用户名: 密码: 验证码:
暂态表达重组蛋白鸡输卵管生物反应器的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着重组DNA技术的飞速发展,已经出现了多种生产重组蛋白的表达系统,其中以转基因动物生物反应器,尤其是转基因哺乳动物的乳腺生物反应器和转基因家禽的输卵管生物反应器的优点最为突出,能在不损伤机体正常生理功能的条件下源源不断地获得表达产品。家禽具有繁殖周期短、生产性能高、研究成本较低等优点,其输卵管是生产蛋白质的天然“发酵罐”,更加适合作为生产重组蛋白的生物反应器。但由于家禽特殊的生殖生理特点,其转基因技术一直落后于其它动物。虽然近几年来相关技术有所突破,但家禽转基因研究仍有许多理论和技术难题有待突破,距离产业化开发仍有很远的路要走。为此,寻求禽类的转基因技术的突破和开辟新的研究方法已成为当前研究工作的重点。
     本课题组用自行克隆的鸡卵清蛋白(OV)基因表达调控序列构建成鸡输卵管定位表达载体,以人溶菌酶和组织激肽释放酶(hK1)基因为目的基因的鸡输卵管暂态表达试验结果表明,通过翅静脉注射一定剂量的重组载体后,能表达一定水平的重组酶并分泌到试验鸡的蛋清中,具有一定的开发利用价值。本研究在前期研究的基础上,以hK1基因为目的基因,通过对先前构建的鸡输卵管特异表达载体进行优化改造,旨在获得结构更为合理、表达水平更高、维持时间更长的表达载体。在先前构建的pOV3K载体的基础上,分别通过酶切消化或PCR扩增等方法,将其中3.0 kb的OV基因5′-调控序列的长度分步缩减,获得三个新的重组载体分别命名为pOV4K、pOV5K和pOV6K。将此重组载体与25 kDa聚乙烯亚胺(polyethylenimine,PEI)混合,经翅静脉注射产蛋鸡,用标准方法检测蛋清中的重组酶活性,结果表明,含1.1 kb OV基因5′-调控序列的pOV6K表达水平和表达时间均不如含3.0 kb OV基因5′-调控序列的pOV3K,含2.1 kb OV基因5′-调控序列的pOV4K和含1.7 kb OV基因5′-调控序列的pOV5K与含3.0 kb OV基因5′-调控序列的pOV3K表达水平相当,说明1.7 kb OV基因5′-调控序列足以指导外源基因
Many gene expression systems have been established for production of large quantities of biologically active proteins for clinical and scientific research use, trans-genic animal bioreactors in particular. Among animal bioreactors, transgenic animal mammary gland and avian oviduct are expected to be excellent systems for production of recombinant proteins. Transgenic avian oviduct bioreactors have advantages of high expression levels and low cost. However, research on avian transgenesis is greatly lagged behind other animals due to the complexity of avian physiology.
     To develop chicken bioreactors for transient expression of recombinant proteins, oviduct-specific expression vectors have been constructed using the 3.0 kb 5′- and 3′- regulatory regions of chicken ovalbumin (ov) gene, and have been shown to express relatively high levels of recombinant enzymes using the genes of interest of human lysozyme and human tissue kallikrein (hK1). In this study, we optimized the structure of the previously constructed vector pOV3K by restriction digestion or PCR amplifica-tion to shorten the 5′-regulatory region to 2.1, 1.7 and 1.1 kb, and the modified vectors were named pOV4K, pOV5K and pOV6K, respectively. The new vectors and the con-trol vector pOV3K were injected into laying hens via wing vein route following mixing with 25 kDa polyethyleneimine (PEI). The eggs were collected and the enzymatic ac-tivity in egg white was detected. Among the four vectors tested, pOV5K with the 1.7 kb 5′-regulatory region showed an expression level similar to that of pOV3K. To further improve the transfection efficiency and expression levels, the expression cassette con-sisting of the 1.7 kb 5′- regulatory region of ov gene, hK1 cDNA and bovine growth hormone gene poly (A) was cut from the pOV5K vector and subcloned into the pITRLRep vector containing the inversed terminal region (ITR) and Rep gene of avian
引文
1. 张旭晨. 基因表达系统与转基因动物乳腺反应器. 河北大学学报(自然科学版), 1999, 19 (2): 193-198
    2. Hitzeman RA, Hagie FE, 1-evine HI, et al. Expression of human gene for interferon in yeast. Nature, 1981, 293: 717.
    3. Charles R Allerson, Alan Martinez, Emine Yikilmaz, et al. A high-capacity RNA affinity col-umn for the purification of human IRP1 and IRP2 overexpressed in Pichia pastoris. RNA, 2003, 9: 364-374.
