉等.菊芋低聚果糖促进双歧杆菌生长的研究[J].厦门大学学报(自然科学版),2001,40(4):968-972.
    5. 陈瑞仪,谭剑斌,周轶琳等.氨基酸螯合钙增加骨密度作用的实验研究[J].氨基酸和生物资源,2011,33(1):60-62.
    6. 陈霞.尼尔雌醇辅以氨基酸螯合钙胶囊治疗绝经后骨质疏松症50例[J].中国临床康复,2002,7(5):808-809.
    7. 陈小梅,甘纯玑,叶诗敏.浒苔多糖的提取及其凝胶特性研究[J].食品与机械,2010,26(4):56-59.
    8. 陈旭平,谢怡,邓刘蒙子.不同因素对茶多糖凝胶特性的影响[J].食品科学,2012,33(11):35-38.
    9. 陈有容,齐凤兰,王华.菊芋作为双歧杆菌促生长因子的研究[J].食品科学,2001,22(4):49-52.
    10.大连轻工业学院等.食品分析[M].北京:中国轻工业出版社.2006.
    11.杜先锋,许时婴,王璋.淀粉凝胶力学的研究[J].农业工程学报,2001,17(2):15-18.
    12.段欣,薛文通,张惠.不同品种甘薯全粉基本特性研究[J].食品科学,2009,30(23):119-122.
    13.范庆松,张淑芬等.干法制备高取代度羧甲基淀粉[J].精细化工,2005,22(增刊):112-114.
    14.冯大伟,衣悦涛,刘广洋等.一种菊芋全粉的制备方法:中国,CN103005326A[P].2013-04-03.
    15.冯孝庭.吸附分离技术[M].北京:化学工业出版社,2000.
    16.甘林火,翁连进,邓爱华.制备氨基酸螯合钙的研究进展[J].氨基酸和生物资源,2008,30(1):44-46.
    17.高鹏,刘琳,王菲等.膳食钙吸收的机制及影响因素[J].医学综述,2010,16(11):1666-1668
    18.高献超.羧甲基淀粉的合成及印花性能研究[J].印染助剂,2006,23(2):25-27.
    19.高英立.钙制剂进展与合理应用[J].解放军保健医学杂志,2007,9(1):43-46.
    20.关于批准菊粉、多聚果糖为新资源食品的公告[EB].中华人民共和国卫生部,2009第5号.
    21.关于批准中长链脂肪酸食用油和小麦低聚肽为新资源食品的公告[EB].中华人民共和国卫生部,2012第16号.
    22.郭艳.水解米渣蛋白及制备氨基酸螯合钙的工艺研究[D].四川大学.2006.
    23.郭占勇,刘景利,董方等.化合物羧甲基菊糖的应用:中国,ZL200810140181.2[P],2010-03-22.
    24.韩雪,张兰威.双歧杆菌增殖因子的筛选及培养基的优化[J].食品与生物技术学报,2005,24(4):69-72.
    25.韩友文.微量元素氨基酸螯合物的生物效价及其应用中一些问题[J].饲料博览,2001,14(11):6-9.
    26.何胜生,雷文华,廖菊英.甘薯全粉的研究现状及加工前景[J].食品工业科技,2010,19(10):90-92.
    27.何伟忠,木泰华,于明.马铃薯颗粒全粉评价指标的初步研究[J].食品工业科技,2010,31(9):107-109.
    28.何小维.凝胶多糖的研究与开发[J].食品研究与开发,2006,27(1):155-157.
    29.何新华,刘玲,张静,等.菊芋总糖和菊粉提取工艺条件优化[J].食品研究与开发,2009,30(8):76-79.
    30.胡彩虹,王友明,熊莉.寡果糖对动物胃肠微生态及物质代谢影响研究新进展[J].郑州工程学院学报,2002,23(4):73-79.
    31.胡春红.天然高分子螯合剂的制备及性能研究[D].天津工业大学.2007.
    32.胡建恩,杜昱光,白雪芳等.一种以菊芋为原料的加工生产高质量菊粉方法:中国,CN101037480[P].2007-09-19.
    33.胡娟.菊芋菊糖的纯化及在植脂掼奶油中的应用[D].江南大学.2007.
    34.胡学智.益生元一双歧杆菌生长促进因子[J].工业微生物,2005,35(2):50-60.
    35.黄德娟,谈华平.功能性低聚糖[J].生物学通报,2005,40(12):19-21.
    36.姜吉禹.种植菊芋治理沙漠的方法:中国,CN991226224[P],1999-11-23.
    37.李冲,谷新晰,田晶晶等.保加利亚乳杆菌菊芋复合汁增菌培养基的优化筛选[J].中国食品学报,2012,12(5):82-87.
    38.李丹丹,王雪娇,周杰等.菊粉的羧甲基改性研究[J].食品科学,2012,33(18):63-66.
