用户名: 密码: 验证码:
水泥基平板吸波材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前日益恶化的电磁环境和建筑物对电磁防护能力的需求,人们对宽频、高效、低成本建筑吸波材料的要求越来越迫切。为此,本文以多孔颗粒、粉煤灰及芳纶纤维为掺合料,以炭黑、二氧化锰、铁硅金属粉、镍锌铁氧体、羰基铁纤维为吸波剂,利用阻抗匹配理论和传输线理论制备出具有良好电磁波吸收性能的单层和双层水泥基平板吸波材料。
     水泥材料的阻抗匹配性能较差,依靠内部金属氧化物的介电极化有微弱的损耗能力。以低介电常数的多孔颗粒作为水泥吸波材料的集料可以降低复合材料的有效介电常数,改善透波性能,使电磁波能较大比例的进入到材料内部,同时入射电磁波在多孔颗粒间发生多次反射和散射为电磁波的损耗提供了新的途径。因此,多孔集料对吸波性能的改善是对复合材料匹配性能和损耗性能综合作用的结果,其含量存在最佳值,约为材料总体积的50%左右。集料的品种影响对吸收性能的改善效果,孔隙率高、结构封闭、外形规则的颗粒对吸收性能的改善作用最好。大粒径的颗粒有利于提高复合材料匹配性能,而小粒径的颗粒则对损耗性能的提高作用更明显。在选用的多种集料中,发泡聚苯乙烯(EPS)的效果最好,填充量为50%时试样的最小反射率为-18 dB,有效吸收带宽达8.1 GHz。
     通过对炭黑、二氧化锰、铁硅金属粉、镍锌铁氧体、羰基铁纤维等吸收剂的颗粒形貌和电磁参数的研究,确定了各吸收剂的损耗类型和损耗机理。将它们分别应用于水泥基吸波材料中并得到其最佳含量。结果表明,吸收剂的最佳含量受试样的匹配性能控制,优良的阻抗匹配性能有利于提高吸收剂的最佳含量。吸收剂含量低于最佳含量时,增加吸收剂含量可以增加基体中损耗颗粒的数目从而提高吸收性能,而高于此含量,吸收剂将改变基体的阻抗匹配性能从而引起电磁波的严重反射导致吸收性能降低。将吸收剂复合使用,可以充分发挥不同吸波机制的损耗优势,弥补单独使用时的缺陷,提高材料吸收性能并拓宽有效吸收带宽。复合吸收剂各组分存在最佳配比,当炭黑、镍锌铁氧体的含量为4:5时试样的试样的吸收性能最好,有效吸收带宽达12.1 GHz。
     粉煤灰颗粒具有疏松多孔状结构,成分以透波性能良好的Si02和Al2O3为主,并含有大量的碳粒及多种金属氧化物等损耗成分,具有作为吸波材料添加剂的潜质。但由于粉煤灰的火山灰活性效应和微集料效应,粉煤灰单独填充水泥复合材料时的吸波性能并不好。将粉煤灰应用于EPS/水泥体系中等量替代水泥,可以在不降低材料吸收性能的同时大大降低成本。将粉煤灰与炭黑复合使用可以提高炭黑的导电性能,降低炭黑的使用量,而与MnO2复合使用时可以发挥复合吸收剂的优势,大大提高材料的吸收性能。这为粉煤灰的回收利用提供了一种新的途径。
     芳纶纤维属于高分子透波材料,由于长纤维的搭接作用,芳纶纤维可以在较低的含量下即可明显的改善水泥基材料的匹配性能,从而提高其吸收性能。并且芳纶纤维对复合材料的力学性能有明显的改善作用,随芳纶纤维含量的增加,材料的抗折强度增加明显,抗压强度则先明显增加后逐渐减小,其中,材料的韧性提高最为明显,与EPS等多孔集料使复合材料的力学性能降低形成鲜明对比。
     依据传输线理论设计的双层水泥基材料在自由空间和吸波材料的各层间形成阻抗梯度,改善了复合材料的阻抗匹配性能,使吸收性能有了较大的提高。多种填充料中,Si02和大尺寸的EPS颗粒可以明显改善表面层的阻抗匹配,而粉煤灰、膨胀珍珠岩和小尺寸的EPS则对吸收层的损耗性能提升效果最显著。镍锌铁氧体是匹配层的理想填料,而炭黑则适宜做吸收层填料,并且吸收层吸收剂的最佳含量要高于单层吸波材料,具有更强的损耗性能,试样的有效吸收带宽在10 GHz以上。异形结构表面使复合材料的阻抗做连续线性变化,增加了电磁波的入射次数,有利于电磁波的充分入射,并且部分电磁波传播方向发生改变也有利于提高材料的隐身性能,异形表面双层试样的最小反射率小于-30 dB,有效吸收带宽超过13 GHz。
Dealing with the worsening electromagnetic radiations and the requirements of electromagnetic protection for tall buildings, the demands for developing electromagnetic wave absorbers with wider absorbing bandwidths, more effective absorption properties and lower costs are ever increasing. Therefore, single or double-layer cement-based absorbing flats with excellent absorption functions were prepared in this paper.