    4. Upshall A, Kurnar A A, Bailey M C, et al. Bio /Technology, 1987, 5: 1301-1304.
    5. Lynn D E. Comparative susceptibilities of insect cell lines to infection by the occlusion-body derived phenotype of baculoviruses. J Inverteb Pathol, 2003, 83(3): 215-222.
    6. Lucas B K,Giere L M, DeMarco R A, et al. High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res, 1996, 24(9): 1774.
    7. 方洛云,邹晓庭,许梓荣. 转基因技术及转基因动物研究进展. 饲料研究,2001,12:9-12.
    8. 钟军,易自力,蒋建雄等. 生物反应器在动植物基因工程中的应用. 河南科技大学学报(农学版),2003,23(4):21-24.
    9. 陈学进,曾申明,李和平. 动物生物反应器. 国外畜牧科技,1998,25(1):39-43.
    10. 曾溢滔. 转基因动物与医药产业,上海教育出版社,1999.
    11. 常惠芸,谢庆阁. 转基因动物生物反应器生产药用蛋白的研究进展. 中国兽医科技,1998,28(5):40-43.
    12. Houdebine, L-M. Transgenic animal bioreactors. Transgenic Res. 2000,9: 305-320.
    13. HAN Yu-gang et al. Advance of Transgenic Animal Bioreactors. Animal Science Abroad,2002,29(1):30-33.
    14. 尹春光,杜立新,岳永生. 转基因动物的生物反应器. 32-35.
    15. 刘森,梁国栋. 利用动物乳腺生物反应器生产药用蛋白. 生物工程学报,2000,16(4): 421-424.
    16. Wright G. High level expression of active human a-1-antitrypsin in the milk of transgenic sheep. Biotechnology,1991,9: 830-834.
    17. Velander W H, Johnson J L, Page R L, et al. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc Natl Acad Sci USA,1992,89(24) : 12003 - 12007.
    18. Swanson ME, Martin MJ, O’Donnell JK et al. Production of functional human hemoglobin in transgenic swine. Bio/ Technology, 1992 ,10 :557.
    19. 郑怀玉. 用膀胱作生物反应器生产人生长激素实验. 上海实验动物科学,1999 ,19 (1):66-67.
    20. 尹春光,杜立新. 转基因鸡的研究策略. 生物学通报,2004,39(3):13-15.
    21. 赵英会,杜立新,张念华. 用逆转录病毒法制作鸡输卵管生物反应器的研究. 动物科学与动物医学,2001,18(3):19-21.
    22. 罗克编著. 家禽解剖学与组织学,福建科学技术出版社,1983.
    23. Heilig R, Muraskowskg R. The ovalbumin gene family. J. Mol. Biol,1982,156: 1-19.
    24. Donad A, Brian J, et al. Differential hormonal resoinsiveness of the ovalbumin gene and its pseudogenes in the chicken oviduct. Biochemistry, 1980, 19: 5586-5592.
    25. John N, Anderson, et al. Chromatin Structure of the ovalbumin Gene Family in the chicken oviduct. Biochemistry, 1983, 22: 21-30.
    26. Ivarie R. Avian transgenesis: progress towards the promise. Trends in Biotechnology, 2003, 21(1): 14-19.
    27. O'Hare K, Breathnach R, Benoist C, et al. No more than seven interruptions in the ovalbumin gene: comparison of genomic and double-stranded cDNA sequences. Nucleic Acids Res. 1979, 7 (2): 321-334.
    28. Kaye JS, Bellard M, Dretzen G, et al. A close association between sites of DNase I hypersensi-tivity and sites of enhanced cleavage by micrococcal nuclease in the 50-flanking region of the actively transcribed ovalbumin gene. EMBO J, 1984, 3: 1137–1144.
    29. Kaye JS, Pratt-Kaye S, Bellard M, et al. Steroid hormone dependence of four DNase I hyper-sensitive regions located within the 7000-bp 50-flanking segment of the ovalbumin gene. EMBO J. 1986, 5: 277–285.
    30. Haecker SA, Muramatsu T, Sensenbaugh KR, et al. Repression of the ovalbumin gene involves multiple negative elements including a ubiquitous transcriptional silencer. Mol Endocrinol. 1995, 9(9): 1113-26.
    31. Royal A, Garapin A, Cami B, et al. The ovalbumin gene region: common features in the or-ganisation of three genes expressed in chicken oviduct under hormonal control. Nature, 1979, 279: 125–132.
