用户名: 密码: 验证码:
黄花蒿化感作用与友好栽培研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄花蒿又名青蒿(Artemisia annua L.),为菊科—年生或越年生草本植物,是提取青蒿素的唯一原料。目前,全世界有40%左右的人口受到疟疾威胁,青蒿素是世界卫生组织(WHO)推荐治疗疟疾的首选药物。
     我国黄花蒿种植面积和青蒿素产量约占全世界的90%以上,重庆市是中国黄花蒿的优质产区,种植面积和青蒿素产量分别占全国的70%和80%。青蒿素是黄花蒿(?)最多,在土壤中存在时间最长的化感物质,降低土地生产力,抑制周围和后茬植物生长,危害土壤和水体生态环境。在人工种植黄花蒿的过程中,随着青蒿素的含量和产量的提高,释放到环境中青蒿素大幅度增加,化感危害更加严重。论文采用生态学野外样方调查、培养试验、盆栽试验和田间试验等方法,研究了野生黄花蒿的群落特征及周围植物的存在状况,青蒿素对陆生和水生植物的化感效应及机理,轮作种植模式对后茬作物及自身的影响、施肥技术和水分管理对黄花蒿生长、青蒿素含量和产量,初步形成了青蒿素高产、土地利用高效的友好栽培技术。主要结果如下:
     对南方9个省市48个样地野生黄花蒿种群调查发现,黄花蒿群落处于相对稳定状态。在野生黄花蒿不同群落中,出现频率最高的9个种对中,5种为菊科植物,3种禾本科植物,联结性较低。在野生黄花蒿群落中和周围,十字花科和茄科等植物极少,表明黄花蒿对其他植物具有化感效应,抑制植物的生长发育。
     在土壤中添加黄花蒿产生的化感物质—青蒿素,不同程度抑制小麦、油菜和茎瘤芥等3种后茬作物的生长,生物量降幅高达41.1-51.7%,且对茎瘤芥的抑制作用低于油菜和小麦。青蒿素抑制其它植物生长,有利于扩大黄花蒿生存空间,增强竞争优势。但是,在黄花蒿种植区,选择抗化感作用较强的后茬作物可提高土地利用率和整体生产力。高浓度的青蒿素降低后茬作物叶绿素但提高类胡萝卜素含量,说明青蒿素促进叶绿素分解,导致光合速率下降,干物质积累减少。此外,青蒿素显著抑制氮、磷、钾养分吸收,与根系活力和硝酸还原酶活性降低有关。在黄花蒿收获后,适度延迟播种和移栽后茬作物可以减轻对后茬作物的危害。
     在人工培养液中,不同浓度青蒿素显著抑制绿藻生长,绿藻密度可降低74.5%(蛋白核小球藻)和61.8%(斜生栅藻)。青蒿素使绿藻培养液溶解氧减少,绿藻叶绿素和蛋白质含量降低,说明青蒿素抑制绿藻生长与光合作用降低,蛋白合成受到干扰有关,大规模种植黄花蒿会降低水体自净能力和生产力,加剧污染负荷,鱼类减产和灭绝等;但分散种植和精细采收,有益于降低水体青蒿素浓度,减轻水环境风险。此外,青蒿素提高培养液电导率和绿藻细胞丙二醛含量,说明青蒿素还能破坏细胞膜结构,造成胞内溶液外渗,致藻细胞死亡;但低浓度青蒿素适度提高绿藻超氧化物歧化酶和过氧化氢酶,有益于加速消除活性氧和自由基,减轻对绿藻细胞的危害。
     在重庆市黄花蒿种植区,采用黄花蒿—茎瘤芥轮作种植模式,青蒿素的含量和产量、以及单位土地的年收入等显著高于黄花蒿—小麦和黄花蒿—油菜轮作种植模式。施用有机肥,尤其是有机无机适量配施显著促进黄花蒿生长,提高青蒿素含量和产量,减轻种植黄花蒿对土壤细菌、真菌和放线菌数量的抑制作用,提高土壤脲酶、蔗糖酶和磷酸酶活性,促进黄花蒿养分吸收。在干旱条件下,黄花蒿生长受到抑制,生物量的降幅高达69.36%,青蒿素产量可降低81.56%;同时黄花蒿叶片细胞膜透性增加,叶片水势、叶绿素含量,根系活力和氮、磷、钾吸收量显著降低。但轻度干旱提高了叶片青蒿素和根系磷、钾含量,故施用磷钾肥有益于提高黄花蒿抗旱性。此外,干旱使黄花蒿叶片脯氨酸含量增加了10余倍,增幅远远高于叶绿素、根系活力、养分吸收量和青蒿素含量的减少,说明脯氨酸积累可视为黄花蒿对干早产生的一种保护性生化反应。在黄花蒿种植过程中,移栽前炼苗促根和提高脯氨酸有益提高黄花蒿抗旱性。
     综上所述,在重庆市黄花蒿种植区,友好栽培的内容包括采用黄花蒿—茎瘤芥轮作种植模式,适度延迟播种和移栽后茬作物,提倡施用有机肥,加强水分管理,分散种植,精细采收等。
Artemisia annua L., also called sweet wormwood, is an annual or biennial herbaceous plant used as a sole material for artemisinin extraction. Around40%of the populations in the world are now facing malaria infection. Artemisinin is recommended by World Health Organization (WHO) as a drug for the initial treatment of malaria.
