用户名: 密码: 验证码:
苏云金芽胞杆菌等微生物对环境中毒性金属的固定转化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从亚微观角度研究并揭示微生物与毒性金属相互过程中的生物与化学等方面微观机理,有利于在更深刻地认识生物处理毒性金属污染的本质问题的基础上,发展出更为成熟高效的生物去除毒性金属污染及其回收利用技术。本研究以污染位点分离得到的非病原菌(苏云金芽胞杆菌、蜡状芽胞杆菌和枯草芽胞杆菌等细菌)为研究对象,探讨它们在与毒性金属相互作用过程中的微观变化及其对毒性金属固定转化机制,利用廉价的培养基对细菌进行培养并用于后续毒性金属处理。
     通过研究发现:(1)从新疆铀矿污染位点分离得到的2株苏云金芽胞杆菌对毒性金属铀具有很好的耐受和吸附能力,最大的吸附容量大于400mg U/g干菌。X射线粉末衍射(XRD)、原子力显微镜(AFM)、扫描电镜(SEM)、透射电镜(TEM)和傅立叶红外变换光谱(FT-IR)等研究结果表明,在无外加营养源的条件下,细菌能够利用表面的磷酸、-CH2和酰胺类官能团介导U(Ⅵ)形成无定型的针状含铀化合物,并且在固定的过程中铀仍以U(Ⅵ)的形式存在。随着时间的延长,吸附在细胞上的无定型铀化合物将逐渐进入到细胞的内部,并且形成具有很好晶型的磷铵铀矿。此外,研究发现细胞质对铀的固定能力要强于细胞碎片,表明磷铵铀矿的形成可能是由于细胞质内丰富的磷酸或者其它的有机质导致的晶化;
     (2)课题组成员前期的研究表明枯草芽胞杆菌的浮游细胞和生物膜对毒性金属铬的还原和固定能力具有很大的差异。进一步通过电镜观察及价态分析等探讨细菌与铬相互作用过程中的微观机制及造成差异的原因,TEM研究表明与100mg/L铬作用120h后,浮游细胞的细胞壁变得模糊不完整,并且在细胞的内部都有Cr信号,然而生物膜细胞的结构没有明显的变化,在细胞的内部无Cr信号。此外,X-射线光电子能谱(XPS)的结果则表明被浮游细胞和生物膜固定的铬均以三价铬的形式存在。基于以上的研究认识,提出联合利用浮游细胞和生物膜对10-L含铬电镀废水中的铬实现完全的还原和固定,处理后的铬浓度达到国家废水的排放标准(总铬浓度≦1.5mg/L)。同时被固定的铬能够以Cr2O3的形式被回收;
     (3)以福建屏南毒性金属位点分离的蜡状芽胞杆菌为例,研究其对毒性金属镍的固定机理。结果发现该菌对镍的固定为快速的过程,在2h时吸附达到平衡,对镍的吸附量为17.7mg/g(干菌)。此外,电镜观察(AFM、SEM和TEM)、破碎实验、FT-IR和XRD分析结果表明,吸附以胞外固定为主,同时酰胺类和羧化类官能团参与了镍的固定,并且被固定在细菌上的镍是以无定型的形式存在;
     (4)为了降低细菌在处理毒性金属中的成本以及增加实际应用的可能性,本文使用豆腐废水作为微生物的廉价培养基,并将培养好的微生物应用于实际电镀废水中铬、镍等毒性金属的去除。研究发现蜡状芽胞杆菌和人苍白杆菌在稀释的豆腐废水中就能很好的生长,表明豆腐水能够提供细菌生长的必需营养物质。此外,在添加了糖渣浸出液的豆腐废水且pH值为7.5时为细菌的最适宜生长条件。进一步的研究则表明在最佳条件下分别生长的蜡状芽胞杆菌和人苍白杆菌,对初始浓度分别为214mg/L和367mg/L的含铬、镍的电镀废水均具有较好的去除效率,并且细菌的菌量越大去除效率越高,去除效率可以达到80%以上。
Reveal the mechanism on biological and chemical changes between the reaction of microbial organisms and toxic metals from microcosmic perspective, is conducive to form deeply understanding of the nature of biological treatment for toxic metals pollution, and then develop more mature and efficient technologies on the removal and recycling of toxic metals. In this work, we chose the non-pathogenic soil bacteria (Bacillus thuringiensis, Bacillus subtilis, Bacillus cereus and other bacteria) as target strains, investigated the microscopic changes and transformation mechanism in the reaction process of toxic metals and bacteria, and utilized the bean curd wastewater for bacterial culture and applied it into the removal of toxic metals.
     The main results were as follows:(1) Two B. thuringiensis strains, which were isolated from uranium-contaminated soil samples in Xinjiang, had highly resistant and possessed super accumulation ability to U(VI), and the maximum accumulation capacity was around400mg U/g biomass (dry weight). X-ray powder diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) analyses indicated that U(VI) was adsorbed on the bacterial surface firstly through coordinating with phosphate,-CH2and amide groups, then needle-like amorphous uranium compounds were formed, and the uranium immobilized on bacteria was still at the U(VI) state. With the extension of time, the adsorbed uranium nanoparticles entered into the intracellular region, and then the amorphous uranium compound was transformed into crystalline tetragonal-uramphite. Besides, the cytoplasm of B. thuringiensis had better uranium-immobilization ability than its cell debris, suggesting that the formation of uramphite was attributed to the rich phosphate or other organics in cytoplasm.