     Pure cement has a terrible impedance matching performance and slightly absorbing ability due to some metal oxides insides. Porous aggregates can improve the impedance matching characteristics of cement composites by decreasing the effective dielectric constant, and attenuate electromagnetic wave by mulitple scattering and reflection. The filling ratio, the type and the size of porous beads all have remarkable influences on the absorbing properties. There is an optimal content for porous beads, which is about 50% by volume ratio. Aggregate types have some influences on the absorbing properties, e.g. high pore ratio, enclosed construction and symmetric geometry are helpful to the improvement of absorbing properties. Porous beads with larger sizes benefit the improvement of matching characteristics. In contrast, the beads with smaller sizes can increase the attenuation properties more obviously. Among these aggregates we used, expanded polystyrene (EPS) has the best ability to improve the absorbing properties, with the minimum reflection value of-18 dB and the effective absorption bandwidth of more than 8.1 GHz.
     The absorbing mechanisms of carbon black, manganese dioxide, iron silicon powders, Ni-Zn ferrite and carbonyl iron fibers were investigated. And then, the optimal content of each absorbent in cement were defined. The results show that the optimal contents are controlled by the matching characteristics of composites. Absorbing agents can increase the numbers of attenuation particles in matrix to improve the attenuation probability of incident wave when their contents are low; however, if the contents are too high, the impedance matching performance become terrible resulting in serious reflections and bad absorption propeties. When absorbents with different absorbing mechanisms are used together, the absorbing properties can be improvement a lot, attributing to the advantage of complex absorbent. The best proportions of complex absorbents are studied, too. When the volume ration of carbon black to ferrite is 4:5, an absorption band as broad as 12.1 GHz is obtained.
     The microstructure and electromagnetic parameters of Fly ash (FA) were charactered by means of scanning electron microscope and vector network analyzer, respectively. The results show that FA has the potentialities for wave attenuation due to its complex components and porous structure. However, the pozzolanic activity and packing effect of FA has a negative effect on the absorbing properties of FA/cement. In contrast, the absorbing properties of EPS/cement composite don't have obvious decrease when FA is used as cement replacement. Moreover, when FA is used together with MnO2, the absorbing properties can be improved obviously due to the advantages of complex absorbents. This is a new way for recycling FA.
     Because of its electromagnetic transparently property and large length-diameter ratio, aramid fiber can adjust the impedance characteristic of cement material in a low content. And more important, aramid fiber can increase the mechanical properties of cement material. With the increase in aramid fiber content, the flexural strength and toughness increase significantly, and the compressive strength has an obvious improvement followed by a gradually decrease, in a sharp contrast to the decrease of mechanical properties by filling EPS.
     Double-layer cement matrix composites, which form an impedance gradient among the free space and the layers of composites according to the transmission line theory, can get an excellent impedance matching performance and good attenuation characteristic at the same time, so the absorbing properties can be improved greatly. Among these aggregates we used, SiO2 and EPS with large sizes can improve the impedance matching characteristic obviously, while FA, pearlite and EPS with small sizes are more effective for wave attenuation. Ferrite is the ideal filler for matching layer and carbon black is suitable for absorbing layer filler due to its large dieleltric constant. The optimal content of carbon black in absorbing layer is more than its in single layer material, resulting in a stronger attenuation performance with a broad absorption bandwidth of more than 10 GHz. Special-shaped structure surfaces make the continuity change of impedance and increase the incident times for electromagnetic wave. Thus, the absorbers have much better impedance performance. Besides, the propagation direction of part of the incident wave changes, which is also helpful for wave attenuation. The minimum reflection value and effective absorption bandwidth of samples with shaped-surfaces are-30 dB and 13 GHz, respectively.
引文
[1]李玉文,齐宇勃.电磁辐射污染与防护[J].环境科学与管理,2006(4):65-67.
    [2]邓迪勇.电磁污染的辐射源与控制技术探讨[J].环境科学与技术,2010(S1):473-477.
    [3]钟克煌,李中怡.屏蔽电磁波干扰的涂料[J].化工新型材料,1989(3):33-35.
    [4]薛鹏.论电磁干扰及其抑制方法[J].新疆电力,2003(1):62-64.
    [5]叶春琴.电磁干扰(EMI)及其抑制[J].网络财富,2010(20):191.
    [6]张成斌.浅析电磁干扰对电力设备影响及对策[J].内蒙古水利,2010(6):158-159.
    [7]郭乐明.计算机的电磁信息安全与防护[J].赤峰学院学报(自然科学版),2008(8):10-11.
    [8]郑玮玮TEMPEST技术和计算机中的电磁泄密与消除[J].科技风,2009(22):190-191.
    [9]贾振邦.环境与健康[M].北京市:北京大学出版社,2008.
    [10]Balmori A. Electromagnetic pollution from phone masts. Effects on wildlife[J]. Pathophysiology Electromagnetic Fields (EMF) Special Issue,2009,16(2-3):191-199.
    [11]石慧宇,李萍,马莹.高强度电磁辐射对人体产生的危害及有效防护[J].中国新技术新产品,2010(23):13.
    [12]赵洋,李秀霞.电磁辐射对机体健康影响研究进展[J].医学信息(中旬刊),2010(6):1654.
