用户名: 密码: 验证码:
进化个体不确定适应值交互式遗传算法理论与关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业生产、工程技术、经济和社会等许多领域,都存在大量的隐式性能指标优化问题,即其性能指标难以甚至无法用明确定义的函数描述,对于这样的问题,传统的智能优化方法将难以奏效。交互式遗传算法将传统的进化机制与用户的智能评价相结合,可以有效地解决隐式性能指标优化问题。但是,用户的疲劳和评价的不确定性问题极大地影响了交互式遗传算法的性能,严重制约了其在复杂优化问题中的应用。为解决这些问题,本论文主要研究进化个体不确定适应值交互式遗传算法的理论与关键技术。
     首先,在不考虑用户评价不确定性的情况下,研究交互式遗传算法的适应值估计理论,以减轻用户疲劳,并为后续研究奠定基础。提出了搜索空间自适应分割的多代理模型算法,自适应地分割搜索空间,在各子空间上构造不同的代理模型,代替用户估计进化个体适应值,有效减轻了用户疲劳;提出了基于有向图的进化知识提取和应用策略,给出了基于子种群有向图的进化个体适应值估计方法、优势个体识别和应用方法,加快了算法的收敛速度,减轻了用户疲劳。
     然后,研究用户评价的不确定性,给出了进化个体适应值采用2类不确定数表示的方法。针对用户认知的模糊性,采用高斯型隶属函数刻画的模糊数表示进化个体适应值,给出了基于模糊截集的进化个体优劣比较策略,有效反映了用户评价的不确定性;在此基础上,进一步考虑评价过程中的随机不确定性,采用服从正态分布的随机变量表示该类不确定性,提出了模糊随机适应值交互式遗传算法,给出了基于模糊截集和随机变量置信水平的进化个体优劣比较策略,以及基于模糊熵的随机变量分布参数和新的截集水平的确定方法,该方法同时有效地反映了用户的认知不确定性和评价过程中的随机不确定性,较好地保持了种群多样性
     最后,研究了3类进化个体不确定适应值表示情况下,用户认知代理模型的构造方法。基于区间适应值交互式遗传算法的研究成果,提出了区间适应值神经网络代理模型构造方法,采用两个RBF网络分别逼近区间适应值的上限和下限;针对模糊适应值交互式遗传算法,提出了基于支持向量分类机和回归机的代理模型构造方法,给出了基于最优个体模糊熵的训练数据选择方法,以及代理模型的应用策略;针对模糊随机适应值交互式遗传算法,提出了基于有向模糊图和支持向量回归机的代理模型构造方法,采用有向模糊图存储进化知识,将模糊随机适应值转化为精确适应值,再利用该精确适应值构造支持向量机代理模型。从理论上分析了上述3类算法的性能,基于代理模型的适应值估计有效减轻了用户疲劳,增强了进化个体不确定适应值交互式遗传算法的搜索性能。
     研究成果在服装进化设计系统中得到了成功应用,结果表明,本文的研究成果有效地表示了用户评价的不确定性,减轻了用户疲劳,提高了交互式遗传算法的性能,为其在复杂领域的应用提供了技术保障。
There exist a lot of optimization problems with implicit indices in many fields, such as industrial production, engineering, economy and society. These problems are difficult or even impossible to be expressed with explicitly defined objective functions, hence traditional intelligent optimization methods are not applicable. Interactive genetic algorithms can effectively solve these kinds of problems by embedding user’s intelligent evaluation into traditional evolution mechanism. However, user fatigue and evaluation uncertainties greatly influence the performance of interactive genetic algorithms, and restrict their applications to more complicated optimization problems. In order to overcome the above disadvantages, theories and key technologies of interactive genetic algorithms with an individual’s uncertain fitness are mainly researched in this dissertation.
     Firstly, the theory of fitness estimation in interactive genetic algorithms without considering evaluation uncertainties is studied, so as to alleviate user fatigue and establish foundations for the subsequent work. An interactive genetic algorithm with multiple surrogate models based on adaptive space division is proposed. The search space is adaptively separated, and multiple surrogate models are constructed in every subspace and applied to estimate an individual’s fitness instead of the user, which effectively alleviate user fatigue. Then a method of evolutionary knowledge extraction and applications based on directed graphs is presented. The fitness estimation of an individual is obtained based on the directed graph. With the estimated fitness, methods of identifying and applying superior individuals are given. The proposed algorithm effectively accelerates convergence and alleviates user fatigue.
