用户名: 密码: 验证码:
双螺杆挤压机生产人造米及挤压系统模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双螺杆挤压法比单螺杆挤压法加工性能稳定、机械化、自动化程度高,在“人造米”生产中已逐渐得到应用。但是,目前有关双螺杆挤压法生产人造米或营养米的研究,仍然存在以下不足:双螺杆挤压机挤压模型仍待建立,人造米挤压成型技术的研究仍待完善,人造米的营养强化仍需扩展。因此,本课题主要从双螺杆挤压机的操作参数与系统参数及目标参数之间的关系研究入手,计算了人造米挤压过程中的滞留时间分布(RTD),利用神经网络建立双螺杆挤压机人造米理化性质与系统参数的预测模型,在此基础上,设计出一种高仿真米形开孔模头,优化了基于该模头的人造米成型工艺,最后,开发了一种添加有凉粉草胶的营养米挤出物,并对其理化性质及其体外抗氧化功能进行了评价。本课题主要结论如下:
     (1)通过旋转中心组合设计,考察了挤压人造米在生产过程中挤压加工变量对系统参数的影响,结果表明:在人造米生产过程中,物料温度、扭矩、压强、比机械能(SME)、产品水分含量这些系统参数都非常明显的受到挤压加工变量的影响,其中受螺杆转速和进料水分的影响最为显著(P<0.001)。合适螺杆转速和进料水分含量的控制对于人造米生产节能和品质稳定来说意义重大。
     (2)通过旋转中心组合设计,考察了挤压人造米在生产过程中挤压加工变量对产品物理性质及糊化特性的影响,结果表明:本试验条件下,人造米膨胀度平均为1.23±0.10,说明本实验取值范围属于较为理想的挤压人造米加工条件。在本实验所设定的操作参数范围内,能够对产品膨胀度、容积密度、糊化度、峰值黏度、终值黏度和回复值这6个指标建立起合适的响应面预测模型,这些模型的建立亦为人造米生产中实现质量预测和在线自动化控制提供参考;但颜色指标L,a,b,ΔE以及水溶性指数(WSI)这5个指标没有能够建立起合适的响应面预测模型。因而,有必要寻找更为科学合理的方法,为各项指标建立起更为合适的模型而用于指导生产实践。
     (3)本实验中,米粉挤压的平均滞留时间在2.09-3.99min,σ2值在1.5-4.45min2之间。D/uL值在0.081-0.255之间,本试验的扩散数模式属于混合流中的大量扩散模式(D/uL>0.2)。四个操作参数对挤压机机筒内物料的平均滞留时间(MRT)都有显著影响,其中进料速度对MRT影响最显著。操作参数与MRT间,可利用回归分析得到较为精确的RTD预测数学模型。
     (4)为了寻找更为科学合理的方法,为各项指标建立起更为合适的模型而用于指导生产实践,本课题开发了基于BP神经网络的PTW-24/25D实验型双螺杆挤压机的人造米理化性质与系统参数预测模型。该模型是由4个输入神经元(螺杆转速、进料速度、水分含量、机筒温度),1个隐含层(包括36个神经元)和18个输出神经元(吸水性指数(WAI),水溶性指数(WSI),亮度(L),红度(a),黄度(b),色差(dE),峰值黏度peak visc),终值黏度(Final visc),回落值(setback),糊化度(DG),堆积密度(BD),膨胀率(ER),水分(M.C.),平均滞留时间(MRT),人造米挤出温度(TM-E3)模头压(p),扭矩(M),比机械能(SME))构成,实现了对人造米挤压时的系统参数和目标参数的很好预测;在此基础上,开发了基于Matlab GUI的友好可视化用户交互界面,该界面操作简单、使用方便。
     (5)以挤压机物料流量和大米形状数值描述计算为基础,结合双螺杆挤压机螺杆和模口特性线的绘制,设计了具有高仿真米形开孔的模头,进行了人造米成型切割试验,所得人造米的米形与自然大米非常接近,表明模头设计非常成功;以千粒重、容重指标对人造米质量进行优化,成功的建立了以螺杆转速(A),进料速度(B),切割速度(C)预测人造米干态千粒重的数学模型,其中,千粒重=45.06+0.88×A+9.24×B-6.33×C+2.1×AC-1.77×BC + 1.03B2,R2=0.9429。
     (6)为了扩展大米中营养添加剂的开发领域,首次将我国特有中草药资源凉粉草胶添加入米粉中,并考察了营养米挤出物的理化性质和体外抗氧化功能,结果表明:随着MBG添加量的增加,挤出物灰分显著增加,蛋白质含量下降,糊化度(DG)呈先下降后上升的趋势;吸水指数(WAI)与水溶性指数(WSI)呈上升的趋势;膨化率相对米粉均下降;容积密度先略微减小而后增加;L*(亮度)下降;a*(红绿度)与b*(黄蓝度)先上升,达到最高点后下降;硬度先上升后下降。不同比例混合的凉粉草胶-大米挤出物的萃取液中,添加量为15%的大米挤出物的多酚含量最大,为15.22μg/ml。其中,添加量为15%的大米挤出物对DPPH自由基清除能力最强,半清除率(IC50)浓度为0.015μg/ml;添加量为10%大米挤出物对羟基自由基的清除能力较强。挤出物对超氧阴离子自由基O2-·并没有显示出清除作用;添加量为15%的大米挤出物对Fe2+的螯合能力最强。
Twin-screw extrusion has been gradually applicated in fabricated rice because of its more stable processing capacity, higher automation than those of single-screw extrusion. However, there are still some drawbacks in the current research of producing fabricated rice or nutrient rice by twin-screw extrusion. These problems are unefficient extruding mode of twin-screw extrusion, unmature technology of rice molding and expansion of fabricated rice nutrition fortification.Thus, the present thesis is studied from the following aspect.The relationship between operation parameter, systematic parameter and objective parameter of twin-screw extruder has been set up; neuro network prediction model