    [13]胡传炘.隐身涂层技术[M].北京市:化学工业出版社,2004.
    [14]李世涛,乔学亮,陈建国.纳米复合吸波材料的研究进展[J].宇航学报,2006(2):317-322.
    [15]康永.吸波材料研究进展[J].现代技术陶瓷2010(3):35-40.
    [16]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.
    [17]刘顺华,郭辉进.电磁屏蔽与吸波材料[J].功能材料与器件学报,2002(3):213-217.
    [18]谭业发,李丽光,李文远.国内电磁波吸收材料研究进展[J].新材料产业,2006(11):34-37.
    [19]韩爽,胡海峰,齐共金.无机天线罩材料的研究进展[J].纤维复合材料,2006(4):64-68.
    [20]黄科,冯斌,邓京兰.结构型吸波复合材料研究进展[J].高科技纤维与应用,2010(6):54-58.
    [21]赵东林,周万城.结构吸波材料及其结构型式设计[J].兵器材料科学与工程,1997(6).
    [22]廖章奇,聂彦,王鲜等.频率选择表面谐振特性在吸波材料中的应用[J].电子元件与材料,2010(6):44-47.
    [23]张箭,王松林.浅谈建筑吸波材料的开发与应用前景[J].硅谷,2010(11):29.
    [24]刘群,粟淼.防电磁辐射混凝土研究[J].现代商贸工业,2010(15):361.
    [25]习志臻,张雄.建筑吸波材料的开发与利用[J].上海建材,2001(3):15-16.
    [26]江家京,王春芳,孟海乐等.吸波建筑材料的研究及应用进展[J].科技情报开发与经济,2005(1):132-133.
    [27]粟穗.居室吸波水泥墙面在兼容电磁波中的环保效应[J].河南科学,2002(6):755-756.
    [28]左跃,叶越华,李坚利等.水泥基电磁屏蔽与吸波材料的研究进展[J].硅酸盐通报,2007(2):311-315.
    [29]Guan H T, Liu S H, Duan Y P, et al. Investigation of the electromagnetic characteristics of cement based composites filled with EPS[J]. Cement & Concrete Cpmpoaites.2007,29(1): 49-54.
    [30]Guan H, Liu S, Duan Y, et al. Cement based electromagnetic shielding and absorbing building materials[J]. Cement and Concrete Composites.2006,28(5):468-474.
    [31]许卫东,杨燚,张豹山等.铁氧体水泥基微波吸收复合材料的初步研究[J].兵器材料科学与工程,2003(6):6-9.
    [32]T. Yamane, S. Numata, T. Mizumoto, et al. Development of wide-band ferrite fin electromagnetic wave absorber panel for building wall. Electromagnetic Compatibility[C],2002 International Symposium on.2002,2:799-804.
    [33]M. Morimoto, K. Kanda, H. Hada, et al. Development of electromagnetic absorbing board for wireless communication environment[C]. In Proceedings of the Conference of Architectural Institute of Japan.1998, D-1: 1069-70.
    [34]M. Oda. Radio wave absorptive building materials for depressing multipath indoors [C]. Electromagnetic Compatibility,1999 International Symposium.17-21 May,1999:492-95.
    [37]张雄,习志臻.建筑吸波材料及其开发利用前景[J].建筑材料学报,2003(1):72-75.
    [38]唐明,陈勇.论混凝土材料的高功能化[J].混凝土,2001(3):14-18.
    [39]午丽娟,沈国柱,徐政等.铁氧体及碳纤维填充水泥基复合材料吸波性能[J].建筑材料学报,2006(5):603-607.
    [40]窦丹若.建筑空间的电磁辐射和建筑吸波材料[J].中国非金属矿工业导刊,2004(5):21-23.
    [41]熊国宣,叶越华,左跃等.锰锌铁氧体水泥基复合材料吸波性能的研究[J].建筑材料学报,2007(4):469-472.
    [42]叶越华,左跃,李坚利等.铁氧体与水泥复合吸波材料的研究[J].化工新型材料,2007(7).
    [43]孟琰琰,张雄.铁氧体吸波环境材料的应用技术研究[J].材料导报,2006(2):145-146.
    [44]张秀芝,孙伟.铁氧体复合吸波剂对水泥基复合材料吸波性能的影响[J].硅酸盐学报,2010(4):590-596.
    [45]娄明连,阚涛.复合磁介质吸波材料[J].磁性材料及器件,2002(5):13-15.
    [46]吕淑珍,陈宁,王海滨等.掺铁氧体和石墨水泥基复合材料吸收电磁波性能[J].复合材料学报,2010(5):73-78.
    [47]戴银所,陆春华,倪亚茹等.掺钢渣水泥基复合材料的吸波性能[J].硅酸盐学报,2009(12):2097-2101.
    [48]李旭,康青,周从直.铁晶矿砂水泥基复合材料电磁波吸收特性研究[C].中国北京·秦皇岛,2004.
    [49]娄明连,阚涛,郑林振.用铁砂制备的铁氧体基混合型电波吸收材料[J].磁性材料及器件,1998(1).
    [50]Wu J, Chung D D L. Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers[J]. Carbon,2002,40(3): 445-447.