     Secondly, the uncertainties in interactive genetic algorithms are researched, and two kinds of uncertain numbers are adopted to express an individual’s fitness. A fuzzy number with Gaussian membership function is adopted to express an individual’s fitness in order to characterize the user’s fuzzy cognition. Comparison of individuals is performed by using cut sets of fuzzy numbers. This method well reflects the user’s evaluation uncertainty. Based on the above study, the stochastic uncertainty in the evaluation process is further considered by using a stochastic variable with normal distribution to express the stochastic uncertainty, and an interactive genetic algorithm with an individual’s fuzzy and stochastic fitness is presented. By using cut sets of fuzzy numbers and confidence levels of stochastic variables, a method of individuals’ comparison is obtained. The approaches to calculate the stochastic parameters and cut set levels are proposed based on the fuzzy entropy. The above expression method of an individual’s fitness simultaneously reflects the user’s cognitive uncertainty and stochastic uncertainty, and maintains the diversity of an evolutionary population.
     Finally, the investigation on building surrogate models to approximate a user’s cognition is performed for interactive genetic algorithms whose individual’s fitness is expressed with three kinds of uncertain numbers. Neural networks based surrogate models of interactive genetic algorithms with an individual’s interval fitness is proposed based on our previous studies. Two RBF neural networks are adopted to approximate an interval’s upper limit and lower limit, respectively. When an individual’s fitness is a fuzzy number, a support vector classification (SVC) and a support vector regressor (SVR) are both adopted to construct surrogate models. A selection strategy of training data is presented based on the fuzzy entropy of the best individual’s fuzzy fitness, and applications of these models are also demonstrated. As for the interactive genetic algorithms with an individual’s fuzzy and stochastic fitness, the surrogate models are obtained based on directed fuzzy graphs and support vector machines (SVMs). Directed fuzzy graphs are used to extract evolutionary knowledge, and based on the graphs, an individual’s fuzzy and stochastic fitness is converted into a precise one. The SVMs are then trained as surrogate models based on these precise fitness. The above three algorithms are quantitatively analyzed. By applying surrogate models to estimate an individual’s fitness instead of the user, user fatigue is effectively alleviated and the performance of interactive genetic algorithms with an individual’s uncertain fitness in searching is improved.
     The above researches are successfully applied in fashion evolutionary design systems, and the applied results show that our work effectively expresses the user’s evaluation uncertainties, alleviates user fatigue, and improves the performance of interactive genetic algorithms, which provide guarantees for applying these algorithms in more complicated fields.
引文
[1]袁亚湘.非线性优化计算方法[M].北京:科学出版社, 2008.
    [2] Holland J. H. Adaptation in Natural and Artificial Systems [M]. Michigan, USA: The University of Michigan Press, 1975.
    [3] Kennedy J., Eberhart R. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, 1995, 4: 1942-1948.
    [4] Dorigo M., Stützle T. Ant Colony Optimization [M]. Cambridge: MIT Press, 2004.
    [5]王小平,曹立明等.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社, 2002.
    [6] Deb K. Pratap A., Agarwal S., et al. A fast and elitist multiobjective genetic algorithm NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [7] Wiegand R. P. An Analysis of Cooperative Coevolutionary Algorithms [D]. Ph D. dissertation, George Mason University, Fairfax, 2003.
    [8]巩敦卫,潘凤萍.自适应遗传算法理论与应用[M].徐州:中国矿业大学出版社, 2003.
    [9] Dawkins R. The Blind Watchmaker [M]. Essex, U.K.: Longman, 1986.
    [10] Gong D., Guo G. Interactive genetic algorithms with interval fitness of evolutionary individuals [J]. Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Complex Systems and Applications-modeling, Control and Simulations, 2007,14(s2): 446-450.
    [11] Gong D. W., Guo G. S., Lu L., et al. Adaptive interactive genetic algorithms with individual interval fitness [J]. Progress in Natural Science, 2008, 18(3): 359-365.
    [12] Bagley J. D. The Behavior of Adaptive System Which Employs Genetic and Correlation Algorithm [M]. Michigan: University of Michigan, 1967.
    [13] Cavicchio D. J. Adaptive Search Using Simulated Evolution [M]. Michigan: University of Michigan, 1970.
    [14] Hollstein R. B. Artificial Genetic Adaptation in Computer Control System [M]. Michigan: University of Michigan, 1971.