    39.李丹丹,周杰,张静等.菊糖对馒头品质的影响[J].安徽农业科学,2011,39(32):20047-20049.
    40.李丹丹.牛蒡菊糖的制备对双歧杆菌的增殖及应用研究[D].江南大学,2008.
    41.李凤亭,张利,张义斌等.一种羧甲基改性菊粉的制备方法及应用:中国,CN101602817A[P].2009-12-16.
    42.李明清,孔保华,王宇等.菊粉对鲤鱼肌原纤维蛋白凝胶特性的影响[J].食品工业科技,2010,31(10):105-112.
    43.李同洲,臧素敏,李德发.饲用抗生素与甘露寡糖对仔猪肠道菌群及物质代谢影响的研究[J]饲料研究,1999,20(5):5-9
    44.李信,董英,程新等.乳酸菌发酵菊芋汁及其风味的研究[J].食品与发酵工业,2012,38(10):96-100.
    45.李雪驼,邱华.寡糖的含义及作用和在改善肠道内环境上的意义(上)[J].中国微生态学杂志,1997,9(5):48-53.
    46.李彦春,靳丽强,祝德义.一种补钙的胶原多肽制剂及其制备方法[J].山东轻工业学院学报,2005,24(1):23-24.
    47.李云捷.玉米花粉多糖的分离、纯化、结构鉴定及抗氧化活性的研究[D].华中农业大学.2005.
    48.李志西,张莉,李巨秀.板栗淀粉特性研究[J].西北农业大学学报,2000,28(04):21-27.
    49.刘丽莉.牛骨降解菌的筛选及其发酵制备胶原多肽螯合钙的研究[D].华中农业大学.2010.
    50.刘蓉,郑忠辉.双岐杆菌糖苷酶的研究[J].中国微生态学杂志,1996,8(6):42-45.
    51.刘言家,邹东旭,蔡茜彤等.不同质均分子质量菊糖凝胶的形成条件[J].食品与发酵工业,2012,38(10):52-56.
    52.刘志皋.食品营养学[M].北京:中国轻工业出版社,2004.
    53.刘忠厚.骨质疏松症[M].北京:化学工业出版社,1992.
    54.罗登林,刘胜男,曾小宇等.营养菊粉鱼面生产工艺的研究[J].食品工业,2009,30(4):66-68.
    55.罗登林,许威,袁海丽.菊粉加工性质的研究[J].食品工程,2009,37(9):142-144.
    56.罗意.半干法合成所加即菊粉及其性能研究[D].湖北工业大学.2013.
    57.吕巧枝.甘薯叶可溶性蛋白的提取工艺及功能性研究[D].北京:中国农业科学院,2007.
    58.马越,苑函,陈红梅.苦荞-菊粉降糖饼干配方的研究[J].食品科技,2010,35(10):192-194.
    59.穆莎茉莉,李洪军,刘丽娜.菊粉生理功能研究进展[J].粮食与油脂,2006,19(6):47-48.
    60.牛建彪.菊芋的特征特性及高产栽培技术[J].甘肃农业科技,2005,43(7):53-54.
    61.潘华英.有机化学[M].北京:化学工业出版社,2010.
    62.彭巧云,沈菊泉,魏东芝等.正交试验优化胶原多肽螯合钙的制备工艺[J].食品科学,2013,34(8):94-99.
    63.彭英云,郑清,张涛.菊粉的功能与利用[J].食品研究与开发,2012,33(10):236-240.
    64.齐海萍,吴强,胡文忠等.添加剂对明胶—多糖共混凝胶特性的影响[J].食品科,2011,36(8):240-243.
    65.秦湘红,张群芳.魔芋粉酶解产物与低聚果糖对双歧杆菌的促生长作用比较研究[J].中国微生态学杂志,2003,15(5):261-263.
    66.秦亚兵,徐长警,王华等.宁夏兴建菊芋系列产品加工业的构想与建议[J].宁夏农林科技,2004,47(1):30-32.
    67.秦忠雪,黎源倩,余倩等.高效液相色谱法测定双歧杆菌的有机酸代谢产物[J].现代预防医学,2010,37(2):320-323.
    68.饶志娟,郑建仙,贾呈祥.功能性食品基料-菊粉的研究进展[J].中国甜菜糖业,2002,40(4):26-30.
    69.任海伟,刘春霞,张红建等.菊粉的羧甲基化修饰及结构表征[J].食品与发酵工业,2010,36(11):63-66.
    70.任妍娜.菊芋菊粉制取工艺优化及菊粉凝胶性质的研究[D].武汉工业大学.2011.
    71.宋洪涛,张倩,姜鹏等.采用定时释药技术制备复方中药舒胸缓释制剂的研究.中国中药杂志,2006,31(17):1413-1417.