     About90%of A. annua and artemisinin in the world was grown and produced in China. Chongqing is the place for growing A. annua with high-quality and the yield of artemisinin and planting area of A. annua accounted for70%and80%, respectively, in China. Artemisinin is one of the allelochemicals effused from A. annua which could exist in soils for a long time, which could reduce land productivity, inhibit the growth of surrounding plants, and damage soil and water ecsystems.In the process of artificial cutivation of A. annua, artemisinin released into environments increased significantly with contents and yield of artemisinin increased, resulting in more serious allelopathic effect. Through field, quadrate survey, solution culture, greeenhouse pot and field experiments, we investigated colony characters of wild A. annua, species and growth of surrounding plants, the allelopathic effect and mechanism of artemisinin on terrestrial and aquatic plants. The influence of cropping pattern, fertilization and water management on A. annua itself and after-crops were also studied. Plant growth, concentration and yield of artemisinin were recorded in field and greenhouse pot experiments. The cultivation techniques for high yield of artemisinin and efficient soil utilization were primarily developed on the base of our studies. The main results are as follows:
     The investigation of wild A. annua colonies in9southern provinces and cities with48samples showed that A. annua colonies were relatively stable.In the highest frequency of the9species pairs among different communities of wild A. annua,5species were Compositae,3Gramineae, and they were low connective. Few species of Cruciferae and Cyphomandra betacea were observed in or around the communities of wild A. annua, indicating allelopathic effects of A. annua on those plants, which inhibited significantly their growth and development.
     Adding artemisinin produced by the A. annua into soils inhibited growth of after-crops such as wheat, rape and pickle. The biomass decreased by41.1~51.7%. The growth inhibition of pickle was much lower than rape and wheat. The inhibition of artemisinin on the growth of other plants was beneficial to enlarge living space of A. annua, by competition. Selection of after-crops with strong anti-allelopathic effect could increase whole soil productivity by improving land utilization. The high artemisinin reduced chlorophyll but increased carotenoid in the leaves of after-crops, indicating that artemisinin might promote chlorophyll decomposition, reduce photosynthetic rate, and decrease dry matter accumulation.In addition, artemisinin significantly inhibited the absorption of nitrogen, phosphorus and potassium, which might be related to the decreased root and nitrate reductase activities. Moderately late sowing and transplanting of after-crops following A. annua harvest might reduce the harm to the succeeding crop.
     In solution culture, artemisinin inhibit the growth of green algae, and the density was reduced by74.5%(Chlorella pyrenoidosa) and61.8%(Scenedesmus obliquus), respectively. The decease in dissolved oxygen, chlorophyll and protein in green algae indicated that the poor growth might be due to slow photosynthesis and disorder protein synthesis caused by artemisinin. Cultivation of A. annua in large scale might reduce self-purification ability and productivity of water systems, leading to low pollution load and low fish production even their disappearances. Dispersive cultivation and fine recovery of A. annua at harvest could reduce artemisinin in water in the growing areas and eliminate the ecological risk.In addition, artemisinin increased the electric conductivity of culture medium and malondialdehyde in green algae cells, showing cell membrane damage, efflux of intracellular solution, and cell death by adding artemisinin into culture solutions. Low concentrations of artemisinin, however, increased the activities of superoxide dismutase, peroxide, and catalase in green algae, beneficial to fast elimination of active oxygen and free radicals, which could thus reduce the hazards to green algae cells.
     In A. annua planting areas in Chongqing, the content and yield of artemisinin and the annual income per land unit were significantly higher under the cropping pattern of A. annua-B.juncea than A. annua-T aestivum L. and A. annua-B. napus L. Organic fertilization, especially organic and inorganic fertilizers, significantly promoted the growth of A. annua, improved the artemisinin content and yield, reduced the inhibitory effect of A annua on bacteria, fungi and actinomycetes in soils. Meanwhile, the activities of urease, invertase and phosphatasein soils with A. annua grown were increased and nutrient absorption by A. annua was also improved. Under drought stress, the biomass of A. annua was reduced by69.36%and artemisinin production by81.56%.Simultaneously, cell membrane permeability of leaves increased in contrast to leaf water potential, chlorophyll, root activity, and nutrient absorption (N, P, K) which were reduced significantly. Under mild drought stress, however, increased content of artemisinin in leaves and phosphorus and potassium in roots suggested that more phosphorus and potassium fertilizers might be beneficial to improve the drought resistance of A. annua. In addition, the proline in A. annua increased10times at least under drought stress, much more than the increament of chlorophyll, root activity, nutrient uptake, and reduction of artemisinin content. It seems reasonable to indicate that proline accumulation might be a protective biochemical reaction of A. annua under drought stress. In A. annua cultivation process, moderate drought stress applied to seedlings before transplanting might increase proline, beneficial to A. annua. resistant to drought.
     In summary, in the A. annua planting area in Chongqing, friendly cultivation includes the cropping patterns of A. annua-B.juncea, moderate late sowing and transplanting of after-crops, organic fertilization, water management, disperse cultivation, and fine recovery at harvest.
引文
[1]甘师俊,李振吉,邹健强.中药现代化发展战略[M].北京:科学技术文献出版社,1998:44-48.
    [2]潘柳廷.化感作用在可持续发展农业中的应用.现代农业科技,2009(11):261-262.
    [3]李玉文.化学生态学研究现状和进展(Ⅱ)-植物他感作用和矿质养分化学生态.东北林业大学学报,1999,27(1):56-59.
    [4]申建波,张福锁,王敬国,等.化感作用与可持续农业.生态农业研究,1999,7(4):34-37.
    [5]lnderjit. Plant Phenolics in Allelopathy. The Botanical Review,1996,62(2):186-202.
    [6]董明.资源异质性环境中的植物克隆生长:觅食行为.植物学报,1996,38(10):828-835.