based on operation parameter was also set up, the residence time distribution of twin-screw extruder was studied, a die with rice shape hole has been designed,and the fabricated rice molding technical process has been optimized, a man-made nutrient rice with Mesona Blumes gum addtition has been developed and the physicochemical properties and its antioxidation capacity in vitro has been evaluated. The main conclusion was following like these:
     (1) During the fabricated rice processing, systematic parameters such as extrudates temperature, torque, pressure, SME, moisture content and product expansion ratio are obviously affected by the operation parameters of extrusion. Extrudates temperature, SME, product expansion ratio increased with the screw speed increment, while die pressure, torque and product moisture content decreased with screw speed increment. Increasing the moisture content of feed materials could obviously reduce extrudates temperature, torque, pressure, SME and product expansio ratio, the control of appropriate screw speed and feed moisture content is very significant for fabricated rice processing in energy saving and quality stablility.
     (2) In this study, expansion ratio of fabricated rice is 1.23±0.10, which is a relatively ideal processing condition of extruded fabricated rice. Expansion ratio of product increased with screw speed, feed rate and final barrel temperature increment, but decreased with feed moisture content increment. The predicted mathematic model of systematic parameter and expansion ratio of product was set up during fabricated rice extrusion by response surface methodolgy (RSM), which could provide reference to quality prediction and on-line control during fabricated rice processing. Within the operation parameters, the prediction model of RSM of ER, BD, DG, PV, FV and setback could be set up. These models can be used to provide reference for quality prediction and on-line automation control during fabricated rice processing. The appropriate RSM predicted model couldn’t be set up for L, a, b,ΔE and WSI. Thus, there is necessary to find a more scientific and reasonable method for guiding the pratical production with a more proper model for each parameter.
     (3) In this study, MRT of rice extrusion is between 2.09-3.99min,σ2 is between 1.5-4.45min2, D/uL is between 0.081-0.255. The diffusion mathematic model belongs to the large scale diffusion model of mixed flow (D/uL>0.2). The influence of operation parameters on mean residence time (MRT) of extrudates within barrel is very significant, among them feed rate has the most significant effect on MRT. MRT of extrudates within barrel remarkably decreased with the feed rate increment. The appropriate mathematic regression model of operation parameter, MRT and RTD can be obtained by regression analysis.