    72.孙彩玲,田纪春,张永祥.TPA质构分析模式在食品研究中的应用[J].实验科学与技术,2007,5(2):1-4.
    73.孙彩玉,王娟,张坤生.菊粉作为脂肪替代品的工艺研究[J].食品与发酵科技,2010,46(2):56-60.
    74.孙彩玉,张坤生.低脂发酵香肠的工艺研究[J].食品工业科技,2010,31(10):310-315.
    75.孙纪录,贾英民,桑亚新.菊芋资源的开发利用[J].食品科技,2003,28(1):27-29.
    76.孙培龙.姬松茸多糖的分离纯化、结构鉴定和抗肿瘤活性研究[D].杭州:浙江大学,2007.
    77.孙鹏,赵旭博,孙先峰.响应面法优化长双歧杆菌增殖培养基[J].食品科学,2013,34(5):207-212.
    78.孙婷.阴、阳离子菊粉和成及应用性能研究[D].大连理工大学:2007.
    79.孙晓红.菊粉和低聚果糖可增加钙的吸收利用[J].中国骨质疏松杂志,2003,9(1):83-85.
    80.孙艳波,颜敏茹,徐亚麦.菊糖的生理功能及其在乳制品中的应用[J].中国乳品工业,2005,33(8):43-44.
    81.孙月娥,王卫东,高明霞.菊芋菊糖的提取和膳食纤维的制备[J].食品工业科技,2011,32(09):306-309.
    82.谭晓琼,董全,丁红梅.功能保健食品菊糖的研究进展与发展前景[J].中国食物与营养,2007,13(1):22-23.
    83.谭晓琼,潘志强,,董全.菊芋精粉的粘性研究[J].中国食品添加剂,2007,83(4):98-101.
    84.谭义秋.羧甲基淀粉的合成及应用研究进展[J].江苏农业科学,2009,37(4):291-293.
    85.田向东,田伟民,陈志刚.菊芋全粉的生产方法:中国,CN101940306A[P].2011-01-12.
    86.仝瑛.菊芋菊糖的提取纯化抗氧化活性及菊糖复合饮料工艺研究[D].西安:西北大学,2010.
    87.涂宗财,刘玮,王辉等.大豆多糖胶的凝胶性研究[J].食品工业科技,2011,32(8):118-122
    88.万红兵,田洪涛,山丽杰等.嗜热链球菌与保加利亚乳杆菌麦芽复合汁增菌培养基的优化筛选[J].食品与发酵工业,2006,32(6):51-55
    89.万荣峰,王丽平,江善祥.两种低聚糖对乳酸菌体外增殖的影响[J].中国组织工程与临床康,2000,11(19):3768-3770.
    90.汗海波.低酯果胶的凝胶质构性能研究[J].食品科学,2006,27(12):123-129.
    91.汪学荣,彭顺清,吴峰.钙代谢及生理功能研究进展[J].中国食品添加剂,2005,12(2):42-44.
    92.汪艳群.五味子多糖的分离_结构鉴定及免疫活性研究[D].沈阳农业大学.2012.
    93.王凤,高华援,刘峰.功能性菊芋开发利用前景[J].中国蔬菜,2008,28(9):8-9.
    94.王建芳,陈芳,靳亚平.嗜热链球菌适宜培养条件的研究[J].西北农业学报,2008,17(2):56-58.
    95.王建华,刘艳艳,姚斌,王亚茹.高产菊粉酶酵母筛选、发酵和酶学性质研究[J].生物工程学报,2000,16(1):60-63.
    96.王建华,腾达,姚怡等.黑曲霉菊粉内切酶基因和表达该基因的重组毕赤酵母菌株:中国,03153636.0[P].2003-05-9.
    97.王建华.新型安全饲料添加剂研制与开发[M].北京:科学出版社,2005.
    98.王健.低脂肉制品技术研究[D].天津商业大学,2011.
    99.王阶标,李秀玲,王学生等.活性钙在大鼠体内吸收利用率的研究[J].华北煤炭医学院学报,1999,1(5):388-390.
    100.王珊珊,孙爱东,何洪巨.菊粉的功能性作用及开发利用[J].中国食物与营养,2009,15(11):57-59.
    101.魏华琳,刘宾,胡长鹰等.大蒜果糖对乳杆菌的体外增殖作用研究[J].食品工业科技,2010,31(10):182-185
    102.魏凌云,王建华,郑晓冬等.菊粉研究的回顾与展望[J].食品与发酵工业,2005,31(7):82-83.
    103.魏凌云.菊粉与老年人健康[J].中国食物与营养,2005,11(6):54-55.
    104.吴宇华.氨基酸螯合钙胶囊治疗皮肤病的疗效观察[J].中国医院药学杂志,2002,22(10):610-61
    105.谢苒荑,杨晓波,肖英宏.不同因素对明胶凝胶特性的影响研[J].食品工业,2009,30(1):51-53.