     (2) Previous studies by our group member indicated that the planktonic cells and biofilms of B. subtilis had different effects on Cr(Ⅵ) reducution and Cr(Ⅲ) immobilization. Furthermore, electron microscope observation and valence analysis were applied in the reaction process betweeen chromium and bacteria, in order to investigate the mechanism and explore the reasons for the different ability of reduction and immobilization. TEM analysis indicating that the planktonic cells of B. subtilis became lean and rough after treated with100mg/L Cr(Ⅵ) for120h, and the chromium signal could be detected inside of bacteria by EDS analysis. However, after the Cr(Ⅵ) treatment, neither morphologic change nor chromium was detected inside of biofilm cells. Moreover, the result of X-ray photoelectron spectroscopy (XPS) indicating that the chromium immobilized on biofilms and planktonic cells was at Cr(Ⅲ) state. Additionally, a strategy combining the advantages of planktonic cells and biofilms was proposed, and the chromium removal from electroplating wastewater was successfully achieved in a10-L pilot-scale experiment, the remaining non-immobilized Cr was lower than the wastewater release standard of China (total Cr(?)1.5mg/L). Simultaneously, the immobilization Cr(Ⅲ) on bacteria can be further recycled in the form of Cr2O3.
     (3) The biosorption mechanism of Ni(Ⅱ) by B. cereus was investigated in this study. This bacterium was isolated from a toxic metals contamination site in Pingnan, Fujian Province. It was found that the adsorption equilibrium reached rapidly in2h and the maximum nickel adsorption capability of B. cereus was17.7mg/g (dry weight). Additionally, electron microscopic (AFM, SEM and TEM), ultrasonic disrupted experiment, FT-IR and XRD analysis confirmed that the extracellular immobilization was the main biosorption process, the bacterial amido and carboxyl function groups had involved in nickel immobilized, and the Ni(Ⅱ) collected by the bacteria was amorphous.
     (4) In order to reduce the cost and increase the feasibility of real application in removal of heavy metals by bacteria, the discharged soybean wastewater was used as cheap culture for bacterial cultivation, and the cultured bacteria were applied to remove toxic metals from electroplating wastewater. It was found that B. cereus and Ochrobactrum anthropi CTS-325could be well grown in dilute soybean wastewater, means that the soybean wastewater could ensure the necessary nutrition for bacterial growth. In addition, soybean wastewater with adding sucrose residue leach solution (pH7.5) was the optimum condition for bacterial growth. Further studies revealed that when the initial concentrations of chromium and nickel in electroplating wastewater were214mg/L and367mg/L respectively, the cultured bacteria in optimum medium had a strong capacity of Cr(VI) and Ni(II) removal, Meanwhile, the biomass of B. cereus and O. anthropi CTS-325could be greatly affected the removal efficiency, the more bacterial biomass, the better removal ability, and the removal efficiency could be higher than80%.
引文
[1]Porter, S. K.; Scheckel, K. G.; Impellitteri, C. A.; Ryan, J. A., Toxic metals in the environment:Thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg[J]. Critical Reviews in Environmental Science and Technology,2004,34(6):495-604.
    [2]Apostoli, P., Criteria for the definition of reference values for toxic metals[J]. Science of the Total Environment,1992,120(1-2):23-37.
    [3]程扬健.微生物与毒性金属铬、铀相互作用机理研究及环境应用[D].中国科学院研究生院,2012.
    [4]Shi, G.; Chen, Z.; Bi, C.; Li, Y.; Teng, J.; Wang, L.; Xu, S., Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China[J]. Environmental Pollution, 2010,158(3):694-703.
    [5]崔向向.污灌区毒性金属在土壤中的迁移规律研究[D].中国地质科学院,2012.
    [6]李欣.电动修复技术机理及去除污泥和尾砂中重金属的研究[D].湖南大学,2007.
    [7]Giller, K. E.; Witter, E.; McGrath, S. P., Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:A review[J]. Soil Biology & Biochemistry,1998,30(10-11):1389-1414.
    [8]Gadd, G. M., Heavy-metal accumulation by bacteria and other microorganisms[J]. Experientia,1990,46(8):834-840.
    [9]Davis, T. A.; Volesky, B.; Mucci, A., A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Research,2003,37(18):4311-4330.
    [10]Mehta, S. K.; Gaur, J. P., Use of algae for removing heavy metal ions from wastewater:Progress and prospects[J]. Critical Reviews in Biotechnology,2005, 25(3):113-152.
    [11]Ngah, W. S. W.; Hanafiah, M. A. K. M., Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents:A review[J]. Bioresource Technology,2008,99(10):3935-3948.
    [12]Ahluwalia, S. S.; Goyal, D., Microbial and plant derived biomass for removal of heavy metals from wastewater[J]. Bioresource Technology,2007,98(12): 2243-2257.
    [13]Hammaini, A.; Gonzalez, F.; Ballester, A.; Blazquez, M. L.; Munoz, J. A., Biosorption of heavy metals by activated sludge and their desorption characteristics [J]. Journal of Environmental Management,2007,84(4):419-426.
    [14]Oliver, B. G.; Cosgrove, E. G, Efficiency of heavy-metal removal by a conventional activated-sludge treatment plant[J]. Water Research,1974,8(11): 869-874.
    [15]Sud, D.; Mahajan, G.; Kaur, M. P., Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-A review[J]. Bioresource Technology,2008,99(14):6017-6027.
    [16]Cao, Q.; Huang, F.; Zhuang, Z.; Lin, Z., A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water[J]. Nanoscale,2012,4(7):2423-2430.
    [17]王清良,铀提取工艺学[M].In 哈尔滨:哈尔滨工程大学出版社,2009.
    [18]Gorman-Lewis, D.; Elias, P. E.; Fein, J. B., Adsorption of aqueous uranyl complexes onto Bacillus subtilis cells[J]. Environmental Science & Technology, 2005,39(13):4906-4912.
    [19]徐花花,周启,熊文祥等,原子弹理论及原料[M].In 北京:科学出版社,2011.
    [20]Diehl, P. WISE Uranium Project; http://www.wise-uranium.org/index.html.