     (4) In order to find a more scientifically sensible method, more appropriate model of each parameter could be set up to direct processing. The BP neuro network of PTW-24/250 experimental twin-screw extruder was built up. The systematic and objective parameters of fabricated rice could be predicted from operation parameters by this BP neuro network. The BP network is composed of 4 input neurons (screw speed, feed rate, moisture content of feed and barrel temperature), 1 hidden layer(36 neurons) and 18 output neurons including WAI, WSI, L, a, b, dE, PV, FV, setback, DG, BD, ER, M.C., MRT, TM-E3, P, M, SME. The systematic and objective parameters of fabricated rice extrusion could be well predicted by this network. On the basis of the network, friendly visual user interactive interface from Matlab GUI has been developed. This interface is very simple and convenient for user to predict systematic and objective parameters of fabricated rice through extrusion on PTW-24/25O experimental extruder.
     (5)Based on material flow and descriptive calculation of rice shape, combined with drawing of characteristic curve of screw speed and die, the special die with rice-shape hole has been designed. The die is used into the moulding and cutting experiment of fabricated rice. It was found that the shape of fabricated rice was very close to that of natural rice, which indicated that the design of such a die is very successful. The thousand seed weight and bulk density were taken as the quality level of fabricated rice and the screw speed (A),feed rate (B) and cutting speed (C) were taken as operation parameters. Prediction model of thousand seed weight of dry fabricated rice has been built up successfully through central combined design(CCD) of RSM, which provides a useful exploration for setting product standard of fabricated rice industry. Among them, TSW=45.06+0.88×A+9.24×B-6.33×C+2.1×AC-1.77×BC+1.03B2, R2=0.9429.
     (6) In order to expand the developing field of rice nutrient additives, Mesona Blumes gum as our traditional herbal resource was firstly added into rice flour, and then the physicochemical and antioxidant activities in vitro of nutrient rice extrudates were explored. The results indicated that ash content increased remarkably with MBG addition, protein content decreased but the influence was not very obvious, DG decreased firstly and increased lately, WAI and WSI always increased. Compared with rice flour, ER reduced, but with MBG addition, ER increased, BD reduced slightly and then increased. L*(lightness) decreased. a* (redness) and b*(greenness) firstly increased and then decreased, hardness increased firstly and then decreased. The phenol content of 15% MBG-rice extrudate 15.22μg/ml is the largest among the MBG-rice extrudates within the MBG addition levels. DPPH radical scavenging capacity of 15% MBG-rice extrudate is the strongest; IC50 concentration is 0.015μg/ml. Hydroxyl radical scavenging capacity of 10% MBG-rice extrudates is the strongest. There is no superoxide anion radical scavenging capacity of all MBG-rice extrudates. Ferrous ion chelating ability of 15% MBG-rice extrudates is the strongest. From above, it was concluded that MBG-rice extrudates is a potential antioxidant food.
引文
1. Tran, Q D.Extrusion processing: effects on dry canine diets[D]: [Ph.D Thesis]. Netherland, Wageningen: Wageningen University and Research Centre, 2008.
    2.候传亮.双螺杆挤压机在农产品加工中的应用[J].农业装备与车辆工程, 2006, (7): 6-8.
    3.石兆东,山宏伟.非啮合双螺杆挤压机三维流场数值模拟[J] .农机化研究, 2011, (1): 41-44.
    4.马亮,王新文,秦永林,等.双螺杆挤压设备的特征及应用[J].粮食与食品工业, 2007, 14(5): 35-38.
    5.李丽娜.挤压技术在食品工业中的应用[J].哈尔滨商业大学学报(自然科学版), 2004, 20(2): 183-186.
    6. Anton, A A, Fulcher, R G, Arntfield, S D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking [J]. Food Chemistry, 2009, 113: 989-996.
    7. Marti, A, Seetharaman, K, Pagani, M A. Rice-based pasta: A comparson beween conventional pasta-making and extrusion-cooking [J]. Journal of Cereal Science, 2010, 52: 404-409.