    [7]Rizvi S. J. H, Rizvi V. Allelopathy[M]. London;Chapman&Hall,1992.473
    [8]赵杨景.植物化感作用在药用植物栽培中的重要性和应用前景.中草药,2000,31(8):1-4.
    [9]张重义,林文雄.基于药用植物化感自毒作用与连作障碍研究的启示.2010年中国药学大会暨第十届中国药师周论文集,2010.
    [10]张重义,牛苗苗,陈婷婷,等.药用植物化感自毒作用研究对栽培技术创新的启示.中国现代中药.2011,13(1):4-7,20.
    [11]Baziramakenga R, Leroux G D, Simard R R. Effects of benzoic and cinnamic acid on growth, mineral composition and chlorophyll content of soybean. Journal of Chemical Ecology,1995, 20(6):2821-2833.
    [12]Hejl A M, Einhellig F A, Rasmussen J A. Effects of juglone on growth, photosynthesis,and respiration. Journal of Chemical Ecology,1993,19(3):559-568.
    [13]高兴祥,李美,高宗军,等.苍耳对不同植物幼苗的化感作用研究.草业学报,2009,18(2):95-101.
    [14]蒋红云,张燕宁,冯平章,等.石蒜对萝卜、黄瓜、番茄和油菜幼苗的化感效.应用生态学报,,2006,17(9):1655-1659.
    [15]贾海江,唐赛春,李先琨,等.三叶鬼针草对岩溶木本植物任豆和香椿的化感作用.广西科学,2008,15(4):436-440.
    [16]王田涛,王琦,王惠珍,等.当归自毒作用和其对不同作物的化感效应.草地学报,2012,20(6):1132-1138.
    [17]Ismail H, Hong HB, Ping CY, Abdul Khalil HPS (2002) Theeffects of a compatibilizer on the properties of polypropy-lene/silica/white rice husk ash hybrid composites. J ReinfPlast Compos 21:1685-169.
    [18]吴凤芝,黄彩红,邓旭红.酚酸类物质对黄瓜幼苗养分吸收的化感作用.内蒙古农业大学学报(自然科学版),2007,,28(3):131-133.
    [19]陈龙池,廖利平,汪思龙.香草醛对杉木幼苗养分吸收的影响.植物生态学报,2003,27(1):41-46.
    [20]刘迎,王金信,胡燕,等.白三叶草对苘麻和稗草的化感作用.植物保护学报,2006,(4):40--436.
    [21]马沅,陈放,王胜华,等.麻疯树水浸液对两种经济作物的化感作用研究.北方园艺,2009,(8):19-23.
    [22]许世泉,艾军,王英平,等.人参化感物质对人参根尖组织结构的影响研究.特产研究,2008:(2):36-41.
    [23]Holappa L D,Blum U. Effects of exogenously applied ferulic acid,a potential allelopathic compound,on leaf growth,water utilization and endogenous abscissic acid levels of tomato, cucumber and bean. Chemical Ecology,1991,17:865-886.
    [24]杨梅,曹光球,黄燕华,等.邻羟基苯甲酸对不同化感型杉木无性系内源激素含量的化感效应.中国生态农业学报,2011,1991):124-129.
    [25]刘秀芬,胡晓军.化感物质阿魏酸对小麦幼苗内源激素水平的影响.中国生态农业学报,2001,9(1):96-98.
    [26]李键,谢海慧,刘奕,等.两种木麻黄化感物质对其水培幼苗根系活力及内源激素含量的动态影响.热带作物学报,2012,(11):2091-2097.
    [27]Bazivamakenga R R,Leorux G D,Simard R R.Efects of benzonic and cinnamic on mebmrane permeability of soybean roots. Chemical Ecology,1995,21:1271-1285.
    [28]耿广东,张素勤,程智慧.香草醛对莴苣的化感作用及其作用机制.西北农业学报,2009,18(3):209-212,217.
    [29]刘娜,周宝利,李轶修,等.化感物质己二酸二异丁酯对茄子黄萎病及幼苗生长的效应.园艺学报,2009,38(7):1065-070.
    [30]迟铭,刘增文.杜仲叶水提取物对几种农作物的化感作用.西北农业学报,2011,20(6):168-173.
    [31]李美,高兴祥,高宗军,等.艾蒿对不同植物幼苗的化感作用初探.草业学报,2010,19(6):114-119.
    [32]胡琬君,马丹炜,王亚男,等.土荆芥挥发油对蚕豆根尖细胞的氧化损伤.应用生态学报,2012,31(4):1077-1082.
    [33]Weir T.L.,Park S.W.,Vivanco J.M..Biochemical and physiological mechanisms mediated by allelochemicals..Plant Biology2004,(7):472-479.
    [34]林文雄,熊君,周军建,等.化感植物根际生物学特性研究现状与展望.中国生态农业学报,2007,15(4):1-8.
    [35]张爱华,雷锋杰,许永华,等.外源人参皂苷对人参种子萌发和幼根抗氧化酶活性的影响.生态学报,2009,29(9):4934-4941.
    [36]覃逸明,黄雨清,聂刘旺,等.凤丹种胚组培苗的自毒作用研究.核农学报,2009,23(1):75-79.
    [37]姜丽,孙玉文,刘景安.分葱对黄瓜、萝卜和白菜的化感作用.中国农学通报,2007,(2):263-266.
    [38]赵杨景.植物化感作用在药用植物栽培中的重要性和应用前景.中草药,2000,32(8):附1-4.
    [39]景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报,2000,31(1).124-126.
    [40]王璞,赵秀琴.几种化感物质对棉花种子萌发及幼苗生长的影响.中国农业大学学报,2001,6(3):26-31.