    [21]Kotas, J.; Stasicka, Z., Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution,2000,107(3):263-283.
    [22]徐衍忠;秦绪娜;刘祥红;张乃香;周英莲,铬污染及其生态效应[J].环境科学与技术,2002,25(z1):8-9,28.
    [23]Liu, Y. G.; Xu, W. H.; Zeng, G. M.; Li, X.; Gao, H., Cr(VI) reduction by Bacillus sp isolated from chromium landfill[J]. Process Biochemistry,2006,41(9): 1981-1986.
    [24]Grabarczyk, M., Protocol for extraction and determination of Cr(VI) in solid materials with a high Cr(Ⅲ)/Cr(VI) ratio using EDDS as a leaching agent for Cr(Ⅵ) and a masking agent for Cr(Ⅲ)[J]. Electroanalysis,2008,20(17): 1857-1862.
    [25]Shi, Y. M.; Du, X. H.; Meng, Q. J.; Song, S. W.; Sui, Z. T., Reaction process of chromium slag reduced by industrial waste in solid phase [J]. Journal of Iron and Steel Research International,2007,14(1):12-15.
    [26]江澜;王小兰,铬的生物作用及污染治理[J].重庆工商大学学报(自然科学版),2004,21(4):325-328.
    [27]国家环境保护总局,铬及其化合物工业污染物排放标准[J].2008:1-26.
    [28]刘明宝;段理祎;高莹;印万忠,我国镍矿资源现状及利用技术研究[J].中国矿业,2011,20(11):98-102.
    [29]Malkoc, E.; Nuhoglu, Y., Investigations of nickel(Ⅱ) removal from aqueous solutions using tea factory waste[J]. Journal of Hazardous Materials,2005, 127(1-3):120-128.
    [30]Congeevaram, S.; Dhanarani, S.; Park, J.; Dexilin, M.; Thamaraiselvi, K., Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates[J]. Journal of Hazardous materials,2007,146(1-2):270-277.
    [31]刘有才;钟宏;刘洪萍,重金属废水处理技术研究现状与发展趋势[J].广东化工,2005,32(4):36-39.
    [32]刘静;张瑞;周燕;王一青;张学红,镍化合物的生殖毒性研究进展[J].癌变·畸变·突变,2012,24(6):474-476.
    [33]苏新华;潘洁茹;蒋捷;黄天培,苏云金芽胞杆菌治理镍污染的方法的建立[J].激光生物学报,2011,20(5):699-702.
    [34]张仲仪;桑保华;刘宝玺,加快重金属污染减排步伐[J].涂装与电镀,2010,(6):39-42.
    [35]李本高,现代工业水处理技术与应用[M].In北京:中国石化出版社,2004.
    [36]郭燕妮;方增坤;胡杰华;谢洪珍;李黎婷;叶志勇,化学沉淀法处理含重金属废水的研究进展[J].工业水处理,2011,31(12):9-13.
    [37]雷兆武;孙颖,离子交换技术在重金属废水处理中的应用[J].环境科学与管 理,2008,33(10):82-84.
    [38]苏艳蓉.重金属耐受菌的分离及吸附铅的研究[D].中南大学,2011.
    [39]李健;石凤林;尔丽珠;张惠源,离子交换法治理重金属电镀废水及发展动态[J].电镀与精饰,2003,(06):28-31+34.
    [40]车荣睿,离子交换法治理含镍工业废水[J].水处理技术,1988,(01):1-7.
    [41]车荣睿;聂艳梅,离子交换法治理含铬废水进展[J].水处理技术,1987,(06):324-329.
    [42]范力;张建强;程新;刘伟;夏明芳;王志良,离子交换法及吸附法处理含铬废水的研究进展[J].水处理技术,2009,(01):30-33.
    [43]王贞.溶剂萃取法回收电镀污泥中重金属的研究[D].浙江大学,2010.
    [44]邓娟利;胡小玲;管萍;曾盛;赵亚梅;王广东,膜分离技术及其在重金属废水处理中的应用[J].材料导报,2005,(02):23-26.
    [45]刘济阳;夏明芳;张林生;陆继来;王志良;王春,膜分离技术处理电镀废水的研究及应用前景[J].污染防治技术,2009,(03):65-69.
    [46]郑少平;李卫平,活性炭吸附去除重金属研究进展[J].山西建筑,2007,33(14):153-155.
    [47]陈杰华;王玉军;王汉卫;周东美;杨剑虹,基于TCLP法研究纳米羟基磷灰石对污染土壤重金属的固定[J].农业环境科学学报,2009,28(4):645-648.
    [48]鄂勇;福兹利·赫尔维,重金属在氧化铝微粒上吸附的实验研究[J].哈尔滨工业大学学报,2005,37(5):713-716.
    [49]邬建敏;王莹,以硅胶为基质的交联壳聚糖对Ni2+的吸附研究[J].环境污染与防治,2001,23(6):276-279.
    [50]Kandah, M. I.; Meunier, J. L., Removal of nickel ions from water by multi-walled carbon nanotubes[J]. Journal of Hazardous materials,2007, 146(1-2):283-288.
    [51]刘艳;梁沛;郭丽;卢汉兵,负载型纳米二氧化钛对重金属离子吸附性能的研究[J].化学学报,2005,63(4):312-316.
    [52]马前;张小龙,国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,(07):10-14.
    [53]Salt, D. E.; Blaylock, M.; Kumar, N.; Dushenkov, V.; Ensley, B. D.; Chet, I.; Raskin, I., Phytoremediation-A novel strategy for the removal of toxic metals from the environment using plants[J]. Bio-Technology,1995,13(5):468-474.
    [54]闫研;李建平;张学洪,超富集植物李氏禾对铬诱导的氧化胁迫响应[J].生态环境,2008,(04):1476-1482.