    [15] De Jong K. A. Analysis of the Behavior of a Class of Genetic Adaptive Systems [M]. Michigan: University of Michigan, 1975.
    [16] Brindle A. Genetic Algorithms for Function Optimization [M]. Alberta: University of Alberta, 1981.
    [17] Goldberg D. E. Genetic Algorithms in Search, Optimization and Machine Learning [M]. NewYork: Addison-Wesley, 1989.
    [18] Davis L. Handbook of Genetic Algorithms [M]. New York: Van Nostrand Reinhold, 1991:1-6.
    [19]玄光南,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004
    [20] Lee Z. J., Su S. F., Chuang C. C. , et al. Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment [J]. Applied Soft Computing, 2008,8(1):55-78.
    [21] Robinson J., Sinton S., Rahmat Y. Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna[C]. Proceedings of Antennas and Propagation Society International Symposium, IEEE, 2002, 1: 314-317.
    [22] Takagi H. Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation [J], Proceedings of the IEEE, 2001, 89(9): 1275-1296.
    [23] Cvetkovic D., Parmee I. C. Agent-based support within an interactive evolutionary design system [J]. AI EDAM, 2002, 16(5): 331-342.
    [24] Machwe A. T., Parmee I. C. Enabling generative behavior within an interactive evolutionary design system using a component-based representation [C]. Proceedings of IEEE Congress on Evolutionary Computation, 2007: 2964-2971.
    [25] Machwe A. T., Parmee I. C. Towards an interactive, generative design system: integrating a 'build and evolve' approach with machine learning for complex freeform design [C]. Proceedings of Evolutioanry Computation Workshops, 2007:449-458.
    [26] Simons C. L., Parmee I. C. Agent-based support for interactive search in conceptual software engineering design [C]. Proceedings of Genetic and Evolutionary Computation Conference, 2008: 1785-1786.
    [27] Kosorukoff A. Human based Genetic Algorithm [R]. Illigal Report No. 2001004, Urbana-Champaign: University of Illinois, 2001.
    [28] Sims K. Artificial evolution for computer graphics [C]. Proceedings of International Conference on Computer Graphics, 1991: 319-328.
    [29] Takekata K., Azmi M., Nishino H. An intuitive optimization method of haptic rendering using interactive evolutionary computation [C]. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 2005: 1896-1901.
    [30] Aoki K., Takagi H. 3-D CG lighting with an interactive GA [C]. Proceedings of 1st International Conference on Conventional and Knowledge-Based Intelligent Electronic Systems, 1997: 296-301.
    [31] Li Q., Nakamura T., Chao Y., et al. Image color transfer with region matching based on IEC [C]. Proceedings of the IEEE Congress on Evolutionary Computation, 2005: 1501-1508.
    [32] Lim I. S. Evolutionary art in virtual world [C]. Proceedings of the 2nd Eurographics Workshop on Virtual Environments, 1995.
    [33] Cho S. B., Lee J. Y. A human-oriented image retrieval system using interactive genetic algorithm [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2002, 32(3): 452- 458.
    [34] Todd S., Latham W. The mutation and growth of art by computers [J]. Evolutionary Design by Computers, 1999: 221-250.
    [35] Sugimoto F., Honda N. A human interface to search and draw facial images in mind by using psychometrical space model of faces [C]. Proceedings of IEEE International Conference on Fuzzy Systems, 1999: 1585-1590.
    [36] Dozier G., Carnahan B., Seals C., et al, An interactive distributed evolutionary algorithm (IDEA) for design [C]. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 2005: 418-422.
    [37] Todoroki Y., Takagi H. User interface of an interactive evolutionary computation for speech processing [C]. Proceedings of the 6th International Conference on Soft Computing, 2000: 112-118.
    [38] Sato Y. Voice quality conversion using interactive evolution of prosodic control [J]. Applied Soft Computing, 2005, 5(2): 181-192.
    [39] Seungmin Rho, Eenjun Hwang, Minkoo Kim. Music information retrieval using a ga-based relevance feedback[C]?.? Proceedings of International Conference on Multimedia and Ubiquitous Engineering, 2007: 739-744.
    [40] Takagi, H., Ohsaki, M. Interactive evolutionary computation-based hearing aid fitting [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(3):414-427.
    [41] Unehara M., Onisawa T. Composition of music using human evaluation [C], Proceedings of the 10th IEEE International Conference on Fuzzy Systems, 2001: 1203-1206.