    [41]程智慧,耿广东,张素勤,等.辣椒对莴苣的化感作用及其成分分析.园艺学报,2005,32(1):100-104.
    [42]梁斌,袁亚莉,谷文祥,等.薇甘菊化感作用的初步研究.杂草科学,2006,(1):21-23.
    [43]Blum, U. Allelopathic interactions involving phenofic acids. Journal of Nematology.1996,28(3):259-267.
    [44]Emheing F A. Mechanisms and modes of action of allelochemicals[M]. In The Science of Allelopath5,New York,1986,171-188.
    [45]Einhellig F A. Interactions involving allelopathy in cropping systems.Agronomy ournal,1996,88(5):886-893.
    [46]Diawara M M, Moussa M., Trumble J T. et al. Linear furanocoumarins of three celery breeding lines:Implication for integrated pest management.Journal of agricultural and food chemistry,1993.41 (5):819-824.
    [47]徐汉虹,路雪林,李玉霞,等.化感作用的研究新趋向.世界农药,2008,30(1):15-21.
    [48]Einhellig,F.A.Interaction involving allelopathy in cropping systems. Agronomy Journal.1996,88: 886-893.
    [49]林文雄,何海斌,熊君,等.水稻化感作用及其分子生态学研究进展.2006,26(8):2687-2694.
    [50]Choesin D N, Boerner R E. Allyl isothiocyanate release and the allelopathic potential of Brassica napus(Brassicaceae). American Journal of Botany,1991,78(8):1083-1090.
    [51]郭冠瑛,王丰青,范华敏,等.地黄化感自毒作用与连作障碍机制的研究进展.中国现代中药,2012,14(6):35-39.
    [52]曹志强,金慧,许永华,等.老参地连续种参试验报告.中药材,2004,27(8):554-555.
    [53]喻敏,余均沃,曹培根,等.百合连作土壤养分及物理性状分析.土壤通报,2004,35(3):377-379.
    [54]张辰露,孙群,叶青.连作对丹参生长的障碍效应.西北植物学报,2005,,25(5):1029-1034.
    [55]简在友,王文全,孟丽,等.人参属药用植物连作障碍研究进展.中国现代中药,2008,10(6):3-5.
    [56]张重义,林文雄.药用植物的化感自毒作用与连作障碍.中国生态农业学报,2009,17(1):189-196.
    [57]Zeng, M.,Li L,Chen, S et al.Clardy, J.Tetrahedron,1983,39:2941-2946.
    [58]董家新,刘义.使用热分析方法对青蒿素热稳定性的研究[A].中国化学会第十三届全国化学热力学和热分析学术会,2006,129.
    [59]Stephen O. Duke,Kevin C.Vaughn.Edward M.Croom et al.Artemisinin.a constituent of Annual Wormwood(Artemisia annua)is a selective Phytotoxin. Weed Science 1987,35:499-505
    [60]Duke S.O, Paul R.N.,Lee S.M. Terpenoids from the genus Artemisia as potential pesticide. Biologically Active Natural Products,1988,21(11):318-334
    [61]Peter K. Chen, Gerald R. Leather. Plant growth regulatory activities of artemisinin and its related compounds. Journal of chemical ecology,1990,16(6):1867-1876
    [62]Chen P.K,Polatnick M,GLeather.Comparative study on artemisinin,2,4-D,and glyphosate. J. Agric Food Chem,1991,39:991-994
    [63]Lori H. Stiles, Gerald R. Leather,Peter K. Chen. Effects of two sesquiterpene lactones isolated from Artemisia annua on physiology of Lemna minor.Journal of chemical ecology,1994,20(4):969-978.
    [64]John Lydon,John R.Teasdale,Peter K.Chen.Allelapathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Science,1997,45:807-811.
    [65]GD Bagchi, DC Jain, S Kumar. Arteether:a potent plant growth inhibitor from Artemisia annua.Phytochemisty,1997,45(6):1131-1133.
    [66]Magiero, E.C. Assmann, J.M.;Marchese, J.Aet al.Allelopathic effect of Artemisia annua L. on the germination and initial development of lettuce (Lactuca sativa L.) and wild poinsettia (Euphorbia heterophylla L.) seedlings. Revista Brasileira de Plantas Medicinais,2009,11(3):317-324.
    [67]Karina K. Jessing,Nina Cedergreen,John Jensen,et al.Degradation and ecotoxicity of the biomedical drug artemisininin in soil. Environmental Toxicology and Chemistry,2009, 28(4):701-710.
    [68]王三根,黄昀,吕俊.中药青蒿提取液对水稻种子和幼苗的生理效应.种子,2003,129(3):21-25.
    [69]何军,王三根,丁伟.青蒿浸提物对小麦化感作用的初步研究.西南农业大学学报,2004,26(3):281-288.
    [70]沈慧敏,郭鸿儒,黄高宝.不同植物对小麦、黄瓜和萝卜幼苗化感作用潜力的初步评价.应用生态学报,2005,16(4):740-743.
    [71]慕小倩,马燕,王硕,等.黄花蒿化感作用机理的初步研究.西北植物学报,2005,25(5):1025-1028.
    [72]王硕,慕小倩,杨超,等.黄花蒿浸提液对小麦幼苗的化感作用及其机理研究.西北农林科技大学学报,2006,34(6):106-110.
    [73]沈慧敏.黄花蒿(Artemisia annua L.)化感物质释放途径及化感作用机理研究[D].甘肃农业大学,2006.
    [74]赵红梅,杨顺义,郭鸿儒,等.黄花蒿对4种受体植物的化感作用研究.西北植物学报,2007,27(11):2292-2297.