    [51]Chung D D L. Electromagnetic interference shielding effectiveness of carbon materials[J]. Carbon,2001,39(2):279-285.
    [52]J. Cao, D.D.L. Chung. Coke powder as an admixture in cement for electromagnetic interference shielding[J].. Carbon. 2003,41 (12):2433-36.
    [53]X, Li, Q. Kang, C. Zhou. Research on absorbing properties of the concrete shielding material at 3mm wave bands[C]. Asia-Pacific Conference on Environmental Electromagnetics. Hangzhou, China.2003:536-40.
    [54]康青,姜双斌.电磁屏蔽石墨混凝土电导率实验研究[J].后勤工程学院学报,2006(4):25-28.
    [55]Dai Y, Sun M, Liu C, et al. Electromagnetic wave absorbing characteristics of carbon black cement-based composites [J]. Cement and Concrete Composites,2010,32(7):508-513.
    [56]刘成国,钟淼,黎杨等.新型实用微波吸收水泥基复合墙体材料的研究[J].新型建筑材料,2009(2):40-42.
    [57]管洪涛.石英和水泥基体平板吸波材料研究[D].大连理工大学,2006.
    [58]X. Luo, D. D. L. Chung. Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites [J]. Composites Part B:Engineering.1999,30(3): 227-31.
    [59]Chen, B., K. Wu and W. Yao, Conductivity of carbon fiber reinforced cement-based composites. CEMENT & CONCRETE COMPOSITES[J],2004.26(4):291-297
    [60]D. D. L. Chung. Cement reinforced with short carbon fibers:a multifunctional material[J]. Composites Part B:Engineering.2000,31 (6-7):511-26.
    [61]Li K Z, Wang C, Li H J, et al. Effect of chemical vapor infiltration treatment on the wave-absorbing performance of carbon fiber/cement composites[J]. Jouranl of University and Technology Beijing,2008,15(6):808-815.
    [62]Wang C, Li K, Li H, et al. Influence of CVI treatment of carbon fibers on the electromagnetic interference of CFRC composites [J]. Cement and Concrete Composites.2008,30(6):478-485
    [63]Laukaitis A, Sinica M, Balevicius S, et al. Investigation of electromagnetic wave absorber based on carbon fiber reinforced aerated concrete using time-domain method[J]. ACTA PHYSICA POLONICA A.2008,113(3):1047-1050
    [64]杨海燕,李劲,叶齐政等.钢纤维混凝土的吸波性能研究[J].功能材料,2002(3):341-343.
    [65]王闯,李克智,李贺军等.表面热处理碳纤维及其增强水泥基复合材料的电磁屏蔽性能(英文)[J].硅酸盐学报,2008(10):1348-1355.
    [66]王振军,李克智,王闯等.短切碳纤维水泥砂浆的电磁波反射性能[J].功能材料,2010(S1):89-93.
    [67]张妃二,姚立宁.碳纤维混凝土吸波耗能研究[J].纤维复合材料,2003(1):42-43.
    [68]欧进萍,高雪松,韩宝国.碳纤维水泥基材料吸波性能与隐身效能分析[J].硅酸盐学报, 2006(8):901-907.
    [69]高雪松,韩宝国,欧进萍.钢纤维水泥基材料吸波性能实验与隐身效能分析[J].功能材料,2006,37(10):1683-1688.
    [70]高雪松,韩宝国,欧进萍.两种纤维水泥基复合材料吸波隐身性能比较[C].中国甘肃敦煌,2006.
    [71]戴银所,陆春华,倪亚茹等.波浪型钢纤维水泥砂浆吸波性能的研究[J].新型建筑材料,2009(12):27-31.
    [72]戴银所,陆春华,倪亚茹等.异型钢纤维水泥净浆的吸波性能研究[J].武汉理工大学学报,2009(19):16-19.
    [73]熊国宣,邓敏,宋碧涛等.纳米材料在混凝土中应用的思考[J].混凝土与水泥制品,2002(5):18-21.
    [74]王冲,蒲心诚,刘芳等.纳米颗粒材料在水泥基材料中应用的可行性研究[J].新型建筑材料,2003(2):22-23.
    [75]熊国宣,邓敏,徐玲玲等.水泥基复合材料的吸波性能[J].硅酸盐学报,2004(10):1281-1284.
    [76]Wen S H, Chung D. Effect of admixtures on the dielectric constant of cement paste[J]. CEMENT AND CONCRETE RESEARCH.2001,31(4):673-677
    [77]康青,李旭.氧化锌晶须(ZnOw)水泥基复合材料微波吸收特性研究[C].中国北京·秦皇岛,2004.
    [78]H. T. Guan, S. H. Liu, Y. P. Duan, Y. Zhao. Electromagnetic characteristics of nanometer manganese dioxide composite materials [J]. J. Electronic Materials.2006,35(5):892-896.
    [79]Hongtao Guan, Yabo Zhao, Shunhua Liu, Shunping Lv. Application of manganese dioxide to electromagnetic wave absorber: effective permittivity and absorbing property[J]. European Physical Journal Applied Physics.2006,26:235-239.