    [42] Gong T., Zhang Q., Wu H. Music evolution in a complex system of interacting agents [C]. Proceedings of the Congress on Evolutionary Computation, 2005: 1111-1116.
    [43]李圣清,朱英浩,周有庆.基于交互式多目标遗传算法的无源滤波器优化设计[J].电工技术学报, 2003, 18(6): 1-6.
    [44] Kamalian R., Zhang Y., Takagi H., et al. Reduced human fatigue interactive evolutionary computation for micromachine design [C]. Proceedings of 2005 International Conference on Machine Learning and Cybernetics, 2005: 5666-5671.
    [45] Parmee I. C. The concrete arch dam: an evolutionary model of the design process [C]. Proceeding of International Conference on Artificial Neural Nets and Genetic Algorithms, 1993:544-551.
    [46] Furuta H., Maeda K., Maeda E., et al. Application of genetic algorithm to aesthetic design of bridge structures [J]. Microcomputers in Civil Engineering, 1995, 10(6): 415-421.
    [47] Lameijer E., Jzerman A., Kok J., et al. The molecule evaluator: an interactive evolutionary algorithm for designing drug molecules [C]. Proceeding of the Genetic and Evolutionary Computation Conference, 2005: 1969-1976.
    [48] Dorris N., Carnahan B., Orsini L. Interactive evolutionary design of anthropomorphic symbols [C]. Proceedings of the IEEE Congress on Evolutionary Computation, 2004: 433-440.
    [49] Kim H., Cho S., Application of interactive genetic algorithm to fashion design [J]. Engineering Applications of Artificial Intelligence, 2000, 13(6): 635-644.
    [50] Kim H., Cho S., Development of an IGA-based fashion design aid system with domain specific knowledge [C]. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 1999: 663-668.
    [51] Cho S. B. Towards creative evolutionary systems with interactive genetic algorithm [J]. Applied Intelligence, 2002, 16: 129-138.
    [52] Eckert I. K., Stacey M. Interactive generative systems for conceptual design: an empirical perspective [J]. Artificial intelligence for Engineering Design, Analysis and Manufacturing, 1999, 13(4): 303-320.
    [53] Monmarche N., Noeent G., Slimane M. Imagine: a tool for generation HTML style sheets with an interactive genetic algorithm based on genes frequencies [C]. Proceedings of IEEE International Conference on System, Man, and Cybernetics, 1999: 640-645.
    [54]钱志勤,滕弘飞.人机交互的遗传算法及其在约束布局优化中的应用[J].计算机学报, 2001,24(5):553-559.
    [55]王上飞,王煦法.图像情感检索研究的进展与展望[J].电路与系统学报, 2005,10(4): 102-110.
    [56]齐岩,卢德唐.交互式遗传算法在基于内容的图像检索中的应用[J].中国图象图形学报,2004, 9(1): 46-55.
    [57] Lydia B., Fran?ois P. Visual interactive evolutionary algorithm for high dimensional data clustering and outlier detection [C]. Proceedings of 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2005: 426-432.
    [58] Sergey M., Eric B. Exploratory data analysis with interactive evolution [C]. Proceedings of the Genetic and Evolutionary Computation Conference, 2004: 1151-1161.
    [59] Nishino H., Takagi H., Cho S. A 3D modeling system for creative design [C]. Proceedings of 15th International Conference on Information Networking, 2001: 479-486.
    [60] Nishino H., Iwakiri Y., Sueyoshi T., et al. A network sharable graphics education aid based on interactive evolutionary computation [C]. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 2005: 1902-1907.
    [61] Kuriyama K., Terano T. Interactive story composition support by genetic algorithms [C]. Proceedings of World Conference on Artificial Intelligence in Education, 1997: 615-617.
    [62] Xavier Llor`a, David E. Goldberg. The innovation pump: supporting creative processes in collaborative engineering [R]. IlliGAL Report No. 2006011, 2006: 1-22.
    [63] Lewis M. A., Fagg A. H., Solidum A. Genetic programming approach to the construction of a neural network for control of a walking robot [C]. Proceedings of IEEE International Conference on Robotics and Automation, 1992: 2618-2623.
    [64] Suga Y., Ikuma Y., Nagao D., et al. Interactive evolution of human-robot communication in real world [C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005: 1198-1203.