    106.熊政委,董权.菊糖的生理功能和在食品中应用的研究进展[J].食品工业科技,2012,33(20):351-354.
    107.胥伟,迟玉杰,孙强.糖基化卵清蛋白的凝胶性与凝胶稳定性[J].食品科学,2012,33(15):15-18.
    108.徐光鹏.菊芋酸奶工艺优化及营养学评价[D].郑州大学.2011.
    109.徐倩.对建立不同血钙水平家兔动物模型的研究[D].河北北方学院,2007.
    110.徐伟,马力,袁永俊等.低甲氧基果胶的胶凝机理及防止预凝胶形成的措施[J].食品与发酵工业,2004,30(3):90-93.
    111.徐长警,王建华等.新兴经济作物——菊芋[M].北京:台海出版社,2005.
    112.许怀远,任向妍,王壵.结冷胶产品凝胶特性的影响因素研究[J].食品科技,2009,34(11):263-268
    113.许威,罗登林,陈瑞红.菊粉酸降解动力学研究[J].食品科学,2012,33(15):95-98.
    114.许威.菊粉物化特性的研究[D].河南科技大学,2012.
    115.严瑞瑄.水溶性高分子[M].北京:化学工业出版社,2010.
    116.杨权荣,吕生华.羧甲基淀粉研究进展[J].日用化学品科学,2006,29(5):26-29.
    117.杨艳丽,李仲谨,王征帆等.水基钻井液用改性玉米淀粉降滤失剂的合成[J].油田化。学,2006,23(3):198-200.
    118.杨振,杨富民,王雪燕.菊芋中菊粉提取工艺优化研究[J].甘肃农业大学学报,2009,44(5):147-151.
    119.杨振.菊芋中菊粉的提取、纯化及抗氧化性研究[D].甘肃农业大学.2009.
    120.叶兴乾,张贵平,苏平等.栗粉的理化与功能特性研究[J].中国粮油学报,2001,16(4):43-46.
    121.殷洪,林学进.菊粉、低聚果糖的研究进展[J].中国食品添加剂,2008,84(05):97-101.
    122.张丹凤.功能性低聚糖及其在乳制品中的应用[J].新疆畜牧业,2005,21(6):21-23.
    123.张董燕.鸡源乳酸杆菌的分离鉴定及保存技术研究[D].河北农业大学,2007.
    124.张帆,王建华,刘力恒等.菊粉寡糖促进嗜酸乳杆菌生长的研究[J].食品与发酵工业,2004,30(4):49-51.
    125.张海瑞.提高大豆蛋白凝胶性的研究[D].江南大学.2012.
    126.张宏梅,陈玲,李琳.微波在淀粉改性中的应用[J].现代化工,2001,21(5):60-62.
    127.张建平,张泽生,王金菊.菊糖及其酶解产物对长双歧杆菌的促生长作用[J].天津科技大学学报,2011,26(4):17-20.
    128.张金生,王艳红,李丽华等.单模聚焦微波辐射对马铃薯淀粉羧甲基化影响因素的研究[J].粮食与饲料工业,2006,29(1):27-29.
    129.张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001.
    130.张银桃,唐建明,侯亚平等.骨关节炎与骨质疏松症关系的研究[J].中国现代医学杂志,1996,6(3):9-10.
    131.张友松.变性淀粉的生产与应用手册[M].北京:中国轻工业出版社,1999.
    132.赵国华,师树.胡麻籽分离蛋白的乳化及凝胶特性研究[J].中国粮油学报,2009,24(12):84-87.
    133.赵克健.现代药学名词手册[M].北京:中国医药科技出版社,2004.
    134.赵琳静,燕方龙,宋小平.菊芋菊糖的研究进展[J].食品研究与开发,2008,29(4):186-189.
    135.赵岳轩,温建志.水处理用羧甲基淀粉的合成[J].水处理技术,2006,32(3):76-77.
    136.郑晓丽,芦春明,韩璐.膜分级菊粉及其部分理化性质[J].大连工业大学学报,2011,30(5):337-340.
    137.中国科学院知识创新工程重要方向项目菊芋生物炼制关键生物技术及其产品开发顺利通过验收[EB/OL].http://www.dicp.ac.cn/xwzx/kjdt/201003/t20100315_2797793.htmL.2010-3-15.
    138.钟碧疆,高文宏,何瑞雪.阳离子对大豆多糖絮凝性的影响[J].食品工业科技,2011,32(4):109-111.
    139.钟方虎,谭立,郑伟等.高分辨气相色谱法在快速鉴别厌氧菌中的应用[J].现代仪器,2000,6(6):8
    140.周瑞,田呈瑞,张静,等.鸡腿菇多糖羧甲基修饰及其抗氧化性研究[J].食品科学,2010,31(13):10-15.