    [80]崔素萍,王林.二氧化锰-水泥基复合材料的制备与性能[c].中国江苏南京,2007.
    [81]Fu W Y, Liu S K, Fan W H, et al. Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property[J]. Jouranl of Magnetism and Magnetic Materials,2007,316(1): 54-58.
    [82]Ahmaruzzaman M. A review on the utilization of fly ash[J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE.2010,36(3):327-363
    [83]戴银所,陆春华,倪亚茹等.掺粉煤灰水泥砂浆吸波性能的研究[J].武汉理工大学学报,2009(20):30-33.
    [84]黄煜镔,钱觉时,张建业.高铁粉煤灰对水泥基材料吸波特性的影响[J].功能材料,2009(11):1787-1790.
    [85]Cao J Y, Chung D. Use of fly ash as an admixture for electromagnetic interference shielding[J]. Cement and Concrete Research,2004,34(10):1889-1892.
    [86]康青.手性吸波混凝土研制与展望[J].材料导报,2005(4):74-76.
    [87]管洪涛,刘顺华,段玉平等.掺EPS颗粒水泥浆体的吸波性能[J].建筑材料学报,2006(4):459-463.
    [88]管洪涛,刘顺华,段玉平等.EPS水泥复合材料的吸波性能与抗压性能研究[J].材料科学与工程学报,2006(4):524-527.
    [89]Guan H T, Liu S H, Duan Y P. Expanded polystyrene as an admixture in cement-based composites for electromagnetic absorbing[J]. Jouranl of Materials Engineering and Performance, 2007,16(1):68-72.
    [90]赵彦波,刘顺华,管洪涛.水泥基多孔复合材料吸波性能[J].硅酸盐学报,2006(2):225-228.
    [91]Du J, Liu S, Guan H. Research on the absorbing characteristics of cement matrix composites filled with carbon black-coated expanded polystyrene beads[J]. Advances in Cement Reaearch, 2006,18(4):161-164.
    [92]Hu S G, Tian K, Ding Q J. Design and test of new cement based microwave absorbing materials[C]. Antennas, Propagation and EM Theory[出版者不祥],2008.
    [93]田焜,丁庆军,胡曙光.新型水泥基吸波材料的研究[J].建筑材料学报,2010(3):295-299.
    [94]梁丽敏,余红发,吴庆令等.多孔混凝土的吸波特性[J].建筑材料学报,2010(2):165-168.
    [95]吕述平,刘顺华,赵彦波.珍珠岩填充空心砖建筑吸波材料的研究[J].微波学报,2006(S1):199-201.
    [96]Chen L Y, Duan Y P, Liu L D, et al. Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings[J]. Materials & Design,2011,32(2): 570-574.
    [97]杜纪柱,刘顺华,管洪涛等.炭黑/EPS/水泥分层复合建筑吸波材料的研究[C].中国甘肃敦煌,2006.
    [98]张秀芝,孙伟,赵俊峰.单/双层水泥基平板的微波吸收性能[J].硅酸盐学报,2009(7):1218-1223.
    [99]Zhang X, Sun W. Microwave absorbing properties of double-layer cementitious composites containing Mn-Zn ferrite[J]. Cement and Concrete Composites,2010,32(9):726-730.
    [100]Kimura K, Hashimoto O. Three-layer wave absorber using common building material for wireless LAN[J]. Electronics Letters,2004,40(21):1323-1324.
    [101]Liuhong H, Shijing D. Experimental and Numerical Analyses of Electromagnetic Attenuation Properties of an L-Shaped Channel Constructed by Electromagnetic Absorbing Concrete[C]. 2010.
    [102]Laukaitis A, Sinica M, Balevicius S, et al. Investigation of electromagnetic wave absorber based on carbon fiber reinforced aerated concrete using time-domain method[J]. ACTA PHYSICA POLONICA A,2008,113(3):1047-1050.
    [103]Sato H, Domae H, Takahashi M, et al. Reflection and transmission control of electromagnetic wave for concrete walls[J]. Electronics and communications in Japan Part II-Electronics,2000, 83(11):12-21.
    [104]吴季等译,Jin Au Kong著.电磁波理论[M].北京市:电子工业出版社,2003.
    [105]蔡德录等译.科夫涅里斯特等著.微波吸收材料.[M].北京:科学出版社,1985.
    [106]吕淑珍,陈宁,王海滨等.传输线理论中的干涉及其在水泥基吸波材料中的应用[J].长春 理工大学学报(自然科学版),2010(2):103-106.
    [107]亓家钟,陈倍京,陈利民.多层吸波材料反射损失计算机模拟[J].金属功能材料,2006(2):33-36.
    [108]Meshram M R, Agrawal N K, Sinha B, et al. Transmission line modeling (TLM) for evaluation of absorption in ferrite based multi layer microwave absorber[M]. NEW YORK:IEEE,2003, 626-630.
    [109]丁世敬,葛德彪,申宁.复合介质等效电磁参数的数值研究[J].物理学报,2010(2):943-948.
    [110]高正娟,曹茂盛,朱静.复合吸波材料等效电磁参数计算的研究进展[J].宇航材料工艺,2004(4):12-15.