    [55]刘威;束文圣;蓝崇钰,宝山堇菜(Viola baoshanensis)—一种新的镉超富集植物[J].科学通报,2003,(19):2046-2049.
    [56]陈同斌;韦朝阳;黄泽春;黄启飞;鲁全国;范稚莲,砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,(03):207-210.
    [57]李廷强.超积累植物东南景天(Sedum alfredii Hance)对锌的活化、吸收及转运机制研究[D].浙江大学,2005.
    [58]薛生国;陈英旭;林琦;徐圣友;王远鹏,中国首次发现的锰超积累植物——商陆[J].生态学报,2003,(05):935-937.
    [59]程树培,催益斌,杨柳燕,高絮凝性微生物育种生物技术研究与应用进展[J].环境科学进展,1995,(01):65-69.
    [60]王亚雄;郭瑾珑;刘瑞霞,微生物吸附剂对重金属的吸附特性[J].环境科学,2001,22(6):72-75.
    [61]Gupta, V. K.; Shrivastava, A. K.; Jain, N., Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species [J]. Water Research,2001, 35(17):4079-4085.
    [62]陈思嘉;郑文杰;杨芳,蓝藻对重金属的生物吸附研究进展[J].海洋环境科学,2006,25(4):103-106.
    [63]Braud, A.; Jezequel, K.; Leger, M. A.; Lebeau, T., Siderophore production by using free and immobilized cells of two Pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (Cr, Hg, Pb)[J]. Biotechnology and Bioengineering,2006,94(6):1080-1088.
    [64]Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P., The use of microorganisms for the formation of metal nanoparticles and their application[J]. Applied Microbiology and Biotechnology,2006,69(5):485-492.
    [65]姜敏.啤酒酵母和胶质芽孢杆菌对Cd2+、Zn2+吸附特性及机理的研究[D].沈 阳:东北大学,2009.
    [66]Ozturk, A., Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis[J], Journal of Hazardous materials,2007,147(1-2):518-523.
    [67]Ziagova, M.; Dimitriadis, G.; Aslanidou, D.; Papaioannou, X.; Litopoulou Tzannetaki, E.; Liakopoulou-Kyriakides, M., Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures[J]. Bioresource Technology,2007,98(15):2859-2865.
    [68]Selatnia, A.; Boukazoula, A.; Kechid, N.; Bakhti, M. Z.; Chergui, A.; Kerchich, Y, Biosorption of lead (Ⅱ) from aqueous solution by a bacterial dead Streptomyces rimosus biomass[J]. Biochemical Engineering Journal,2004,19(2): 127-135.
    [69]Lu, W. B.; Shi, J. J.; Wang, C. H.; Chang, J. S., Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance [J]. Journal of Hazardous materials,2006,134(1-3): 80-86.
    [70]Nakajima, A.; Tsuruta, T., Competitive biosorption of thorium and uranium by Micrococcus luteus[J]. Journal of Radioanalytical and Nuclear Chemistry,2004, 260(1):13-18.
    [71]柏耀辉.啤酒废酵母对重金属的生物吸附研究[D].硕士,中山大学,2005.
    [72]Lovley, D. R.; Phillips, E. J. P.; Gorby, Y. A.; Landa, E. R., Microbial reduction of uranium[J]. Nature,1991,350(6317):413-416.
    [73]Lovley, D. R.; Phillips, E. J. P., Bioremediation of Uranium Contamination with Enzymatic Uranium Reduction[J]. Environmental Science & Technology,1992, 26(11):2228-2234.
    [74]Spear, J. R.; Figueroa, L. A.; Honeyman, B. D., Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria[J]. Applied and Environmental Microbiology,2000,66(9):3711-3721.
    [75]Lovley, D. R.; Phillips, E. J. P., Reduction of uranium by Desulfovibrio desulfuricans[J]. Applied and Environmental Microbiology,1992,58(3): 850-856.
    [76]Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F., Nanometre-size products of uranium bioreduction[J]. Nature,2002,419(6903):134.
    [77]Finneran, K. T.; Housewright, M. E.; Lovley, D. R., Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments[J]. Environmental Microbiology,2002,4(9):510-516.
    [78]Wang, Y; Frutschi, M.; Suvorova, E.; Phrommavanh, V.; Descostes, M.; Osman, A. A.; Geipel, G.; Bernier-Latmani, R., Mobile uranium(IV)-bearing colloids in a mining-impacted wetland[J]. Nature Communications,2013,4:2942.
    [79]Rui, X.; Kwon, M. J.; O'Loughlin, E. J.; Dunham-Cheatham, S.; Fein, J. B.; Bunker, B.; Kemner, K. M.; Boyanov, M. I., Bioreduction of hydrogen uranyl phosphate:mechanisms and U(IV) products [J]. Environmental Science & Technology,2013,47(11):5668-5678.
    [80]Khijniak, T. V.; Slobodkin, A. I.; Coker, V.; Renshaw, J. C.; Livens, F. R.; Bonch-Osmolovskaya, E. A.; Birkeland, N. K.; Medvedeva-Lyalikova, N. N.; Lloyd, J. R., Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens[J], Applied and Environment Microbiology,2005,71(10):6423-6426.
    [81]Merroun, M. L.; Selenska-Pobell, S., Bacterial interactions with uranium:an environmental perspective[J]. Journal of Contaminant Hydrology,2008, 102(3-4):285-295.
    [82]Macaskie, L. E.; Empson, R. M.; Cheetham, A. K.; Grey, C. P.; Skarnulis, A. J., Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4[J]. Science,1992,257(5071): 782-784.