    [75]高志梅,李拥军,谷文祥.青蒿化感作用的初步研究.华南农业大学学报,2007,28(1):122-124.
    [76]郭鸿儒.黄花蒿(Artemisia annua.L.)化感物质的分离鉴定及化感物质作用机理研究[D].甘肃农业大学,2007.
    [77]陈燕芳,丁伟,丁吉林,等.天然产物除草剂研究进展.杂草科学,,2007(2):1-6.
    [78]邓思娟,李春远,陈实.青蒿化感物质的分离与结构鉴定.华南农业大学学报,2008,29(3):42-46.
    [79]郭鸿儒,沈慧敏,杨顺义,等.黄花蒿化感物质对受体燕麦化感作用机理的初步研究.甘肃农业大学学报,2008,43(1):102-104.
    [80]赵红梅.黄花蒿(Artemisia annua.L)化感物质的释放途径及其主要化感物质的分离鉴定[D].甘肃农业大学,2008.
    [81]邓思娟,高志梅,李拥军,等.青蒿化感活性成分的分离与单体化合物活性测定[A].第七(?)天然有机化学学术研讨会论文集[C],2008.
    [82]邓思娟.高产青蒿素青蒿品种的选育与化感活性物质分离[D].华南农业大学,2009.
    [83]李云寿,唐绍宗,邹华英,等.黄花蒿提取物的杀虫活性.农药,2000,39(10):25-26.
    [84]Rao P.J,Kumar K.M. Singh S.,et al. Effect of Artemisia annua oil on development and reproduction of Dysclercus koenigii F.(Hem,Pyrrhocoridae). JAPANESE JOURNAL OF APPLIED ENTOMOLOGY AND ZOOLOGY,1999,123:315-318.
    [85]Con V.Q,Muu L.P. Thinh T.H, et al. Results of the application of plant origin insecticide extracted from Artemisia annua L. for controlling pests at nearly harvest period. Plant Protect, 1993(5):11-14.
    [86]李云寿,邹华英,唐绍宗,等.14种菊科杭物提取物对菜青虫的杀虫活性华东昆虫学报,2000,9(2):99-101.
    [87]姚安庆,梁德华.樟树和黄花蒿浸提物对菜青虫的生物活性中国蔬菜,2004,5:14-15.
    [88]马安勤,钟国华,胡关英,等.骆驼蓬等杭物提取物杀虫活性研究.华南农业大学学报(自然科学版),2003,24(1):38-40.
    [89]陈海珊,赵肃清,刘演等.八种植物提取物对蔬菜害虫的室内毒力研究.广西植物,2003,23(5):457-460.
    [90]邱丹,李宁,刚存武.四种杭物源农药对南关洲斑潜蝇的生物活性测定.青海大学学报(自然科学版),2005,23(3):59-62.
    [91]Tripathi A.K,Prajapati V. Aggarwal K.K,et al. Repellency and toxicity of oil from Artemisia annua to certain stored-product beetles. J. JOURNAL OF ECONOMIC ENTOMOLOGY, 2000,93(1):43-47.
    [92]Tripathi A.K, Prajapati V. Aggarwal K.K,et al. Toxicity, feeding deterrence, and effect of 1,8-cineole from Artemisia annua on progeny production of Tribolium castanaeum (Coleoptera:Tenebrionidae).JOURNAL OF ECONOMIC ENTOMOLOGY,, 2001,94(4):979-983.
    [93]朱芬,雷朝亮,王健.黄花蒿粗提物对几种害虫拒食性的初步研究.昆虫天敌, 2003,25(1):16-19.
    [94]周宇杰,丁伟,王春升.青蒿粗提物对朱砂叶螨生物活性的初步研究西南农业大学学报(自然科学版),2006,28(2):305-308,321.
    [95]Maggi M.E.,Mangeaud A. Carpinella M.C,et al. Laboratory evaluation of Artemisia annua L. extract and artemisinin activity against Epilachna paenulata and Spocloptera ericlania. JOURNAL OF CHEMICAL ECOLOGY,2005,31(7):1527-1536.
    [96]刘飞,伍晓丽,崔广林,等.青蒿根际微生物数量动态及其与青蒿素含量的关系研究.时珍国医国药,2010,(1):37-38.
    [97]中国中医药信息杂志通讯员.世界卫生组织呼吁中国增加青蒿素产量.中国中医药信息杂志,2005,12(8):110.
    [98]王伯荪,李鸣光,彭少麟,等.植物种群学[M].广州:广东高等教育出版社,1995.
    [99]陈杨,朱世民,陈洪湘.青高素类药抗疟研究进展.药学学报,1998,33(3):234-239.
    [100]刘春朝,王玉春,欧阳藩.青蒿素研究进展.化学进展,1999,11(1):41-47.
    [101]赵生芳,张瑞琴.青蒿研究的现状.中国药师.2003,6(11):733-734.
    [102]闫志刚,马小军,冯世鑫,等.黄花蒿野生群落的种间关系及其对水淹干扰响应.广西植物,2009,29(6):831-835.
    [103]王晋萍,董丽佳,桑卫国.不同氮素水平下入侵种豚草与本地种黄花蒿、蒙古蒿的竞争关系.生物多样性,2012,20(1):3-11.
    [104]肖宜安,贺平,李晓红,等.长柄双花木分布群落中优势种群间联结性研究.西南师范大学学报,2003,28(6):952-957.
    [105]刘世彪,林永慧,姜业芳.五柱绞股蓝群落主要伴生种的种间关联性研究.亚热带植物科学,2006,35(2):27-30.
    [106]谷文祥,段舜山,骆世明.萜类化合物的生态特征及其对植物的化感作用.华南农业大学学报,1998,19:108-112.