    [111]Prasad A, Prasad K. Effective permittivity of random composite media: A comparative study [J]. PHYSICA B-CONDENSED MATTER,.2007,396(1-2):132-137.
    [112]刘顺华,管洪涛,段玉平等.水泥基复合吸波材料中多孔EPS球的应用[C].中国甘肃敦煌:2006.
    [113]Gatmiri B, Eslami H. Wave scattering in cross-anisotropic porous media around the cavities and inclusions[J]. Soil Dynamics and Earthquake Engineering,2008,28(12):1014-1027.
    [114]Kharkovsky S N, Akay M F, Hasar U C, et al. Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens[J]. Instrumentation and Measurement, IEEE Transactions on.2002,51(6):1210-1218.
    [115]段玉平.炭黑、聚苯胺及其填充材料的制备和电磁特性[D].大连理工大学,2006.
    [116]Alexopoulos A. Effective response and scattering cross section of spherical inclusions in a medium[J]. PHYSICS LETTERS A,2009,373(35):3190-3196.
    [117]Shim J, Kim H T. Design of wave absorber for small conducting sphere[J]. ELECTRONICS LETTERS,1998,34(19):1833-1834.
    [118]葛副鼎,朱静,陈利民.超微颗粒吸收与散射截面[J].电子学报,1996(6):82-85..
    [119]W. H. Hayt JAB. Engineering Electromagnetics(6th Ed)[M]. Europe: McGraw-Hill Education, 2001.
    [120]Duan Y P, Liu S H, Wen B, et al. A discrete slab absorber: Absorption efficiency and theory analysis[J]. JOURNAL OF COMPOSITE MATERIALS,2006,40(20):1841-1851.
    [121]Biwa S, Idekoba S, Ohno N. Wave attenuation in particulate polymer composites: independent scattering/absorption analysis and comparison to measurements [J]. MECHANICS OF MATERIALS,2002,34(10):671-682.
    [122]宋岩,席聪,陈光德等Au-Au2S复合纳米球壳微粒的空腔谐振及参量讨论[J].光学学报,2002(11):1392-1395.
    [123]Cao M S, Shi X L, Fang X Y, et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites[J]. APPLIED PHYSICS LETTERS,2007,91(20311020).
    [124]熊国宣,陈阳如,李坚利等.纳米TiO2与水泥复合材料的吸波机理探讨[J].功能材料,2007(5).
    [125]Kim S S, Jo S B, Gueon K I, et al. Complex permeability and permittivity and microwave-absorbing of ferrite-rubber composite in X-band frequencies [J]. IEEE TRANSACTIONS ON MAGNETICS,1991,27(6Part 2):5462-5464.
    [126]Hsu P F, Howell J R. Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia[J]. EXPERIMENTAL HEAT TRANSFER,1992,5(4):293-313.
    [127]Oh J H, Oh K S, Kim C G, et al. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges[J]. COMPOSITES PART B-ENGINEERING,2004,35(1):49-56.
    [128]Liu L, Duan Y, Liu S, et al. Microwave absorption properties of one thin sheet employing carbonyl-iron powder and chlorinated polyethylene[J]. Journal of Magnetism and Magnetic Materials,2010,322(13):1736-1740.
    [129]Liu L, Duan Y, Ma L, et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black[J]. Applied Surface Science,2010,257(3): 842-846.
    [130]Maeda T, Sugimoto S, Kagotani T, et al. Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth-iron-boron compounds [J]. Journal of Magnetism and Magnetic Materials,2004,281(2-3):195-205.
    [131]林红吉,孟宪林,窦贤飞等.电磁波吸收最优厚度影响因素分析[J].兵器材料科学与工程,2001(6):24-26.
    [132]毕鸿章.含石墨的防电磁辐射涂料[J].建材工业信息,1998(10):33.
    [133]Meng W, Yuping D, Shunhua L, et al. Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers[J]. Journal of Magnetism and Magnetic Materials,2009, 321(20):3442-3446.
    [134]袁霞,安玉良,郑朝晖等.核壳结构碳包覆Ni纳米材料的合成及电磁性能分析[J].功能材料,2010(5):791-793.
    [135]张昕,刘顺华,段玉平等.纳米二氧化锰掺杂炭黑复合材料电磁特性的研究[J].航空材料学报,2007(2):58-61.
    [136]Tang X, Tian Q, Zhao B Y, et al. The microwave electromagnetic and absorption properties of some porous iron powders[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2007,445:135-140.
    [137]Dishovsky N, Grigorova M. On the correlation between electromagnetic waves absorption and electrical conductivity of carbon black filled polyethylenes[J]. MATERIALS RESEARCH BULLETIN,2000,35(3):403-409.
    [138]Duan Yuping Y Y H M. Absorbing properties of a-manganese dioxide/carbon black double-layer composites[J]. J. Phys. D:Appl. Phys,2008:125403-125406.
    [139]王洪恩.锰氧化物纳微米材料的合成与性能表征[D].中南大学,2007.
    [140]Duan Y P, Ma H, Li X G, et al. The microwave electromagnetic characteristics of manganese dioxide with different crystallographic structures [J]. PHYSICA B-CONDENSED MATTER, 2010,405(7):1826-1831.