    [83]Beazley, M. J.; Martinez, R. J.; Sobecky, P. A.; Webb, S. M.; Taillefert, M., Uranium biomineralization as a result of bacterial phosphatase activity:Insights from bacterial isolates from a contaminated subsurface [J]. Environmental Science & Technology,2007,41(16):5701-5707.
    [84]Sousa, T.; Chung, A. P.; Pereira, A.; Piedadec, A. P.; V., M. P., Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes[J]. Metallomics,2013,5:390-397.
    [85]Kathiravan, M. N.; Karthick, R.; Muthukumar, K., Ex situ bioremediation of Cr(VI) contaminated soil by Bacillus sp.:Batch and continuous studies [J]. Chemical Engineering Journal,2011,169(1-3):107-115.
    [86]Desai, C.; Jain, K.; Madamwar, D., Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill[J]. Bioresource Technology,2008,99(14): 6059-6069.
    [87]Contreras, E. M.; Orozco, A. M.; Zaritzky, N. E., Biological Cr(VI) removal coupled with biomass growth, biomass decay, and multiple substrate limitation[J]. Water Research,2011,45(10):3034-3046.
    [88]Priester, J. H.; Olson, S. G.; Webb, S. M.; Neu, M. P.; Hersman, L. E.; Holden, P. A., Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms[J]. Applied and Environment Microbiology,2006,72(3):1988-1996.
    [89]Barnhart, J., Chromium chemistry and implications for environmental fate and toxicity[J]. Journal of Soil Contamination,1997,6(6):561-568.
    [90]Prigione, V.; Zerlottin, M.; Refosco, D.; Tigini, V.; Anastasi, A.; Varese, G C., Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi[J]. Bioresource Technology,2009,100(11):2770-2776.
    [91]Puzon, G. J.; Petersen, J. N.; Roberts, A. G.; Kramer, D. M.; Xun, L., A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD+ complex[J]. Biochemical and Biophysical Research Communications,2002, 294(1):76-81.
    [92]Puzon, G J.; Roberts, A. G.; Kramer, D. M.; Xun, L., Formation of soluble organo-chromium(Ⅲ) complexes after chromate reduction in the presence of cellular organics[J]. Environmental Science & Technology,2005,39(8): 2811-2817.
    [93]Bencheikh-Latmani, R.; Obraztsova, A.; Mackey, M. R.; Ellisman, M. H.; Tebo, B. M., Toxicity of Cr(Ⅲ) to Shewanella sp. strain MR-4 during Cr(VI) reduction[J]. Environmental Science & Technology,2007,41(1):214-220.
    [94]Li, B.; Pan, D.; Zheng, J.; Cheng, Y.; Ma, X.; Huang, F.; Lin, Z., Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi[J]. Langmuir,2008,24(17):9630-9635.
    [95]Cetin, Z.; Kantar, C.; Alpaslan, M., Interactions between Uronic Acids and Chromium(Ⅲ)[J]. Environmental Toxicology and Chemistry,2009,28(8): 1599-1608.
    [96]Pazos, M.; Branco, M.; Neves, I. C.; Sanroman, M. A.; Tavares, T., Removal of Cr(VI) from Aqueous Solutions by a Bacterial Biofilm Supported on Zeolite: Optimisation of the Operational Conditions and Scale-Up of the Bioreactor[J]. Chemical Engineering& T echnology,2010,33(12):2008-2014.
    [97]Sundar, K.; Mukherjee, A.; Sadiq, M.; Chandrasekaran, N., Cr (III) bioremoval capacities of indigenous and adapted bacterial strains from Palar river basin[J]. Journal of Hazardous materials,2011,187(1-3):553-561.
    [98]Cheng, Y. J.; Yan, F. B.; Huang, F.; Chu, W. S.; Pan, D. M.; Chen, Z.; Zheng, J. S.; Yu, M. J.; Lin, Z.; Wu, Z. Y, Bioremediation of Cr(VI) and Immobilization as Cr(III) by Ochrobactrum anthropi[J]. Environmental Science & Technology, 2010,44(16):6357-6363.
    [99]Nancharaiah, Y. V.; Dodge, C.; Venugopalan, V. P.; Narasimhan, S. V.; Francis, A. J., Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes[J]. Applied and Environment Microbiology,2010,76(8):2433-2438.
    [100]Ganguli, A.; Tripathi, A. K., Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors[J]. Applied Microbiology and Biotechnology,2002,58(3): 416-420.
    [101]Morales, D. K.; Ocampo, W.; Zambrano, M. M., Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure[J]. Journal of Applied Microbiology,2007,103(6): 2704-2712.
    [102]Lameiras, S.; Quintelas, C.; Tavares, T., Biosorption of Cr (VI) using a bacterial biofilm supported on granular activated carbon and on zeolite [J]. Bioresource Technology,2008,99(4):801-806.
    [103]Coleman, R. N.; Paran, J. H., Biofilm concentration of chromium[J]. Environmental Technology,1991,12(12):1079-1093.
    [104]Quintelas, C.; Fonseca, B.; Silva, B.; Figueiredo, H.; Tavares, T., Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC[J]. Bioresource Technology,2009, 100(1):220-226.
    [105]Kratochvil, D.; Volesky, B., Advances in the biosorption of heavy metals[J]. Trends in Biotechnology,1998,16(7):291-300.
    [106]Nuhoglu, Y.; Malkoc, E., Thermodynamic and kinetic studies for environmentaly friendly Ni(Ⅱ) biosorption using waste pomace of olive oil factory[J]. Bioresource Technology,2009,100(8):2375-2380.
    [107]王学松;陈静;李园;何雯;杨英敏;缪华华;薛钧尹,细菌吸附水溶液中镍离子的研究[J].淮海工学院学报(自然科学版),2009,18(4):81-83.
    [108]吴乾菁;李昕;李福德,SR4菌株处理电镀废水中Ni2+的研究[J].上海环境科学,1995,14(12):10-12.