    141.周中凯.新型饲料添加剂—功能性低聚糖[J].广东饲料,1999,8(1):4-7.
    142.周珠扬,朱磊,杨杰.菊芋的功能及开发利用前景[J].西藏科技,2009,25(6):73-75.
    143.朱宏吉,郭强.菊粉应用研究的新进展[J].中国糖料,2000,22(4):55-57.
    144.朱孟勇,赫长胜,王彩娇等.巴戟天多糖对骨质疏松大鼠骨密度及血清微量元素的影响[J].中草药,2010,41(9):1513-1515.
    145. Andre K,Mazeau I,Tvaroska,et al.Molecular and Crystal Structures of Inulin from Electron Dif fraction Data[J].Macromolecules,1996,29(13):4626-4635.
    146. Bacon JSD,Edelman J.The carbohydrates of the Jerusalem artichoke and other composite [J].Bi ochemical Journal,1951,48(1):114-126.
    147. Batelaan JG,Peters JA.Bekkum HA,et al.Carboxymethyl inulin:USA,US5777090A[P].1998-7-7
    148. Bayarri S,Chulia I,Costell E.Comparing A.-carrageenan and an inulin blend as fat replacers in carboxymethyl cellulose dairy desserts.Rheological and sensory aspects[J].Food Hydrocolloids,2 010,24(6-7):578-587.
    149. Beck AB,Buegl S.A novel dual radio-and stable-isotope method for measuringcalcium absorpti on in humans:comparison with the whole-body radioisotope retention method[J].Am J Clin Nu tr,2003,77(2):399-405.
    150. Berends R,Kuzee,et al.Process for controlling scale in the sugar process:USA,US6506258[P],2 003-1-14.
    151. Blaschek W.Kasbauer J,Kraus J,et al.Pythium aphanidermatum:culture, cell-wall composition, and is olation and structure of antitumour storage and solubilised cell-wall(1-3),(1-6)-beta-D-glucans[J].Carb ohydrate Research,1992,231 (2):293-307
    152. Boels L.Witkamp G. Carboxymethyl Inulin Biopolymers:A Green Alternative for Phosphonate Calc ium Carbonate Growth Inhibitors[J].Crystal Growth & Design,2011,11(9):4155-4165.
    153. Bot A.Erle U.Vreeker, Vreeker R, et al.Influence of crystallisation conditions on the large defo rmation rheology of inulin gels [J].Food Hydrocolloids,2004,18(4):547-556.
    154. Brighenti F B, Casiraghi M C, Canzi E, et al.Effect of consumption of a ready-to-eat breakfa st cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers [J].European Journal of Nutrition,1999,53(9):726-733.
    155. C Swatch Nair.A Mira Flores,E Olsen,et al.Removal/prevention method redeposition protein:Ca nada,CA2782310A1 [P].2012-12-26.
    156. Cameron M A.Paton L M,Nowson C A.The effect of calcium supplementation Oil bone densit y in premenarcheal females:a co-twin approach[J].J Clin Endocrinol Metab,2004,89(10):4916-49: 22.
    157. Carpentier AF, Chen L,Maltoti F.Oligodeoxynucleotides containing CpG motifs can Induce Rej ection of a Neuroblastoma in mice [J].Cancer Research,1999,59(2):29-54.
    158. Carpita NC, Kanabus J, Housley T L. Linkage Structure of Fructans and Fructan Oligomers f rom Triticum aestivum and Festuca arundinacea Leaves[J]Journal of Plant Physiology,1989,13 4(2):162-168.
    159. Cecile M,Gordon AM.The effect of inulin and fructo-oligosaccharide supplementation on the t extural.rheological and sensory properties of bread and their role in weight management:A rev iew[J].Food chemistry,2012,133(2):237-248.
    160. Chaudhari S,Gounden KC, G Srinivasan. High resolution 13C-NMR spectroscopy of sodium carbox y methyl cellulose [J]. Polymer Chemistry,1987,25(1):337-342.
    161.Coudray C,Bellanger J,Castiglia DC. Effect of soluble or partly soluble dietary fibres supplem entation on absorption and balance of calcium, magnesium, iron and zinc in healthy young m en.[J].European journal of clinical nutrition,1997,51(1):375-380.
    162. De L.Hoebregs.Progress in the elueidation of the composition of ehieory inulin[J].Starch,1994,4 6(5):193-196.
    163. Delzemme NM.Roberfroid MB.Physiological effects of nondigestible oligosaccharides[J].Lebens m Wiss Technol,1994,27(1):1-6.
    164. Demadis K,Leonard I. Green polymeric additives for calcium oxalate control in industrial water an d process applications[J].Materials Performance,2011,50(10):40-44.