    8. Murua-Pagola, B, Beristain-Guevara, C I, Martinez-Bustos, F. Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell materials for encapsulation of flavoring agents by spray drying[J]. Journal of Food Engineering, 2009, 91: 380-386.
    9. Stojceska, V, Ainsworth, P, Plunkett, A, et al. The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products [J]. Food Chemistry, 2009, 114: 226-232.
    10. Stojceska, V, Ainsworth, P, Plunkett, A, et al. The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products [J].Food Chemistry. 2010, 121(1): 156-164.
    11. Song, D L, Thio, Y S, Deng, Y L. Starch nanoparticle formation via reactive extrusion and related mechanism study [J]. Carbohydrate Polymers, 2011, 85: 208-214.
    12. Rubin, Christopher.创新布勒挤压技术增值加工产品[J].食品安全导刊, 2006, (6): 68.
    13. Meuser, F, Gimmler, N, Van Lengerich, B. A system analytical approach to extrusion[M]. In: Kokini J L, Ho C T, Karwe, M V, eds. Food extrusion science and technology. New York: Marcel Dekker , 1992 . 619-630.
    14.瞿维国,张裕中,陈楚荣.食品螺杆挤压机相关参数的分析研究[J].包装与食品机械, 1999, 17(2): 1-4.
    15.赵学伟,魏益民,王章存.食品挤压过程中的反应动力学[J].食品科学, 2009, 30(21): 432-437.
    16. Su, C W, Kong, M S. Effects of soybean oil, cellulose, and SiO2 addition on the lubrication and product properties of rice extrusion [J]. Journal of Food Engineering, 2007, 78: 723-729.
    17. Singh, B, Sekhon, K S, Singh, N. Effects of moisture, temperature and level of pea grits on extrusion behavior and product characteristics of rice[J]. Food Chemistry, 2007, 100: 198-202.
    18. Guha, M, Ali, S Z, Bhattacharya, S. Effect of barrel temperature and screw speed on rapid viscoanalyser pasting behavior of rice extrudate [J]. International Journal of Food Science and Technology, 1998, 33: 259-266.
    19.赵静静,冯砚博,杨绮云.操作参数对双螺杆挤出机膨化效果的影响[J].哈尔滨商业大学学报(自然科学版), 2006, 22(1): 99-101.
    20.王洪武.大豆蛋白质双螺杆挤压加工工艺参数对系统参数的影响[J].中国油脂, 2005, 30(9): 28-30.
    21.唐庆菊,盛小龙,孙超,等.食品双螺杆挤出机操作参数的优化研究[J].哈尔滨商业大学学报(自然科学版), 2008, 24(3): 358-362.
    22.徐克非,李德溥.双螺杆挤压机操作参数对加工质量影响的研究[J].包装工程, 2006, 27(4): 77-79.
    23.俞微微,刘俊荣,王勇,等.双螺杆挤压机操作参数对膨化水产饲料物性的影响[J].水产学报, 2007, 31(3): 379-384.
    24.刘俊荣,薛长湖,俞微微,等.鱼肉蛋白质挤压过程中操作参数对挤出物水分含量及堆积密度的影响[J].水产学报, 2006, 30(6): 818-823.
    25.康立宁,魏益民,张波,等.大豆蛋白高水分挤压组织化过程中操作参数对单位机械能的影响[J].中国粮油学报, 2007, 22(3): 38-42,58.
    26.康立宁,魏益民,张波,等.大豆蛋白高水分挤压组织化过程中工艺参数对系统压力和扭矩的影响[J].中国粮油学报, 2007, 22(4): 43-49.
    27.赵学伟,魏益民,杜双奎.挤压引起食品特性变化的数学模型研究综述[J].农业工程学报, 2008, 24(10): 301-307.
    28. Altan, A, McCarthy, K L, Maskan, M. Twin-screw extrusion of barley-grape pomace blends: Extrudate charactersitics and determination of optimum processing conditions. Journal of Food Engineering, 2008, 89.
    29. Wang, Y, Li, D, Wang, L J, et al. Optimization of extrusion of flaxseeds for in vitro protein digestibility analysis using response surface methodology [J]. Journal of Food Engineering, 2008, 85: 59-64.