    [109]Abdel-Monem, M. O.; Al-Zubeiry, A. H.; Al-Gheethi, A. A., Biosorption of nickel by Pseudomonas cepacia 120S and Bacillus subtilis 117S [J]. Water Science and Technology,2010,61(12):2994-3007.
    [110]Hanif, M. A.; Nadeem, R.; Bhatti, H. N.; Ahmad, N. R.; Ansari, T. M., Ni(II) biosorption by Cassia fistula (Golden Shower) biomass[J]. Journal of Hazardous Materials,2007,139(2):345-355.
    [111]Pradhan, S.; Singh, S.; Rai, L. C., Characterization of various functional groups present in the capsule of Microcystis and study of their role in biosorption of Fe, Ni and Cr[J].Bioresource Technology,2007,98(3):595-601.
    [112]张德添;何昆;张飒;杨怡;周涛;张学敏;赵晓光;薛燕,原子力显微镜发展近况及其应用[J].现代仪器,2002,8(3):6-9.
    [113]朱杰;孙润广,原子力显微镜的基本原理及其方法学研究[J].生命科学仪器,2005,3(1):22-26.
    [114]Lin, Z.; Wang, C.; Feng, X.; Liu, M.; Li, J.; Bai, C., The observation of the local ordering characteristics of spermidine-condensed DNA:atomic force microscopy and polarizing microscopy studies[J]. Nucleic Acids Research,1998, 26(13):3228-3234.
    [115]Sharma, S.; Sen, P.; Mukhopadhyay, S. N.; Guha, S. K., Microbicidal male contraceptive-Risug induced morpho structural damage in E-coli[J]. Colloids and Surfaces B-Biointerfaces,2003,32(1):43-50.
    [116]Camesano, T. A.; Natan, M. J.; Logan, B. E., Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy [J]. Langmuir,2000,16(10):4563-4572.
    [117]Yang, C. P.; Cheng, Y. J.; Ma, X. Y; Zhu, Y; Holman, H. Y; Lin, Z.; Wang, C, Surface-mediated chromate-resistant mechanism of Enterobacter cloacae bacteria investigated by atomic force microscopy[J]. Langmuir,2007,23(8): 4480-4485.
    [118]Li, B.; Pan, D. M.; Zheng, J. S.; Cheng, Y. J.; Ma, X. Y.; Huang, F.; Lin, Z., Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi[J]. Langmuir,2008,24(17):9630-9635.
    [119]Pan, J.; Ge, X.; Liu, R.; Tang, H., Characteristic features of Bacillus cereus cell surfaces with biosorption of Pb(II) ions by AFM and FT-IR[J]. Colloids and Surfaces B-Biointerfaces,2006,52(1):89-95.
    [120]陈志.蜡状芽孢杆菌与重金属铬相互作用机制研究[D].福建农林大学,2010.
    [121]张新言;李荣玉,扫描电镜的原理及TFT-LCD生产中的应用[J].现代显示,2010,(1):10-15.
    [122]Lin, Z.; Zhu, Y.; Kalabegishvili, T. L.; Tsibakhashvili, N. Y.; Holman, H.-Y, Effect of chromate action on morphology of basalt-inhabiting bacteria[J]. Materials Science and Engineering:C,2006,26(4):610-612.
    [123]刘明学;张东;康厚军;张伟;李烨;庞小峰;董发勤,铀与酵母菌细胞表面相互作用研究[J].高校地质学报,2011,17(1):53-58.
    [124]Liu, M.; Dong, F.; Yan, X.; Zeng, W.; Hou, L.; Pang, X., Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions[J]. Bioresource Technology,2010,101(22):8573-8580.
    [125]Kang, C.-H.; Han, S.-H.; Shin, Y.; Oh, S. J.; So, J.-S., Bioremediation of Cd bymicrobially induced calcite precipitation[J]. Applied Biochemistry and Biotechnology,2014,172(4):1929-1937.
    [126]朱长见;陆建军;陆现彩;王汝成;李奇,氧化亚铁硫杆菌作用下形成的黄钾铁矾的SEM研究[J].高校地质学报,2005,(02):234-238.
    [127]刘维,电子显微镜的原理和应用[J].现代仪器使用与维修,1996,(1):9-12.
    [128]栗斌.重金属Cr-人苍白杆菌相互作用的综合介观研究方法学及其微观机制研究[D].中国科学院研究生院,2008.
    [129]金羽;曲娟娟;李影;顾海东;闫立龙;孙兴滨,一株耐铅细菌的分离鉴定及其吸附特性研究[J].环境科学学报,2013,33(8):2248-2255.
    [130]Park, D.; Yun, Y. S.; Park, J. M., Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp.[J]. Chemosphere,2005,60(10): 1356-1364.
    [131]Yin, H.; He, B.; Peng, H.; Ye, J.; Yang, F.; Zhang, N., Removal of Cr(Ⅵ) and Ni(Ⅱ) from aqueous solution by fused yeast:study of cations release and biosorption mechanism[J]. Journal of Hazardous materials,2008,158(2-3): 568-576.
    [132]Amini, M.; Younesi, H.; Bahramifar, N., Biosorption of nickel(Ⅱ) from aqueous solution by Aspergillus niger:response surface methodology and isotherm study[J]. Chemosphere,2009,75(11):1483-1491.
    [133]刘尊敬.微生物与重金属及重金属氧化物相互作用的研究[D].中国科学院研究生院,2011.
    [134]Li, B.; Wang, Y. H.; Cheng, Y. J.; Ma, X. Y.; Pan, D. M.; Lin, Z., Surface changes of Ochrobactrum anthropi in Cr(VI) treatment for 1 hour[J].Chinese Journal of Structural Chemistry,2009,28(2):245-249.