    [107]翟明普,贾黎明.森林植物间的他感作用.北京林业大学学报,1993,15(3):138-147.
    [108]David,S.and Seigler.Chemistry and mechanisms of allelopathic interactions. JOURNAL OF AGRONOMY AND CROP SCIENCE.,1996,88:876-885.
    [109]Bloom A J,Meyerhoff P A,Taylor A R,et al. Root development and absorption of ammonium and nitrate from the rhizosphere. Journal of Plant Growth Regulation,2003,21 (4):416.
    [110]张志良.植物生理学实验指导[M].北京:高等教育出版社,2010.
    [111]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2008.
    [112]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [113]Jessing K K,Cedergreen N, Jensen J,et al.Degrardation and ecotoxicity of the biomedical drug artemisin in soil.Environmental Toxicology and Chemistry,2009,4(28):701.
    [114]周青.次生代谢的种群生态作用及在农业实践中的应用.农业现代化研究,1996,17(2):100-103.
    [115]冯世鑫,马小军,闫志刚,等.黄花蒿轮作模式的研究.中国中药杂志,2009,34(4):488-490.
    [116]王冉,李吉跃,张方秋,等.不同施肥方法对马来沉香和土沉香苗期根系生长的影响.生态学报,2011.31(1):98-106.
    [117]徐建中,王志安,俞旭平,等.益母草有机肥与无机肥配比试验.中国中药杂志,2006,31(4):340-342.
    [118]王丹,侯俊玲,万春阳,等_中药材施肥研究进展.土壤通报,,2011,42(2):225-228.
    [119]鲍雅静,季静,杨晓慧,等NaCl胁迫对金银花叶片光合色素含量的影响.安徽农业科学,2007,35(21):63-66.
    [120]缪丽华,王媛,高岩,等.再力花地下部水浸提液对几种水生植物幼苗的化感作用.生态学报,2012,32(14):4488-4495.
    [121]杨建昌.水稻根系形态生理与产量、品质形成及养分吸收利用的关系.中国农业科学,2011,44(1):36-46.
    [122]黄玥,袁玲.青蒿素的化感效应及机理研究进展.贵州农业科学,2011,39(6):111-113.
    [123]王培丽,沈宏,陈文捷,等.斜生栅藻对振荡和磷胁迫的生理生化响应.水生生物学报,,2011,35(3):443-448.
    [124]聂湘平,蓝崇钰,林里,等.多氯联苯对蛋白核小球藻和斜生栅藻生长影响的研究.中山大学学报(自然科学版),2002,41(1):68-71.
    [125]下明兹,庄惠如,陈必链,等.有机物质对紫球藻生长的影响.微生物学通报,2001,28(1):31-35.
    [126]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [127]杜青平,黄彩娜,贾晓珊,等.1,2,4-三氯苯对3种海洋微藻的毒性效应.生态环境,2007,16(2):352-357.
    [128]Sun X X, Choi J K, Kim E K. A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment. Journal of Experimental Marine Biology and Ecology,2004,304(1):35-49.
    [129]文航,蔡佳亮,苏玉,等.滇池流域入湖河流丰水期着生藻类群落特征及其与水环境因子的关系.湖泊科学,2011,23(1):40-48.
    [130]刘青,张晓芳,李太武,等.光照对4种单细胞藻生长速率、叶绿素含量及细胞周期的影响. 大连水产学院学报,2006,21(1):24-30.
    [131]王艳华,袁峻峰,丁峰元,等.苯乙烯对4种藻类的毒性效应.上海师范大学学报(自然科学版),2004,33(1):97-101.
    [132]张伟,阎海,吴之丽.铜抑制单细胞绿藻生长的毒性效应.中国环境科学,2001,21(1):4-7.
    [133]祁秋霞.硫酸铜对海洋微藻生长的影响.水产养殖,2005,26(4):11-13.
    [134]G(?)OSS E M. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences,2003, 22(3):313-339.
    [135]胡胜华,高云霓,张世羊,等.武汉月湖水体营养物质的分布与硅藻的生态指示.生态环境学报,2009,18(3):856-864.
    [136]Li F M,Hu H Y,Isolation and Characterization of a Novel Antialgal Allelochemical from Phragmites Communis. Applied and Environmental Microbiology,2005,71(11):6545-6553.
    [137]欧晓明,雷满香,王晓光,等.新杀虫剂HNPC-A9908对蛋白核小球藻生理生化特性的影响.农业环境科学学报,2004,23(1):154-158.
    [138]高李李,郭沛涌,苏光明,等.化感物质肉桂酸乙酯对蛋白核小球藻生长及生理特性的影响.环境科学,2013,34(1):156-162.
    [139]柴民伟,石福臣,马妍.防己抑藻效应及其化感物质的HPLC分析.植物研究,2010,30(6):758-762.
    [140]彭金良,严国安,沈国兴,等.α-萘酚胁迫对普通小球藻生长及抗氧化酶活性的影响.武汉大学学报(理学版),2001,47(4):449-452.
    [141]向礼恩,严铮辉,王贵君,等.青蒿素生物合成途径基因组织表达分析与青蒿素积累研究.中国中药杂志,2012,37(9):1169-1173.
    [142]尹文佳,杜家方,李娟,等.连作对地黄生长的障碍效应及机制研究.中国中药杂志2009,34(01):18-21.
    [143]张新慧,张恩和,王惠珍,等.连作对当归生长的障碍效应及机制研究.中国中药杂志2010,35(10):1231-1234.
    [144]关松荫.土壤酶及其研究法[M].北京:农业出版社,1996.