    [141]马贺,段玉平,张佳等.自生核壳结构MnO2的电磁性能及其生长机理研究[J].无机化学学报,2009(12):2119-2123.
    [142]Wang X H N S B Z. Facile synthesis of ultra-long α-MnO2 nanowires and their microwave absorption properties[J]. Materials Letters,2010,64(13):1496-1498.
    [143]Duan Y P, Zhang J, Jing H, et al. Morphology-controlled synthesis and novel microwave electromagnetic properties of hollow urchin-like chain Fe-doped MnO2 under 10 T high magnetic field[J]. JOURNAL OF SOLID STATE CHEMISTRY,2011,184(5):1165-1171.
    [144]Guan H T, Liu S H, Zhao Y B, et al. Electromagnetic characteristics of nanometer manganese dioxide composite materials[J]. JOURNAL OF ELECTRONIC MATERIALS,2006,35(5): 892-896.
    [145]Duan Yuping Y Y H M. Absorbing properties of α-manganese dioxide/carbon black double-layer composites[J]. J. Phys. D:Appl. Phys.2008:125403-125406.
    [146]邓联文,熊惟皓,冯则坤等FeSi纳米晶片状微波吸收剂研究[J].电子元件与材料,2006(9):52-54.
    [147]Guozhi Xie L Y P W. GHz microwave properties of melt spun Fe-Si alloys[J]. Journal of Non-Crystalline Solids,2010(356):83-86.
    [148]常红彬,黄润生,蒋正生等Fe-Si纳米晶颗粒在2-18GHz频段的电磁性质[J].磁性材料及器件,2006(3):24-27.
    [149]张雪峰,黄昊,俞快等.吸波材料优化匹配的理论分析[J].材料科学与工艺,2008(5):596-599.
    [150]赵九蓬,李垚,吴佩莲.新型吸波材料研究动态[J].材料科学与工艺,2002(2):219-224.
    [151]Yu M X, Li X C, Gong R Z, et al. Magnetic properties of carbonyl iron fibers and their microwave absorbing characterization as the filer in polymer foams[J]. JOURNAL OF ALLOYS AND COMPOUNDS,2008,456(1-2):452-455.
    [152]Yu X L, Zhang X C, Li H H, et al. Simulation and design for stratified iron fiber absorbing materials[J]. MATERIALS & DESIGN,2002,23(1):51-57.
    [153]吴晓光,车哗秋.国外微波吸收材料[M].国防科技大学出版社,1992.
    [154]赵振声,张秀成,聂彦等.多晶铁纤维吸波材料的微波磁性研究[J].磁性材料及器件,2000(1):18-20.
    [155]张秀成,何华辉.多晶铁纤维铺层的雷达波反射特性研究[J].功能材料,2001(5):461-463.
    [156]赵伯琳,王卓,饶克谨.多向定向铁纤维吸波材料的雷达反射特性研究[J].电波科学学报,2004(3):280-285.
    [157]姚学标,胡国光,尹萍等.平面六角晶系铁氧体混合材料涂层的优良吸波特性[J].功能材料,2001(1):40-41.
    [158]Aphesteguy J C, Damiani A, Digiovanni D, et al. Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn-and NiCuZn-ferrites[J]. PHYSICA B-CONDENSED MATTER,2009,404(18):2713-2716.
    [159]Dosoudil R, Usakova M, Franek J, et al. RF electromagnetic wave absorbing properties of ferrite polymer composite materials[J]. Journal of Magnetism and Magnetic Materials,2006,304(2): E755-E757.
    [160]杨洋,刘顺华.镍锌铁氧体的制备及其吸波性能的研究[C].中国湖北武汉,2007.
    [161]邢丽英.隐身材料[M].北京市:化学工业出版社,2004.
    [162]何显运,张兴华,童速玲等.炭黑/掺杂盐酸聚苯胺复合材料的吸波特性[J].广东工业大学学报,2003(1):16-19.
    [163]Zhang H, Liu Y, Jia Q, et al. Fabrication and microwave properties of Ni hollow powders by electroless plating and template removing method[J]. Powder Technology.2007,178(1):22-29.
    [164]黄云霞,曹全喜,李智敏等.空心微球表面化学镀Co/Co-Fe薄膜制备及其微波吸收性能[J].稀有金属材料与工程,2007(6):1095-1098.
    [165]Li Z, Deng Y, Shen B, et al. Synthesis, characterization and microwave properties of Ni-Co-P hollow spheres[J]. Journal of Alloys and Compounds,2010,491(1-2):406-410.
    [166]Wei J, Liu J, Li S. Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres[J]. Journal of Magnetism and Magnetic Materials,2007, 312(2):414-417.
    [167]Mangold K M, Schuster J, Weidlich C. Synthesis and properties of magnetite/polypyrrole core-shell nanocomposites and polypyrrole hollow spheres[J]. Electrochimica Acta., In Press, Corrected Proof.
    [168]张海丰,秦柏,王东方等.“广义匹配规律”在多涂层吸波材料设计中的应用[J].哈尔滨工业大学学报,2003,35(009):1140-1143.