    [135]梁敬魁,粉末衍射法测定晶体结构[M].In 北京:科学出版社,2003.
    [136]Paterson-Beedle, M.; Jeong, B. C; Lee, C. H.; Jee, K. Y.; Kim, W. H.; Renshaw, J. C.; Macaskie, L. E., Radiotolerance of phosphatases of a Serratia sp.: Potential for the use of this organism in the biomineralization of wastes containing radionuclides[J]. Biotechnology and Bioengineering,2012,109(8): 1937-1946.
    [137]Tougaard, S., XPS for quantitative analysis of surface nano-structures[J]. Microscopy and Microanalysis,2005,11(Suppl 2):676-677.
    [138]Neal, A. L.; Lowe, K.; Daulton, T. L.; Jones-Meehan, J.; Little, B. J., Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction[J]. Applied Surface Science,2002, 202(3-4):150-159.
    [139]Francis, A. J.; Dodge, C. J.; Lu, F.; Halada, G P.; Clayton, C. R., XPS and XANES Studies of Uranium Reduction by Clostridium sp.[J]. Environmental Science & Technology,1994,28(4):636-639.
    [140]Setlow, P., Spores of Bacillus subtilis:their resistance to and killing by radiation, heat and chemicals [J]. Journal of Applied Microbiology,2006,101(3): 514-525.
    [141]Nicholson, W. L.; Munakata, N.; Horneck, G.; Melosh, H. J.; Setlow, P., Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments [J]. Microbiology and molecular biology reviews,2000,64(3): 548-572.
    [142]Mendil, D.; Tuzen, M.; Usta, C.; Soylak, M., Bacillus thuringiensis var israelensis immobilized on Chromosorb 101:A new solid phase extractant for preconcentration of heavy metal ions in environmental samples[J]. Journal of Hazardous Materials,2008,150(2):357-363.
    [143]Tuzen, M.; Melek, E.; Soylak, M., Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493[J]. Journal of Hazardous Materials,2008,159(2-3):335-341.
    [144]El-Helow, E. R.; Sabry, S. A.; Amer, R. M., Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis:regulation and optimization of cell surface affinity for metal cations[J]. Biometals,2000,13(4):273-280.
    [145]Hassen, A.; Saidi, N.; Cherif, M.; Boudabous, A., Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis[J]. Bioresource Technology, 1998,65(1-2):73-82.
    [146]Chen, Z.; Cheng, Y. J.; Pan, D. M.; Wu, Z. X.; Li, B.; Pan, X. H.; Huang, Z. P.; Lin, Z.; Guan, X., Diversity of Microbial Community in Shihongtan Sandstone-Type Uranium Deposits, Xinjiang, China[J]. Geomicrobiology Journal,2012,29(3):255-263.
    [147]曹庆.纳米Mg(OH)2对铀的吸附行为、机理和脱附富集的研究[D].中国科学院研究生院,2012.
    [148]Tsuruta, T., Removal and recovery of uranium using microorganisms isolated from Japanese uranium deposits[J]. Journal of Nuclear Science and Technology, 2006,43(8):896-902.
    [149]Spear, J. R.; Figueroa, L. A.; Honeyman, B. D., Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria[J]. Environmental Science & Technology,1999,33(15):2667-2675.
    [150]Fiedor, J. N.; Bostick, W. D.; Jarabek, R. J.; Farrell, J., Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy[J]. Environmental Science & Technology, 1998,32(10):1466-1473.
    [151]Choudhary, S.; Sar, P., Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste[J]. Journal of Hazardous materials,2011,186(1):336-343.
    [152]Jiang, W.; Saxena, A.; Song, B.; Ward, B. B.; Beveridge, T. J.; Myneni, S. C. B., Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy[J]. Langmuir,2004,20(26): 11433-11442.
    [153]Pan, X. H.; Chen, Z.; Cheng, Y. J.; Pan, D. M.; Yin, S. G.; Huang, F.; Guan, X.; Lin, Z., The analysis of the immobilization mechanism of Ni(II) on Bacillus cereus[J]. Journal of Nanoscience and Nanotechnology,2011,11(4):3597-3603.
    [154]栗斌,程扬健,马晓艳,王永好,郑晋生,储旺盛,吴自玉,林璋,微生物矿化机制研究中的介观分析技术——以微生物与六价铬相互作用为例[J].高校地质学报,2007,13(4):651-656.
    [155]Chen, P. P.; Dong, H. T.; Chen, L.; Sun, Q. M.; Han, D., Application of atomic force microscopy to living samples from cells to fresh tissues [J]. Chinese Science Bulletin,2009,54(14):2410-2415.
    [156]Chen, Z.; Huang, Z. P.; Cheng, Y. J.; Pan, D. M.; Pan, X. H.; Yu, M. J.; Pan, Z. Y; Lin, Z.; Guan, X.; Wu, Z. Y, Cr(VI) uptake mechanism of Bacillus cereus[J]. Chemosphere,2012,87(3):211-216.
    [157]Katsenovich, Y.; Carvajal, D.; Guduru, R.; Lagos, L.; Li, C. Z., Assessment of the Resistance to Uranium (VI) Exposure by Arthrobacter sp. Isolated from Hanford Site Soil[J]. Geomicrobiology Journal,2013,30(2):120-130.
    [158]Ma, X. Y.; Cheng, Y. J.; Zheng, J.; Yang, C. P.; Li, B.; Li, D. S.; Lin, Z.; Huang, F., Surface microstructure and component changes of chromium-resistant Enterobacter cloacae CYS-25 strain[J]. Chinese Journal of Structural Chemistry, 2008,27(1):15-20.
    [159]Kazy, S. K.; D'Souza, S. F.; Sar, P., Uranium and thorium sequestration by a Pseudomonas sp.:mechanism and chemical characterization[J]. Journal of Hazardous materials,2009,163(1):65-72.