    [145]钟凤林,陈和荣,陈敏.青蒿最佳采收期采收部位和干燥方式的实验研究.中国中药杂志,1997,22(7):405-407.
    [146]韦霄,李锋,许成琼,等.不同栽培措施对黄花蒿产量和青蒿素含量的影响.广西科学院学报,1999,15(3):132-136.
    [147]杨敏.播期对青蒿生长和青蒿素含量的影响[D],西南大学,2008.
    [148]娄翼来,王玲莉,胡克伟.不同植烟年限土壤pH和酶活性的变化.植物营养与肥料学 报,2007,13(3):531-534.
    [149]胡汝晓,赵松义,谭周进,等.烟草连作对稻田土壤微生物及酶的影响.核农学报2007,21(5):494-497.
    [150]刘方,何腾兵,刘元生,等.长期连作黄壤烟地养分变化及其施肥效应分析.烟草科技,2002(6):30-33.
    [151]袁玲,杨邦俊,郑兰君,等.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报,1997,3(4):300-306.
    [152]靳军英,张卫华,黄建国.干旱对扁穗牛鞭草生长、营养及生理指标的影响.植物营养与肥料学报,2011,17(6):1545-1550.
    [153]孙园园,孙永健,吴合洲,等.水分胁迫对水稻幼苗氮素同化酶及光合特性的影响.植物营养与肥料学报,2009,15(5):1016-1022.
    [154]周洁,郭兰萍,张霁,等.药用植物对干旱胁迫的响应及受控实验.中国中药杂志,2010,35(15):1919-1924.
    [155]张益锋,何平,张春平.干旱及增强UV-B胁迫对金荞麦生物量积累与分配的影响.中国中药杂志,,2011,36(15):2032-2037.
    [156]杨云富,郭巧生,张守栋,等.水分胁迫对药用白菊花抗干旱生理及药材内在品质的影响.中国中药杂志,2009,34(04):486-487.
    [157]孙年喜,李隆云,钟国跃,等.不同生长期土壤水分处理对黄花蒿生理特性的影响.中国中药杂志.2009,34(04):386-389.
    [158]杨海梅,李明思,谢云.黄花蒿耗水及生长规律试验研究.石河子大学学报,,2005,,23(3):339-341.
    [159]李隆云,钟国跃,吴叶宽,等.青蒿栽培关键技术[M].北京:中国三峡出版社,2006:76
    [160]齐向娟,李士雨,何玉娟.天津地区黄花蒿中青蒿素测定中草药.2006,37(3):449-450.
    [161]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995:53.
    [162]陈建勋.植物生理学实验指导[M].广州:华南理工大学出版社,2002:28.
    [163]张楠,温泉,冯辉,等.干旱胁迫及施加氮素对长春花生物碱的调控.中国中药杂志,2012,,37(10):1346-1352.
    [164]张岁岐,山仑.土壤干旱条件下氮素营养对玉米内源激素含量影响.应用生态学报,2003,14(9):1503-1506.
    [165]郭巧生,周黎君,张志远,等.水分胁迫对夏枯草营养期生长和生理特性的影响.中国中药杂志,2009,34(14):1761-1764.
    [166]Geng Y P, Pan X Y, Xu C Y, et al. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener Acta Oecologica-International Journal of Ecology,2006,30:380-385.
    [167]陈郡雯,吴卫,郑有良,等.聚乙二醇(PEG-6000)模拟干旱条件下白芷苗期抗旱性研究.中国中药杂志,2010,35(2):149-153.
    [168]常江,李金才.渍害条件下小麦营养吸收特点.安徽农业大学学报,1997,24(1):24-29.
    [169]傅前虎,李金才,雷鸣.孕穗期根际土壤淹水对小麦氮素代谢和产量的影响.安徽农业科学,2001,29(5):608-610.
    [170]蔺万煌,李艳红,萧浪涛,等.淹水对烟草生理特性的影响.湖南农业大学学报.2001,27(5):339-342.
    [171]杨虹琦,周冀衡,罗泽民,等.干旱胁迫下供钾水平对烟草生长和钾素吸收及抗旱性的影响.湖南农业大学学报,2003,29(5):376-379.
    [172]李春香,王纬,李德全,等.长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响.西北植物学报,2001,21(5):924-930.
    [173]魏永胜,梁宗锁.钾与提高作物抗旱性的关系.植物生理学通讯,2001,31(6):576-580.
    [174]张明生,谈锋.水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系.种子,2001,(4):23-25.
    [175]Ristic Z, David D. Chloroplast structure after water and high temperature stress in two lines of maize that differ in endogenous levels of abscises acid.Plant Science,1992,153:186-196.
    [176]杨万勤,王开运,宋光煜,等.水分胁迫对燥红土和变形土生长的玉米叶片.应用与环境生物学报,2003,9(6):588-593.
    [177]井春喜,张怀刚,师生波,等.土壤水分胁迫对不同耐旱性春小麦品种叶片色素含量的影响.西北植物学报,2003,23(5):811-814.
    [178]束良佐,刘英慧.硅对盐胁迫下玉米幼苗生长的影响.农业环境保护,2001,20(1):38-40.
    [179]赵忠,李鹏.渭北黄土高原主要造林根系分布特征及抗旱性研究.水土保持学报,2002,16(1):96-99.
    [180]郝树荣,郭相平,王为木,等.水稻分蘖期水分胁迫及复水对根系生长的影响.干旱地区农业研究,2007,25(1):149-152.
    [181]Klayman.D,L.Qinghaosu(artemisinin)-An antimalarial drug from China. Science,1985,228: 1049-1053.
    [182]史玉炜,王燕凌,李文兵.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响.新疆农业大学学报,2007,30(2):5-8.