    165. Demigne C.Levrat MA.Younes H,et al.Interactions between large intestine fermentation and die tary calcium[J].European Journal of Clinical Nutrition,1995,49(3):235-238.
    166. DOG AN Ozlem.Mualla ONER and Ozge CINEL.The inhibitory effects of inulin biopolymers on the seeded growth of hydroxyapatite [J].Journal of the Ceramic Society of Japan, 2010,118(7):579-586.
    167. Dorine L,Verraest,Joop A,Peters,Herman van Bekkum,et al.Carboxymethyl Inulin:A New Inhi bitor for Calcium Carbonate Precipitation[J].Journal of the American Oil Chemists Society,1 996,73(1):55-62.
    168. Dorine LV,Joop A P,Jan GB,et al.Carboxymethylation of inulin[J].Carbohydrate Research,1995,2 71(1):101-112.
    169. Edelman J,Jefford TG. The Mechanisim Of Fructosan Metabolism In Higher Plants As Exemp lified In Helianthus Tuberosus[J].New Phytologist,1968,67(3):517-531.
    170. Gennaro S d,Birch G G,Parke S A,et al. Studies on the physicochemical properties of inulin a nd inulin oligomers [J].Food Chemistry,2000,68(2):179-183.
    171. Gibson GR, Bestty ER, Wang X, etc.Selective stimulation of bifidobacteria in the human colo n by oligofrucose and inulin [J].Gastroenterology,1995,108(4):975-982.
    172. Gilson GR, Roberfroid MB. Dietary modulation of the human colonie microbiota:introducing the concept of prebiotics [J].Journal of Nutrition,1995,125(8):1401-1412.
    173.Grege JL.Nondigestible carbohydrate and mineral bioavailability[J].the journal of nutrition,1999, 129(7):1434-1435.
    174. Hond ED, Geypens B, Ghoos Y.Effect of high perfornance chicory inulin constipation[J].Nutre tion Research,2000,20(5):731-736.
    175.Horie D,Takahashi M,Aoki K,et al.Clodronate stimulates bone formation as well as inhibits bo ne resorption and increases bone mineral density in rats fed a low calcium diet[J].Journal Me dical Dental Science,2003,50(1):121-132.
    176. Jingli Liu,Fang Dong,et al.The moisture absorption and retention abilities of carboxymethyl in ulin and quaternized inulin[C].4th International Conference on Bioinformatics and Biom edical Engineering,iCBBE 2010.
    177. Johannsen F R.Toxicological profile of carboxymethyl inulin[J].Food and chemical toxicology,2 003,41(1):49-59.
    178. Kaplan H,Hutkins RW.Fermentation of Fructooligosaccharides by Lactic Acid Bacteria and Bifi dobacteria[J].Applied and Environmental Microbiology,2000,66(6):2682-2684.
    179. Kaur N,Gupta A K.Applications of inulin and oligofructose in health and nutrition[J].Journal o f Biosciences,2002,27(7):703-714.
    180. Kim I W.Robertson R E,Zand R.Effects of some nonionic polymeric additives on the crystalli zation of calcium carbonate[J].Cryst Growth Des,2005,5(2):513-522.
    181. Kim M.Shin HK.The water-soluble extract of chicory reduces glucose uptake from the perfuse d jejunum in rats s[J].Journal of Nutrition,1996,126(9):2236-2242.
    182. KimY,Faqih MN,Wang SS.Factors affecting gel formation of inulin[J].Carbohydrate Polymers,2 001,46(2):135-145.
    183. Kirboga S.Oner M. The inhibitory effects of carboxymethyl inulin on the seeded growth of calciu m carbonate[J].Colloids and Surfaces,2012,91(10):18-25.
    184. Kirboga S,Oner M.Application of experimental design for the precipitation of calcium carbonate in the presence of biopolymer[J].Powder Technology,2013,249(11):95-104.
    185. Kirboga S,Oner M.Investigation of calcium carbonate precipitation in the presence of carboxymethy 1 inulin[J].CrystEngComm,2013,15(18):3678-3686.
    186. Kleessen B.Sykura B,Zunft B,et al.Effects of inulin and lactose on fecal microflora,microbial a ctivity and bowel habit in elderly constipated persons[J].American Journal of Clinical Nutrition ,1997,65(5):1397-1402.
    187. Kobayashi M,Hara K,Akiyama Y.Effect of menatetrenone(VK2) on bone mineral density and b one strength in Ca/Mg deficient rats[J].Nihon yakurigaku zasshi,2002,120(3):195-204.
    188. Koca N,Metin M.Textural, melting and sensory properties of low-fat fresh kashar cheeses prod uced by using fat replacers [J].International Dairy Journal,2004,14(4):365-373.