    [160]Urone, P. F., Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents[J]. Analytical Chemistry,1955,27(8): 1354-1355.
    [161]Cervantes, C.; Campos-Garcia, J.; Devars, S.; Gutierrez-Corona, F.; Loza-Tavera, H.; Torres-Guzman, J. C.; Moreno-Sanchez, R., Interactions of chromium with microorganisms and plants[J]. FEMS Microbiology Reviews, 2001,25(3):335-347.
    [162]Codd, R.; Dillon, C. T.; Levina, A.; Lay, P. A., Studies on the genotoxicity of chromium:from the test tube to the cell[J]. Coordination Chemistry Reviews, 2001,216:537-582.
    [163]Appenroth, K. J.; Bischoff, M.; Gabrys, H.; Stoeckel, J.; Swartz, H. M.; Walczak, T.; Winnefeld, K., Kinetics of chromium(V) formation and reduction in fronds of the duckweed Spirodela polyrhiza--a low frequency EPR study[J]. Journal of Inorganic Biochemistry,2000,78(3):235-242.
    [164]Cheung, K. H.; Gu, J. D., Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential:A review[J]. International Biodeterioration & Biodegradation,2007,59(1):8-15.
    [165]Chen, Z.; Huang, Z.; Cheng, Y.; Pan, D.; Pan, X.; Yu, M.; Pan, Z.; Lin, Z.; Guan, X.; Wu, Z., Cr(VI) uptake mechanism of Bacillus cereus[3]. Chemosphere, 2012,87(3):211-216.
    [166]Lee, J. U.; Lee, S. W.; Kim, K. W.; Yoon, C. H., The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment[J]. Environmental Geochemistry and Health,2005,27(2):159-168.
    [167]Quintelas, C.; Femandes, B.; Castro, J.; Figueiredo, H.; Tavares, T., Biosorption of Cr(VI) by a Bacillus coagulans biofilm supported on granular activated carbon (GAC)[J]. Chemical Engineering Journal,2008,136(2-3): 195-203.
    [168]Gabr, R. M.; Gad-Elrab, S. M. F.; Abskharon, R. N. N.; Hassan, S. H. A.; Shoreit, A. A. M., Biosorption of hexavalent chromium using biofilm of E. coli supported on granulated activated carbon[J]. World Journal of Microbiology & Biotechnology,2009,25(10):1695-1703.
    [169]Chen, Z.; Huang, Z.; Cheng, Y; Pan, D.; Pan, X.; Yu, M.; Pan, Z.; Lin, Z.; Guan, X.; Wu, Z., Cr(VI) uptake mechanism of Bacillus cereus[J]. Chemosphere, 2012,87(3):211-216.
    [170]Romera, E.; Gonzalez, F.; Ballester, A.; Blazquez, M. L.; Munoz, J. A., Biosorption of Cd, Ni, and Zn with mixtures of different types of algae [J]. Environmental Engineering Science,2008,25(7):999-1008.
    [171]Kang, S. Y; Lee, J. U.; Kim, K. W., Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa[J]. Biochemical Engineering Journal,2007,36(1):54-58.
    [172]Bai, R. S.; Abraham, T. E., Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans[J]. Water Research,2002, 36(5):1224-1236.
    [173]Park, D.; Yun, Y. S.; Park, J. M., Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp[J]. Chemosphere,2005,60(10): 1356-1364.
    [174]Fang, X.; Watanabe, Y.; Adachi, S.; Matsumura, Y.; Mori, T.; Maeda, H.; Nakamura, A.; Matsuno, R., Microencapsulation of linoleic acid with low-and high-molecular-weight components of soluble soybean polysaccharide and its oxidation process[J]. Bioscience Biotechnology and Biochemistry,2003,67(9): 1864-1869.
    [175]刘国祥;尹华;彭辉;叶锦韶;张娜,豆腐废水廉价培养制备微生物絮凝剂的研究[J].安全与环境学报,2006,6(1):103-106.
    [176]Brandt, B. W.; Kelpin, F. D.; van Leeuwen, I. M.; Kooijman, S. A., Modelling microbial adaptation to changing availability of substrates [J]. Water Research,2004,38(4):1003-1013.
    [177]Barbosa, A. C.; Lajolo, F. M.; Genovese, M. I., Influence of temperature, pH and ionic strength on the production of isoflavone-rich soy protein isolates [J]. Food Chemistry,2006,98(4):757-766.
    [178]曲静然;刘玉;宋俊梅,豆腐废水发酵生产白地霉的研究[J].食品研究与开发,2005,26(3):99-102.
    [179]李燕;宋俊梅;曲静然,豆制品废水的处理及综合利用[J].食品工业科技,2002,23(7):70-73.
    [180]Pellerin, C.; Booker, S. M., Reflections on hexavalent chromium:health hazards of an industrial heavyweight[J]. Environmental Health Perspectives, 2000,108(9):A402-407.
    [181]Srivastava, S.; Thakur, I. S., Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent[J]. Biodegradation,2007,18(5):637-646.
    [182]Lee, K., Comparison of fermentative capacities of lactobacilli in single and mixed culture in industrial media[J]. Process Biochemistry,2005,40(5): 1559-1564.
    [183]赵冬梅;刘凌;张京健,豆制品生产中高浓度废水的检测与分析[J].食品与发酵工业,2006,32(1):68-71.
    [184]Cheng, Y; Xie, Y.; Zheng, J.; Wu, Z.; Chen, Z.; Ma, X.; Li, B.; Lin, Z., Identification and characterization of the chromium(VI) responding protein from a newly isolated Ochrobactrum anthropi CTS-325[J]. Journal of Environmental Sciences,2009,21(12):1673-1678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700