    [65] Moshaiov A., Avigad G. Concept-based interactive evolutionary computation for multi-objective path planning [C]. Proceedings of 2nd IEEE International Conference on Computational Cybernetics, 2004: 115-120.
    [66] Kubota N., Nojima Y., Baba N., et al. Evolving pet robot with emotional model [C], Proceedings of IEEE Congress on Evolutionary Computation, 2000: 1231-1237.
    [67] Lund H. H., Miglino O. Evolving and breeding robots [C]. Proceedings of 1st European Workshop on Evolutionary Robotics, 1998: 192-210.
    [68] Biles J. A., Anderson P. G., Loggi L. W. Neural network fitness functions for a musical IGA [C]. Proceedings of the International Symposium on Intelligent Industrial Automation and Soft Computing, 1996: 39-44.
    [69]周勇,巩敦卫,郝国生,等.交互式遗传算法基于NN的个体适应度分阶段估计[J].控制与决策, 2005, 20(2): 234-236.
    [70]郝国生,巩敦卫,史有群,等.基于搜索空间划分的自主式遗传算法与应用[C].中国自动化学会华东地区第17届学术年会论文集, 2004: 75-78.
    [71]巩敦卫,周勇,郭一楠.多近似模型交互式遗传算法[J].控制理论与应用, 2008, 25(3): 434-438.
    [72]王上飞,王胜惠,王煦法.结合SVM的交互式遗传算法及其应用[J].数据采集与处理, 2003, 18(4): 429-433.
    [73]胡静,陈恩红,王上飞,等.交互式遗传算法中收敛性及用户评估质量的提高[J].中国科学技术大学学报, 2002, 32(2): 210-216.
    [74]蒋姗姗,曹先彬,王熙法.基于IGA的用户agent模型与设计[J].模式识别与人工智能,2004, 17(2): 244-248.
    [75] Brintrup A.M., Takagi H. The effect of user interaction mechanisms in multi-objective IGA[C]. Proceedings of Genetic and Evolutionary Computation Conference, 2007:2629-2632.
    [76]巩敦卫,郝国生,周勇,等.分层交互式进化算法及其应用[J].控制与决策, 2004, 19(10): 1117-1120.
    [77]郝国生,巩敦卫,史有群,等.基于满意域与禁忌域的交互式进化算法及其应用[J].中国矿业大学学报, 2005, 34(2): 204-208.
    [78] Llora X., Sastry K., Goldberger D.E., etc. Combating user fatigue in iGAs:partial ordering, support vector machines, and synthetic fitness [R]. Illigal Report No.2005009, 2005:1-15.
    [79] Llora X., Sastry K., Goldberger D.E.. Evaluation consistency in igas: user contradictions as cycles in partial-ordering graphs [R]. Illigal Report No.2005022, 2005:1-22.
    [80] Breukelaar R., Emmerich M., Thomas B. On interactive evolution strategies [C], Lecture Notes in Computer Science, 2006, 3907:530-541.
    [81]周勇,巩敦卫,郭一楠.交互式遗传算法中的噪声及降噪策略[J].控制理论与应用, 2008, 25(2):223-227.
    [82] Liang K.H., Yao X., Newton C. Evolutionary search of approximated n-dimensional landscape [J]. International Journal of Knowledge-based Intelligent System, 2000, 4(3):172-183.
    [83] Paenke I., Branke J., Jin Y. C. Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4): 405-420.
    [84] Ong Y. S., Nair P. B., Lum K. Y. Max-min surrogate-assisted evolutionary algorithm for robust design [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4):392-404.
    [85] Jin Y. C., Olhofer M., Sendhoff B. A framework for evolutionary optimization with approximate fitness functions [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(5): 481-493.
    [86] Jin Y. A comprehensive survey of fitness approximation in evolutionary computation [J]. Soft Computing, 2005, 9(1): 3-12.
    [87] Zhou Z.Z., Ong Y. S., Nair P. B., etc. Combining global and local surrogate models to accelerate evolutionary optimization [J]. IEEE Transactions on systems, man, and cybernetics—part c: applications and reviews, 2007, 37(1):66-76.
    [88] Lee J. Y., Cho S. B. Sparse fitness evaluation for reducing user burden in interactive algorithm [C]. Proceedings of 1999 IEEE International Fuzzy Systems Conference, Korea: IEEE, 1999, 2: 998-1003.
    [89]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社, 2000.