    189. Kojima E.Molecular weight dependence of the antitumor activity of schizophyllan[J].Agric Bio 1 Chem,1986,50(1):231-232.
    190. L John Kennedy; J Judith Vijaya; G Sekaran,et al.Equilibrium,kinetic and thermodynamic studi es on the adsorption of m-cresol onto micro-and mesoporous carbon [J].Journal of hazardous materials,2007,149(1):134-143.
    191. Lakshminarayanan R,Valiyaveettil S,Loy G L.Selective nucleation of calcium carbonate polymo rphs:role of surface functionalization and poly(vinyl alcohol) additive.Cryst Growth Des,2003,3 (6):953-958.
    192. Luciaan B.Geert JW.Carboxymethyl Inulin Biopolymers:A Green Alternative for Phosphonate Calcium Carbonate Growth Inhibitors [J].Crystal Growth&Design,2011,11(9):4155-4165.
    193. Luo J.Rizkalla SW,Alamowitch C,et al.Chronic consumption of short-chain fructooligosaccharid es by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism[J].American Journal of Clinical Nutrition,1996,63(6):939-945.
    194. M B Roberfroid,J A Van Loo,G R Gibson.The bifidogenic nature of chicory inulin and its hy drolysis products[J].Journal of Nutrition,1998,128(1):11-19.
    195. Mandalal, Polaki A, YanniotisS. Influence of frozen storage on bread enriched with different in gredients [J].Journal of Food Engineering,2009,92(2):137-145.
    196. Nicola DD, Maria GC, Nicola C,et al.Effect of supplementation of calcium and Vitamin D on bone mineral density and bone mineral content in peri- and post-menopause women:A doubl e-blind, randomized, controlled trial[J].Pharmcologica Research,2004,50(6):637-641.
    197. Niness K.Breakfast foods and the health benefits of inulin and oligofructose[J].Cereal foods w orld,1999,44(2):79-81.
    198. Niness K.R.Inulin and oligofructose:what are they[J].American Society for Nutritional Science, 1999,129(7):1402-1406.
    199. Nisha Aravind,Mike J Sissons, Christopher M Fellows,ei al.Effect of inulin soluble dietary fib re addition on technological, sensory, and structural properties of durum wheat spaghetti [J].Fo od Chemistry,2012,132(2):993-1002.
    200. Oku T.Tokunaga R.Improvement of metabolism:efect of fructo-oligosaccharides on rat intestime [C].Proc.2nd Neosugar Research Conference,Tokyo,Japan.1984,53-65.
    201.Oliveira r,perego p.Oliveira m,et al.Growth,organic acids profile and sugar metabolism of Bifid obacterium lactis in co- culture with Streptococcus thermophilus:the inulin effect[J].Food Rese arch International,2012,48(1):21-27.
    202. Pederson A, Sandstrom B, Van Amelsvoort, et al.The effect of ingestion of inulin on blood li pids and gastrointestinal symptoms in healthy females[J].British Journal of Nutrition,1997,78 (2):215-222.
    203. Peressini D, Sensidoni A.Effect of soluble dietary fibre addition on rheological and breadmaki ng properties of wheat doughs [J].Journal of Cereal Science,2009,49(2):190-201.
    204. Peter D,Cooper,Margrit C.Anti-complementary action of polymorphic "solubility forms" of part iculate inulin [J].Molecular Immunology,1986,23(8):895-901.
    205. Poinot P,Arvisenet G,Grua-PriolJ,et al.Influence of inulin on bread:Kinetics and physico-c hemical indicators of the formation of volatile compounds during baking [J].Food Chemistry,2 010,119(4):1474-1484.
    206. Prasanna P,Grandison A,Charalampopoulos D.Effect of dairy-based protein sources and tempera ture on growth,acidification and exopolysaccharide production of Bifidobacterium strains in ski m milk[J].Food Research International,2011,47(1):6-12.
    207. Rahman M,Kim W,Ito T,et al.Growth promotion and cell binding ability of bovine lactoferrin to Bifidobacterium longum[J].Anaerobe,2009,15(4):133-137.
    208. Reddy BS, Hamid R, Rao CV.Effect of dietary oligofructose and inulin on colonic preneopla stic aberrant crypt foci inhibition [J].Carcinogenesis,1997,18(7):1371-1374.
    209. Reid IR,Browner W,Riggs B L.Effect of calcium supplementation on bone loss in postmenopa usal women [J].New England Journal Medicine,1993,328(7):460-464.
    210. Richard.K.R.The potential of inulin as a functional ingredient [J].British Food Journal,1995,97 (4):30-32.
    211. Roberfroid MB.Chicory fructooligosaccharide and the gastrointestinal tract[J].Nutrition,2000,16 (7):677-679.
    212. Roberfroid M.Functional food concept and its application to prebiotics[J].Dig Liver Dis,2002,3 4(9):105-110.
    213. Roberfroid MB.Prebiotics and synbiotics:concepts and nutritional properties[J].Journal of Nutriti on,1998,80(4):197-202.