    30. Meng, X, Threinen, D , Hansen, M, et al . Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack[J]. Food Research International, 2010, 43: 650-658.
    31. Pansawat, N, Jangchud, K Jangchud, A, et al. Effects of extrusion conditions on secondary extrusion variables and physical properties of fish, rice-based snacks [J]. LWT, 2008, 41: 632-641.
    32.孙于庆,冉旭,李建新.挤压参数对荞麦方便面质量的影响[J].食品科技, 2011, 36(2): 138-141.
    33.苏晓琳,张兆国,潘小莉.挤压膨化参数对豆粕保水性的影响[J].东北农业大学学报, 2010, 41(4): 112-118.
    34.杨绮云,李德溥,徐克非.操作参数对双螺杆挤压机挤压效果影响的研究[J].食品科学, 2001, 22(2): 14-17.
    35. Ganjyal, G M, Hanna, M A, Jones, D D. Modeling selected properties of extruded waxy maize cross-linked starches with neural networks[J]. Journal of Food Science, 2003, 68(4): 1384-1388.
    36. Shihani, N, Kumbhar, B K, Shreshtha, M. Modeling of extrusion process using response surface methodology and artificial neural networks [J]. Journal of Engineering Science and Technology, 2006, 1(1): 31-40.
    37.孙智慧,徐克非,杨绮云,等.食品双螺杆挤出机比能耗定量化研究[J].农业机械学报, 2010, 41(增刊): 225-228.
    38.舒服华,王晓明.基于遗传神经网络的大豆螺杆膨化工艺参数优化[J].粮食加工, 2008, 33(2): 52-55.
    39.王玉德,盛春志,刘景斌.双螺杆挤压机系统的模拟研究[J].包装与食品机械, 2004, 22(3): 4-7.
    40.赵学伟,魏益民,杜双奎.食品挤压过程的分析方法——RTD分析、流变分析[J].中国粮油学报, 2008, 23(4): 228-233.
    41. Colonna, P, Melcion, J P, Vergnes, B, et al. Flow, mixing and residence time distribution of maize starch within a twin screw extruder with a longitudinally split barrel [J]. Journal of Cereal Science, 1983, 1: 115-125.
    42. Mange, C, Boissonnat-Clextral, P, Firming, S A, et al. Distribution of residence times and comparison of 3 twin-screw extruders of different size[M]. In: O'Connor C O, ed. Extrusion technology for the food industry. New York: Elsevier, 1987.177.
    43. Choudhary, G S, Goutam, A. Online measurement of residence time distribution in a food extruder[J]. Journal of Food Science, 1998, 63(3): 529-534.
    44. Golba, J C. A new method for online determination of residence time distribution in extruders[J]. Soc Plastic Engrs Antec, 1980, 26: 83-85.
    45. Ainsworth, P, Ibanoglu, S, Hayes, G D. Influence of process variables on residence time distribution and flow patterns of tarhana in a twin-screw extruder[J]. Journal of Food Engineering, 1997, 32: 101-108.
    46. Altomare, R E, Ghossi, P. An analysis of residence time distribution patterns in a twin screw cooking extruder [J]. Biotechnology Progress, 1986, 2: 157-163.
    47. Baron, R, Vauchel, P, Kaas, R, et al. Dynamical modelling of a reactive extrusion process: Focus on residence time distribution in a fully intermeshing co-rotating twin-screw extruder and application to an alginate extraction process [J]. Chemical Engineering Science, 2010, 65: 3313-3321.
    48. Bounie, D. Modelling of the flow pattern in a twin screw extruder through residence time distribution experiments [J]. Journal of Food Engineering, 1988, 7: 223-246.
    49. De Ruyck, H. Modelling the residence time distribution in a twin screw extruder [J]. Journal of Food Engineering, 1997, 32: 375-390.
    50. Fichtali, J, Van De Voort, F R, Diosady, L L. Performance of acid casein neutralization process by twin-screw extrusion [J]. Journal of Food Engineering, 1995, 22: 301-318.