    [90]孙晓燕,巩敦卫.变种群规模合作型协同进化遗传算法的研究[J].控制与决策, 2004, 19(12):1437-1440.
    [91] Ohsaki M., Takagi H., Ohya K. An input method using discrete fitness values for interactive GA [J]. Journal of Intelligent and Fuzzy Systems, 1998, 6(1):131-145.
    [92] Pallez D., Collard P., Baccino T, et al. Eye-tracking evolutionary algorithm to minimize user fatigue in IEC applied to interactive one-max problem [C]. Proceedings of Genetic and Evolutionary Computation, 2007: 2883-2886.
    [93] Gong D. W, Yao X., Yuan J., Sun X.Y. Interactive Genetic Algorithms with Individual Fitness Not Assigned by Human [J]. Journal of Industrial and Management Optimization.(Accepted)
    [94] Yuan J., Gong D. W. Large population size IGAs with individuals’fitness not assigned by user, Lecture Notes in Artificial Intelligence, 2008, 5227: 267-274.
    [95]殷剑宏,吴开亚.图论及其算法[M].合肥:中国科学技术大学出版社, 2003
    [96]巩敦卫,郝国生,周勇,等.交互式遗传算法原理及应用[M].北京:国防工业出版社, 2007.
    [97] Jin Y. C. , Branke J. Evolutionary optimization in uncertain environments—a survey [J]. IEEE Transactions On Evolutionary Computation, 2005, 9(3):303-317.
    [98] Chuang C. C. Extended support vector interval regression networks for interval input-output data [J]. Information Sciences, 2008, 178:871-891.
    [99]石玉峰.战时不确定性运输路径优化研究[D].西南交通大学博士学位论文, 2006
    [100] Janak S. L., Lin X., Floudas C. A. A new robust optimization approach for scheduling under uncertainty-II. uncertainty with known probability distribution[J]. Computers and Chemical Engineering, 2007, 31: 171-195.
    [101] Lin X., Janak S. L., Floudas C. A. A new robust optimization approach for scheduling under uncertainty-I. bounded uncertainty[J]. Computers and Chemical Engineering, 2004, 28: 1069-1085.
    [102] Nie X. H., Huang G. H., Li Y. P., et al. IFRP: a hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty[J]. Journal of Environmental Management, 2007, 84(1):1-11.
    [103] Liu B. Uncertain programming: a unifying optimization theory in various uncertain environments [J]. Applied Mathematics and Computation, 2001, 120: 227-234.
    [104]蒋峥.区间参数不确定系统优化方法及其在汽油调和中的应用研究[D].浙江大学博士学位论文, 2005.
    [105]程志强,戴连奎,孙优贤,区间参数不确定系统优化的可行性分析[J].自动化学报, 2004, 30(3): 455-459.
    [106] Fieldsend J. E., Everson R. M. Multi-objective optimization in the presence ofuncertainty[C]. Proceedings of the IEEE Congress on Evolutionary Computation, 2005: 234-250.
    [107] Aizawa A. N., Wah B. W. Scheduling of genetic algorithms in a noisy environment [J]. Journal of Evolutionary Computation, 1994, 2(1): 97-122.
    [108] Erick C. P., Adaptive sampling for noisy problems[C]. Proceedings of Genetic and Evolutionary Computation Conference, 2004: 947-958.
    [109] Limbourg P. Aponte D. E., An optimization algorithm for imprecise multi-objective problem functions[C]. Proceedings of the IEEE Congress on Evolutionary Computation, 2005: 459-466.
    [110]戎晓霞,崔玉泉,马建华.不确定环境下的物流配送中心选址模型[J].山东大学学报(理学版), 2004, 39(6): 72-77.
    [111]王玲玲,曾光明,黄国和,等.考虑不确定因素影响的沉淀池优化设计[J].数学的实践与认识, 2006, 36(8): 148-152.
    [112]郑璐,顾幸生.不确定条件下的零等待Flowshop生产调度问题[J].华东理工大学学报, 2004, 30(2): 188-192.
    [113] Leung S. C. H., Wu Y., Lai K. K. A robust optimization model for a cross-border logistics problem with fleet composition in an uncertainty environment [J]. Mathematical and Computer Modeling, 2002, 36: 1221-1234.
    [114] Leung S. C. H., Tsang S. O. S., Ng W. L., et al. A robust optimization model for multi-site production planning problem in an uncertain environment [J]. European Journal of Operational Research, 2007, 181(1): 224-238.