    214. Robert Berends.Hendrika Cornelia Kuzee.Process for controlling scale in the sugar process:US A,US6506258B1[P].2003-1-14.
    215. Robert P.Heaney MD,Dowell M S.Absorbability and Cost Effectiveness in Calcium Supplement ation[J]. Journal of the American College of Nutrition,2001,20(3):239-246.
    216. Rogge TM.Stevens CV.Facilitated synthesis of inulin esters by transesterification[J].Biomacromo lecules,2004,5(5):1799-1803.
    217. Rosell CM,Santos,E,Collar C.Physical characterization of fiber-enriched bread doughs by dual mixing and temperature constraint using the Mixolab[J].European Food Research And Technol ogy,2010,231(4):535-544
    218. Russell J B,Diez-Gonzalez F.The effects of fermentation acids on bacterial growth[J].Advances in Microbial Physiology,1997,39(8):205-234.
    219. Schroeder B,Dahl M,Regina B. Duodenal Ca2+ absorption is not stimulated by calcitriol durin g early postnatal development of pigs[J].AJP Gastrointestinal and Liver Physiology,1998,275(2): 305-313
    220. Sebastien NR,Michel P.Claude D.Development of gelling properties of inulin by microfluidizati on[J].FoodHydrocolloids,2010,24(4):318-324.
    221. Shen D.Shcolnik D,Perkins R,et al. Evaluation of scale inhibitors in marcellus high-iron waters[J]. Oil and Gas Facilities,2012,1,(5):34-41.
    222. Silva RF.Use of inulin as a natural texture modifier [J].Cereal Foods World,1996,40(10):792-794.
    223. Singh J,Singh N.ShaimaT R,et al.Physicochemical.rheological and cookie making properties of corn and potato flours[J].Food Chemistry,2003,83(3):387-393.
    224. Stefan Kasapis.The morphology of the gellan network in a high-sugar environment[J].Food Hy drocolloids,2006,20(3):132-136
    225. Stephane C,Nelly K, Roger P, Christian Magne.et al. NMR characterisation of inulin-type fruct ooligosaccharides as the major water-soluble carbohydrates from Matricaria maritima(L.)[J]. Ca rbohydrate research,2004,339(10):2445-2449
    226. Trinidad TP,Wolever TM,Thompson LU.Effect of acetate and propionate on calcium absorption in the rectum and distal colon of humans[J].Am J Clin Nutr,1996,63(4):574-578.
    227. Tripodo G,Pitarresi G,Palumbo FS,et al.UV-photocrosslinking of inulin derivatives to produce h ydrogels for drug delivery application[J].Macromol Biosci,2005,5(11):1074-1084.
    228. Tungland B.A call for dietary fibers status for inulin[J].Cereal Food world,2000,45(9):413-418.
    229. Verraest DL,da Silva L P,Peters J A,et al.Synthesis of Cyanoethyl Inulin,Aminopropyl Inulin a nd Carboxyethyl Inulin[J].Starch,1996,48(5):191-195.
    230. Verraest DL,Peters JA,Batelaan JG,et al.Carboxymethylation of inulin[J].Carbohydrate Research, 1995,271(1):101-102.
    231. Verraest DL,Peters JA,Bekkum HV,et al.Carboxymethyl inulin:A new inhibitor for calcium carb onate precipitation[J].Journal of Oil & Fat Industries,1995,73(l):55-62.
    232. Vervoort L,Van den Mooter G,Augustijns P,et al.Inulin hydrogels as carriers for colonic drug t argeting:I.Synthesis and characterization of methacrylated inulin and hydrogel formation[J].Pha rm Res,1997,14(12):1730-1737.
    233. Villegas B,Carbonell I.Costell E.Inulin milk beverages:Sensory differences in thickness and ere aminess using R-index analysis of the ranking data[J].Journal of sensory studies,2007,22(4):377-393.
    234. Wada,Tadashi,Ohguchi,et al.Inulin synthase and process for producing inulin by using the sam e:USA,US7214521[P],2002-1-3.
    235. Wronski TJ,Schenck PA,Cintron M,et al.Effect of body weight on onsteopenia in ovariectomiz ed rats[J].Calcif Tissue Int,1987,40(3):155-159.
    236. Wytske dV,Stouthamer AH.Fermentation of glucose,lactose,galactose,mannitol and xylose by bif idobacteria[J].Journal of Bacteriology,1968,96(2):472-478.
    237. Yadav AR,Guha M,Reddy SY,et al.Physical properties of acetylated and enzyme-modified potat o and sweet potato flours[J].Journal of Food Science,2007,72(5):249-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700