    51. Gogoi, B.K., Yam, K L. Relationships between residence time and process variables in a corotating twin-screw extruder [J]. Journal of Food Engineering, 1994, 21: 177-196.
    52. Jager, T, Van Zuilichem, D J, De Swart, J G, et al. Residence time distributions in extrusion cooking:Part 7-Modelling of a coratating twin-screw extruder fed with maize grits [J]. Journal of Food Engineering, 1991, 14(203-239).
    53. Lee, S Y, McCarthy, K L. Effect of screw configuration and speed on RTD and expansion of rice extrudate [J]. Journal of Food Engineering, 1996, 19: 153-170.
    54. Lee, S M, Park, J C, Lee, S M, et al. In-line measurement of residence time distribution in twin-screw extruder using non-destructinve ultrasound [J]. Korea-Australia Rheology Journal, 2005, 17(2): 87-95.
    55. Olkku, J, Antila, J, Heikkien, J, et al. Residence time distribution in a twin-screw extruder[M]. In: Linko P, van de Voort, F R, Stanley, D W, eds. Food process engineering-I, London: Applied Science Publishers, 1984. 757-767.
    56. Ollet, A L, Li, Y, Parker, R, et al. A comparative study of the conveying performance of screws in a twin-screw co-rotating extrusion cooker [J]. Journal of Food Engineering, 1989, 10: 165-181.
    57. Peng, J, Huff, H E, Hsieh, E. An RTD determination method for extrusion cooking [J].Journal of Food Engineering, 1994, 18: 263-277.
    58. Unlu, E, Faller, J F. RTD in twin-screw food extrusion [J]. Journal of Food Engineering, 2002, 53: 115-131.
    59. Van Zuilichem, D J, Jager, T, Stolp, W, et al. Residence time distribution in extrusion cooking.PartⅢ: Mathematical modeling of the axial mixing in a conical,counter-rotating,twin-screw extruder processing maize grits [J]. Journal of Food Engineering, 1988, 8: 109-127.
    60. Yeh, A I, Jaw, Y. Effects of screw-speed and feed rate on residence time distribution and axial mixing of wheat flour in a twin-screw extruder [J]. Journal of Food Engineering, 1992, 17: 1-13.
    61. Singh, B, Rizvi, S S H. Residence time distribution (RTD) and goodness of mixing (GM) during CO2-injection in twin screw extrusion.Part I: RTD studies [J]. Journal of Food Engineering, 1998, 21: 91-109.
    62. Gautam, A, Choudhary, G S. Distribution and mixing in twin-screw extruders during extrusion of rice flour [J]. Journal of Food Process Engineering, 1999, 22: 263-285.
    63. Ficarella, A, Milanese, M, Laforgia, D. Numerical study of the extrusion process in cereals prodcution: Part I.Fluid-dynamic analysis of the extrusion system [J]. Journal of Food Engineering, 2006, 73: 103-111.
    64. Van Zuilichem, De Swart, J.G, Buisman,G. Residence time distribution in an extruder [J].Lebensm Wiss U Tech, 1973, 6(5): 184-188.
    65.陈峰亮,魏益民,张波,等.食品挤压过程中水分的作用及变化研究进展[J].食品科学, 2009, 30(21): 416-419.
    66.刘俊荣,朱赞清,俞微微,等.双轴挤出机在低湿挤压过程中操作参数对系统运行稳定性的影响[J].大连水产学院学报, 2005, 20(2): 122-127.
    67. Singh, S, Gamlath, S, Wakeling, L. Nutritional aspects of food extrusion: a review [J]. International Journal of Food Science and Technology, 2007, 42: 916-929.
    68.顾华孝.粮谷食品挤压膨化生产技术——系统分析法和聚合物相变分析法应用研讨(上)[J].粮食与食品工业, 2001, (3): 21-24.
    69.顾华孝.粮谷食品挤压膨化生产技术——系统分析法和聚合物相变分析法应用研讨(下)[J].粮食与食品工业, 2001, (4): 18-21.