    [115] Papadrakakis M., Lagaros N. D., Plevris V. Design optimization of steel structures considering uncertainties [J]. Engineering Structures, 2005, 27: 1408-1418.
    [116]何新贵.模糊知识处理的理论与技术(第2版) [M].北京:国防工业出版社, 1998.
    [117] Tanaka H., Vejima S.,Asia K. Linear regression analysis with fuzzy model[J]. IEEE Transactions on Systems, Man, Cybernetic, 1982:903-907.
    [118] Chang Y. O., Ayyub B. M. Fuzzy regression methods-comparative assessment [J]. Fuzzy sets and systems, 2001, 19:187-203.
    [119] Celmin A. Least squares model -fitting to fuzzy vector data [J]. Fuzzy Sets and Systems 1987, 22:245-269.
    [120] Celmin A. Multidimensional least-squares model -fitting of fuzzy models [J]. Math. Modeling, 1987, 9: 669-690.
    [121] Chang Y. H., Ayyub B. M. Reliability analysis in fuzzy regression [C]. Proceedings of Annual Conference of the North American Fuzzy Information Processing Society, 1993:93-97.
    [122] Chang Y. H., Johnson P., Tokar S., Ayyub B. M. Least squares in fuzzy regression: limitsand extensions [C]. Proceedings of Annual Conference of the North American Fuzzy Information Processing Society, 1993: 98-102.
    [123] Ishibuchi H. Fuzzy regression analysis [J]. Japanese Journal Fuzzy Theory and Systems 1992, 4:137-148.
    [124] Buckley J. J. Feuring T. Linear and non-linear fuzzy regression: Evolutionary algorithm solutions [J]. Fuzzy Sets and Systems, 2000, 112:381-394.
    [125] Hong D. H., Hwang C. Ridge estimation for regression models with crisp inputs and Gaussian fuzzy output [J].Fuzzy Sets and Systems, 2004, 142 :307-319.
    [126] Cheng C.B. Fuzzy regression with radial basis function network [J]. Fuzzy sets and systems, 2001, 119:291-301.
    [127] Hong D. H., Hwang C. Support vector fuzzy regression machines [J]. Fuzzy sets and systems, 2003, 138:271-281.
    [128] Vapnik V. The Nature of Statistical Learning Theory [M]. Springer Verlag, New York. 1995.
    [129] Gunn, S. R. Support vector machines for classification and regression [R]. Technical report, Image speech and intelligent systems research group, University of Southampton, UK., 2004.
    [130]张学工.关于统计学习理论与支持向量机[J].自动化学报, 2000, 26(1):32-42.
    [131] Comak, E., Arslan, A., & Turkoglu, I. A decision support system based on support vector machines for diagnosis of the heart valve diseases [J]. Computers in Biology and Medicine, 2007, 37(1), 21-27.
    [132] Frohlich, H., Chapelle, O., Scholkopf, B. Feature selection for support vector machines by means of genetic algorithms [C]. Proceedings of the 15th IEEE international conference on tools with artificial intelligence, 2003:142-148.
    [133] Engin A. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm–support vector machines: HGASVM [J]. Expert Systems with Applications, 2009, 36:1391-1402.
    [134] Koby C., Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines [J]. Journal of Machine Learning Research, 2001, 2: 265-292.
    [135] Muller K. R., Mika S., Rasch G., et al. An introduction to kernel-based learning algorithms [J]. IEEE Transactions on Neural Networks, 2001, 12(2):181-202.
    [136] Hsu C.W., Lin C. J. A comparison of methods for multi-class support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13(3): 415-425.
    [137] Lou D. C., Liu C. L., Lin C. L. Message estimation for universal steganalysis using multi-classification support vector machine [J]. Computer Standards & Interfaces, 2009,31:420-427.
    [138] Lee D. W., Lee J. W. Domain described support vector classifier for multi-classification problems [J]. Pattern Recognition, 2007, 40:41-51.
    [139] Vapnik V., Golowich S., Smola A. Support vector method for function approximation, regression estimation, and signal processing [C]. Advances in Neural Information Processing Systems, 1999, 9:281–287.
    [140] Vijayakumar S., Wu S. Sequential support vector classifiers and regression [C]. Proceedings of International Conference on Soft Computing, 1999:610- 619.
    [141] Moore R. E. Method and Application of Interval Analysis [M]. London: Prentice Hall, 1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700