    [169]Giannakopoulou T, Oikonomou A, Kordas G. Double-layer microwave absorbers based on materials with large magnetic and dielectric losses[J]. Journal of Magnetism and Magnetic Materials,2004,271(2-3):224-229.
    [170]Yan L, Wang J, Ye Y, et al. Broadband and thin microwave absorber of nickel-zinc ferrite/carbonyl iron composite[J]. Journal of Alloys and Compounds,2009,487(1-2):708-711.
    [171]Ma L, Wang G, Liu L, et al. Cobalt-coated barium titanate particles:Preparation, characterization and microwave properties [J]. Journal of Alloys and Compounds,2010,505(1): 374-378.
    [172]Duan Y, Yang Y, He M. Absorbing properties of α-manganese dioxide/carbon black double-layer composites[J]. Journal of Physics D:Applied Physics,2008,41(12):125403.
    [173]Park K Y, Han J H, Lee S B, et al., Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles. COMPOSITES SCIENCE AND TECHNOLOGY,2009.69(7-8):1271-1278..
    [174]唐葆霖,何峻,王新林.包覆型复合超微颗粒磁性材料研究[J].金属功能材料,2008(4):44-48.
    [175]袁正英.粉煤灰结构特征及碱激发作用的研究[D].南京工业大学,2006.
    [176]张承志,王爱勤.粉煤灰资源科学利用问题探讨[C].中国重庆,2009.
    [177]贾治勇,王群,周美玲.富铁空心微珠电磁特性研究[J].功能材料,2006(6):877-879.
    [178]陈松涛,李松田,吴春笃等.粉煤灰空心微珠表面改性的研究进展[J].表面技术,2007(4):69-71.
    [179]毛倩瑾,于彩霞,葛凯勇等.粉煤灰空心微珠的改性及其吸波特性[J].清华大学学报(自然 科学版),2005(12):1672-1675.
    [180]戴银所,陆春华,许仲梓.掺粉煤灰水泥净浆吸波性能的研究[C].中国江苏南京:2007.
    [181]戴银所,陆春华,倪亚茹等.粉煤灰在水泥基材料中吸波性能的探索[J].材料导报,2009(10):62-64.
    [182]彭敏.粉煤灰的形貌、组成分析及其应用[D].湘潭大学,2004.
    [183]姚志通.固体废弃物粉煤灰的资源化利用[D].浙江大学,2010.
    [184]Liu H Y, Tan H Z, Gao Q A, et al. Microwave attenuation characteristics of unburned carbon in fly ash[J]. FUEL,2010,89(11):3352-3357.
    [185]朱蓓蓉,杨全兵.粉煤灰火山灰反应性及其反应动力学[J].硅酸盐学报,2004(7):892-896.
    [186]Yamamoto T, Kanazu T, Nambu M, et al. Pozzolanic reactivity of fly ash-API method and K-value[J]. Fuel, The 2005 World of Coal Ash Conference.2006,85(16):2345-2351.
    [187]谷章昭,乐美龙,伍劲夫等.粉煤灰活性的研究[J].硅酸盐学报,1982(2):151-160.
    [188]张永娟,张雄.粉煤灰水泥堆积效应与其抗压强度的关系[J].建筑材料学报,2007(1):43-47.
    [189]Tangpagasit J, Cheerarot R, Jaturapitakkul C. et al. Packing effect and pozzolanic reaction of fly ash in mortar[J]. Cement and Concrete Research,2005,35(6):1145-1151.
    [190]熊国宣,徐玲玲,邓敏等.掺杂TiO2水泥的吸波性能与力学性能研究[J].功能材料与器件学报,2005(1):87-91.
    [191]牛鹏霞,杨彩云.对位芳纶纤维的发展及应用[J].河北纺织,2010,1:16-21.
    [192]Peled A, Mobasher B, Cohen Z. Mechanical properties of hybrid fabrics in pultruded cement composites[J]. CEMENT & CONCRETE COMPOSITES,2009,31(9):647-657.
    [193]Wright T H A T. Mechanical properties of aramid fibre-reinforced acrylic bone cement [J]. Journal of Materials Science,1979,14:503-505.
    [194]田颖,赵帅,李国忠.芳纶纤维改性水泥砂浆的性能研究[J].江苏建材,2008(1):16-18.
    [195]Lee S E, Kang J H, Kim C G. Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites[J]. Composite Structures,2006,76(4): 397-405.
    [196]Han M, Ou Y, Deng L. Microwave absorption properties of double-layer absorbers made of NiCoZn ferrites and hollow glass microspheres electroless plated with FeCoNiB[J]. Journal of Magnetism and Magnetic Materials,2009,321(9):1125-1129.
    [197]何燕飞,龚荣洲,李享成等.多层复合吸波材料的制备及其吸波性能[J].无机材料学报,2006(6):1449-1453.
    [198]齐宇,黄大庆,何山.多层复合吸波涂料设计与试验研究[J].航空材料学报,2010(2):89-93.
    [199]马成勇,程海峰,唐耿平等.三层雷达吸波涂层的吸波性能研究[J].材料工程,2008(1):11-13.
    [200]张晓宁Fe-Ni软磁合金吸波材料的设计与制备[D].北京工业大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700