    [183]郭华军.水分胁迫过程中的渗透调节物质及其研究进展.安徽农业科学,2001,38(5):7750-7760.
    [184]Chen H, Chen F. Effects of yeast elicitor on the growth andsecondary metabolism of a high-tanshinone-producing line ofthe Ti transformed Salvia miltiorrhiza cells in suspensionculture.Process Biochem,2000,35:837-840.
    [185]李霞,王洋,阎秀峰.水分胁迫对黄檗幼苗三种生物碱含量的影响.生态学报,2007,27(1):58-64.
    [186]郭兰萍,黄璐琦,蒋有绪,等.药用植物栽培种植中的土壤环境恶化及防治策略.中国中药杂志,2006,31(9);714-717.
    [187]郭兰萍,黄璐琦,蒋有绪,等.栽培苍术根际土壤微生物变化.中国中药杂志,2007,32(12):1131-1133.
    [188]李钧敏,钟章成,董鸣.田野菟丝子寄生对薇甘菊入侵群落土壤微生物生物量和酶活性的影响.生态学报,2008,28(2):868-876.
    [189]李会娜,刘万学,戴莲,等.紫茎泽兰入侵对土壤微生物、酶活性及肥力的影响.中国农业科学,2009,42(11):3964-3971.
    [190]张天瑞,皇甫超河,白小明,等.黄顶菊入侵对土壤养分和酶活性的影响.生态学杂志,2010,29(7):1353-1358.
    [191]高伟,朱静华,李明悦,等.有机无机肥料配合施用对设施条件下芹菜产量、品质及硝酸盐淋溶的影响.植物营养与肥料学报,2011,17(3):657-664.
    [192]李东坡,武志杰,陈利军.土壤生物学活性对施入有机肥料的响应-土壤酶活性的响应.土壤通报,2003,34(5):464-468.
    [193]邵清松,郭巧生,顾光同,等.不同种植制度和施肥处理对杭白菊土壤微生物功能多样性的影响.中国中药杂志,2011,36(23):3233-3237.
    [194]祁建军,赵晓萌,周丽莉,等.西洋参根际土壤微生物群落组成与多样性研究.中国中药杂志,2010,,35(18):2378-2382.
    [195]杨水平,杨宪,黄建国,等.氮磷钾肥和密度对青蒿生长和青蒿素产量的影响.中国中药杂志,,2009,34(17):47-52.
    [196]肖文中,邓展来.不同栽培方式对青蒿生长情况及产量和青蒿素含量的影响.中国现代中药,2008,10(4):44-45.
    [197]韦中强,李成东,肖杰易,等.施肥水平对青蒿产量和质量影响的研究.时珍国医国药,2008,19(5):1286-1287.
    [198]王满莲,韦霄,蒋运生,等.氮对黄花蒿生长、光合特性和青蒿素含量的影响.广西植物,2009,29(2):260-263.
    [199]郭巧生,刘丽,刘德辉,等.药用菊花种植基地土壤肥力变化和菊花专用肥的研究.中国中药 杂志,2003,28(2):121-125.
    [200]李福安,李建民,王祖训,等.不同肥料对秦艽根的产量和龙胆苦苷含量的影响.中草药,2005,(1):119-121.
    [201]吴家胜,应叶青,曹福亮,等.施磷对银杏叶产量及黄酮含量的影响.东北林业大学学报,2003,31(1):17-18.
    [202]谢彩侠,张重义,谢慧玲,等.不同产地山药氮磷钾吸收规律研究.河南农业大学学报,2003,37(3):253-256.
    [203]王静,王渭玲,徐福利,等.桔梗氮、磷、钾施肥效应与施肥模式研究.植物营养与肥料学报,2012,18(1):196-202.
    [204]王朝梁,崔秀明.不同底肥量及追肥时期对三七种苗产量和质量的影响.中药材,1989,12(12):11-13.
    [205]陈中坚,王勇,王朝梁,等.惠满丰有机活性肥在三七上的应用研究.特产研究,2000,4:20-22.
    [206]杨建忠,王勇,陈呈君,等.三七麻点叶斑病发生危害调查初报.云南农业科技,2006,6:47-49.
    [207]武延安,蔺海明,曹占凤,等.腐殖酸类有机肥对当归物质生产及品质的影响.中国中药杂志2008,33(03):251-255.
    [208]李隆云,秦松云.有机肥、无机肥配合施用对郁金块根产量的影响.中国中药杂志,1996,21(11):651-652.
    [209]李群学,何景峰,陈竹君等.施肥对杜仲叶含胶量与生长量的影响.山西林业科技,1999,(4):27-30.
    [210]陈福泰,张桂华.药用青蒿植株中青蒿素合成的若干生理因子的研究.植物生理学通讯,1987,(5):26-30.
    [211]刘骅,林英华,张云舒,等.长期施肥对灰漠土生物群落和酶活性的影响.生态学报,2008,28(8):3898-3904.
    [212]刘兰兰,史春余,梁太波,等.腐植酸肥料对生姜土壤微生物量和酶活性的影响.生态学报,2009,29(11):6136-6141.
    [213]毕明丽,宇万太,姜子绍,等.施肥和土壤管理对土壤微生物生物量碳、氮和群落结构的影响.生态学报,2010,30(1):32-42.
    [214]张焕军,郁红艳,丁维新.长期施用有机无机肥对潮土微生物群落的影响.生态学报,2011,31(12):3308-3314.
    [215]孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报,2003,9(4):406-410.
    [216]张为政.作物茬口对土壤酶活性和微生物的影响.土壤肥料,1993,5:12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700