    32. Sanders MM, McKnight GS. Positive and Negative Regulatory elements control the ster-oid-responsive ovalbumin promoter. Biochemistry. 1988, 27: 6550-6557.
    33. Park HM, Muramalsu T. In vivo manipulation of foreign gene expression by steroid adminis-reation in the oviduct of laying hens. Journal of Endocrinology, 1999, 163: 173-179.
    34. Kato S, Tora L, Yamauchi J, et al. A far upstream estrogen response element of the ovalbumin gene contains several half-palindromic 50-TGACC-30 motifs acting synergistically. Cell , 1992, 68: 731-742.
    35. Yasufumi Sato. Molecular mechanism of angiogenesis Transcription factors and their therapeu-tic relevance. Phamacology & Therapeutics, 2000, 87: 51-60
    36. Park HM, Haecker SE, Hagen SG, et al. COUP-TF plays a dual role in the regulation of theovalbumin gene. Biochemistry. 2000,39(29): 8537-8545.
    37. Muramatsu T, Imai T, Park HM, et al. Gene gun-mediated in vivo analysis of tissue-specific repression of gene transcription driven by the chicken ovalbumin promoter in the liver and oviduct of laying hens. Mol Cell Biochem, 1998, 185(1): 27-32.
    38. Kopper RA, Stallcup T, Hufford G, et al. The 5′ -end structure of ovalbumin mRNA in isolated muclei and polysomes. Nucleic Acids Research, 1994, 22(21): 4504-4509.
    39. Muramatsu T; Hiramatsu H; Okumura J. Induction of ovalbumin mRNA by ascorbic acid in primary cultures of tubular gland cells of the chicken oviduct. Comparative Biochemistry and Physiology. B Biochemistry and Molecular Biology, 1995, 112(2): 209-216.
    40. Dierich A, Gaub MP, LePennec JP, et al. Cell-specificity of the chicken ovalbumin and conal-bumin promoters. EMBO J, 1987, 6(8): 2305-12.
    41. 宇丽,赵君,张艳玲等.鸡卵清蛋白基因 5′调控序列表达载体的构建及其在鸡原代输卵管上皮细胞及鸡成纤维细胞的表达.中国兽医学报,2001,21(1):21-24.
    42. Hiroshi Ochiai, Park HM, Akihiro Nakamura, et al. Synthesis of human erythropoietin in vivo in the oviduct of laying hens by localized in vivo gene transfer using electroporation. Poultry Science, 1998, 77: 299-302.
    43. 高波,宋红芹,陈芹等. 鸡输卵管特异表达载体的构建及其体内表达. 中国生物工程杂志,2003,23(8):83-86.
    44. 高波,房浩霞,王安平等. 含重组人组织激肽释放酶降血压牛奶的开发. 第二届中国乳业科技大会论文集优秀论文,2004, 103-105.
    45. Liu YB, Yu MZ, Shen XZ. The establishment of a temporary expression system in chicken oviduct epithelium. Developmental & reproductive biology, 2001, 10(1): 13-19.
    46. Gao B, Sun HC, Song CY, et al. Transfection and expression of exogenous gene in the laying hens oviduct in vitro and in vivo. Journal of Zhejiang University Science, 2005, 6B(2): 1087-1091.
    47. Luckow B, Schütz G. Cell-type specificity of regulatory elements identidied by linker scanning mutagenesis in the promoter of the chicken lysozyme gene. Nucleic Acids Research, 1989, 17(21): 8451-8463.
    48. Hiroshi Takami, Watanabe Hisako, Ohmori Yasushige, et al. Human alkaline phosphatase ex-pression and secretion into chicken eggs after in vivo gene electroporation in the oviduct of laying hens. Biochemical and Biophysical Research Communications, 2002, 292: 88-93.
    49. Rudolph, N.S. Biopharmaceutical production in transgenic livestock. Trends Biotechnol. 1999,17: 367-374.
    50. 王小珂,张卉,沈孝宇等. 转基因禽蛋——新一代基因工程生物反应器. 中国生物工程杂志,2003,23(3):35-38.
    51. Rapp, J.C. et al. Biologically active human interferon alpha-2b produced in the egg white oftransgenic hens. Transgenic Res. 2003,12: 569-575.
    52. Sang, H. Prospects for transgenesis in the chick. Mech. Dev. 2004,121: 1179-1186.
    53. 赵英会,张念华,孟建等. 用点杂交法检测人促红细胞生成素(hEPO)的整合. Journel of Taishan Medical College,2005,12: 436-437.
    54. 李碧春,钱菊汾. 禽类转基因生产及其应用的研究现状和进展(待续). 动物科学与动物医学, 2001 ,18(1): 13-15.
    55. Waddington D, Gribbin C, Sterling RJ, et al. Chronology of events in the first cell cycle of the polyspermic egg of the domestic fowl (Gallus domesticus). Int J Dev Biol, 1998, 42: 625-628.
    56. Mozdziak PE, Petitte JN. Status of transgenic chicken models for developmental biology. Dev Dyn, 2004, 229: 414-421.
    57. Petitte JN, Mozdziak PE. Production of transgenic poultry. Transgenic Animal Technology, seconded, Academic Press, San Diego, 2002.
    58. Brinster RL, Sandgren EP, Behringer RR, et al. No simple solution for making transgenic mice. Cell, 1989, 59: 239-241.
    59. Varmus H. Retroviruses. Science, 1988, 240: 1427-1435.
    60. Pursel V. Genetic engineering in livestock. Science, 1989, 244: 1281-1288.
    61. Rapp, J.C. et al. Biologically active human interferon alpha-2b produced in the egg white of transgenic hens. Transgenic Res. 2003,12: 569-575.
    62. Sang, H. Transgenic chickens – methods and potential applications. Trends Biotechnol.1994,12: 415-420.
    1. 高波,宋红芹,陈芹等. 鸡输卵管特异表达载体的构建及其体内表达. 中国生物工程杂志,2003,23(8):83-86.
    2. 高波,房浩霞,王安平等. 含重组人组织激肽释放酶降血压牛奶的开发. 第二届中国乳业科技大会论文集优秀论文,2004, 103-105.
    3. Matthew J. During. Adeno-associated virus as a gene delivery system. Advanced Drug Deliv-ery Rev, 1997, 27: 83-94.
    4. PubMed, J00895, Gallus gallus ovalbumin gene, complete cds, 2001.
    5. Sambrook J, Russell DW. Molecular Cloning A Laboratory Manual.Third Edition, New York: Cold Spring Harbor Laboratory Press, 2002.
    6. Durocher Y, Perret S, Kamen A. High-level and high-throughout recombinant protein produc-tion by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Research, 2002, 30(2) e9.
    7. Trautschold I, Werle E, Schweitzer G. Methods of enzymatic analysis. 1974, 2(2): 1031-1034.
    8. 赵英会,杜立新,张念华. 用逆转录病毒法制作鸡输卵管生物反应器的研究. 动物科学与动物医学,2001,18(3):19-21.
    9. Choi T, Huang M, Gorman C, et al. A generic intron increases gene expression in transgenic mice. Mol Celll Boil, 1991, 11: 3070-3074.
    10. Palmiter RD, Sandgren EP, Avarbock MR, et al. Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. acad. Sci. USA, 1991, 88: 478-482.
    11. Sanders MM, McKnight GS. Positive and Negative Regulatory elements control the ster-oid-responsive ovalbumin promoter. Biochemistry. 1988, 27: 6550-6557.
    12. Zengi Li, J. Rodney Brister, Dong-Soo Im, and Nicholas Muzyczka. Characterization of the adenoassociated virus Rep protein complex formed on the viral origin of DNA replication. Vi-rology, 2003, 313: 364-376.
    13. B.M. Bishop, A.D. Santin, J.G. Quirk, P.L. Hermonat. Role of the terminal repeat GAGC trimer, the major Rep78 binding site, in adeno-associated virus DNA replication. FEBS Letters, 1996, 397: 97-100.
    14. Berns KI, Kelly Jr. TJ. visualization of the inverted terminal repetition in adeno-associated vi-rus DNA. Mol Biol, 1974, 73: 9325-9336.Georg Seisenberger, Martin Ulrich Ried, Thomas Endress et al. Molecular Mechanism of AAV Transduction. Molecular Therapy, 2001, 3(5): 130-133.
    15. Alessandra Recchia, Robin J. Parks, Stefania Lamartina, et al. Site-specific integration medi-ated by a hybrid adenovirus/adeno-associated virus vector. Applied Biological Sciences, 1999,96(3): 2615-2620.
    16. Enrico M. Surace, Alberto Auricchio. Adeno-associated viral vectors for retinal gene transfer.Progress in Retinal and Eye Research, 2003, 22: 705-719.
    17. SUN Huai-chang, XUE Fang-ming, QIAN Ke, FANG Hao-xia, QIU Hua-lei, et al. Intramam-mary expression and therapeutic effect of a human lysozyme-expressing vector for treating bo-vine mastitis. Journal of Zhejiang University Science B, 2006, 7(4): 324-330.
    18. Joseph E. Rabinowitz, R. Jude Samulski. Building a Better Vector: The Manipulation of AAV Virions. Virology, 2000, 278: 301-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700