    70. Moraru, C I, Kokini, J L. Nucleation and Expansion During Extrusion and Microwave Heating of Cereal Foods [J]. Comprehensive Reviews in Food Science and Food Safety, 2003, 2: 147-165.
    71. Chinnaswamy, R, Hanna, M A. Optimum extrusion-cooking conditions for maximum expansion of corn starch [J]. Journal of Food Science, 1988, 53(3): 834-836,840.
    72. Ganjyal, G M, Hanna, M A. Effects of extruder die nozzle dimensions on expansion and micrographic characterization during extrusion of acetylated starch [J]. Starch/starke, 2004, 56: 108-117.
    73.叶卫东,戴宁,张裕中.食品挤压模头的设计[J].食品工业科技, 2003, (11): 60-61.
    74. Cheng, H Y, Friis, A. Modelling extrudate expansion in a twin-screw food extrusion cooking process through dimensional analysis methodology [J]. Food and Bioproducts Processing, 2010, 88: 188-194.
    75. Senanayake, S A, Clarke, B. A simplified twin screw co-rotating food extruder: design, fabrication and testing [J]. Journal of Food Engineering, 1999, 40: 129-137.
    76.赫克,杰罗米尼,费勒.通过挤压成形制造食品的方法和设备[P].中国专利, 97114043.1998-07-22.
    77. Yeh, A I, Hwang, S J. Effect of screw profile on extrusion-cooking of wheat flour by a twin-screw extruder [J]. International Journal of Food Science and Technology, 1992, 27(5): 557-563.
    78.王宁,卢承前,薛禾生,等.模头规格对大米淀粉挤出物形状的影响[J].食品科学, 1994, (8): 58-62.
    79.安红周,金征宇,陆建安.进料水分对挤压人造米理化特性和物性的影响[J].食品工业科技, 2004, 25(9): 55-58.
    80.安红周,金征宇,赵晓文,等.机筒温度对挤压工程重组米理化特性和物性的影响[J].食品科技, 2005, (3): 20-23.
    81.程北根.挤压营养强化米生产工艺简介[J].食品工业科技, 2005, (10): 140-141.
    82.蒋立茂,郭曦,吴唐伟,等.营养强化甘薯米的开发研究[J].四川农机, 2005, (6): 30-33.
    83.安红周,赵琳,金征宇.工程重组方便米复配机理的研究[J].食品科学, 2006, 27(09): 126-131.
    84.田耀旗,金征宇,邓力,等. VD3-β-环糊精包合物在挤压营养米中的应用研究[J].食品与发酵工业, 2007, 33(12): 52-55.
    85.文新华,夏文水,程云辉.营养谷物早餐食品的挤压工艺研究[J].食品与机械, 2004, 20(4): 6-8.
    86.张炳文,祁国栋.利用双螺杆挤压技术生产高蛋白早餐营养粉的工艺研究[J].中国粮油学报, 2000, 15(6): 58-62.
    87.陈雪梅,马兴胜.利用挤压膨化技术开发营养保健混合粉研究[J].粮食与油脂, 2002, (5): 5-6.
    88.金海珠,付学军,金一星,等.添加海藻粉及海藻提取物的米类挤压膨化物的特性[J].河南工业大学学报(自然科学版), 2005, 26(3): 5-8.
    89.汪名春,陈公安.挤压技术在营养保健食品中的应用[J].粮食加工, 2007, 32(4): 63-66.
    90. Scelia, R P, Elizabeth, H, Joseph, G, et al. Extruded quick-cooking rice-like product [P].European Patent, 0226375.1987-06-24
    91. Lou, W C, Fulger, C V. Rehydratable rice product [P].US Patent, 4521436.1985-06-04.
    92. Moretti, D, Lee, T C, Zimmermann, M B, et al. Development and evaluation of iron-fortified extruded rice grains [J]. Journal of Food Science, 2005, 70(5): 330-336.
    93. Lee, Y T, Schwarz P B. Physical and cooking properties of restructured grain extruded from selected cereal and legume flours [J]. Food Science and Biotechnology, 2004, 13(4): 438-442.
    94. Su, C W. Effects of eggshell powder addition on the extrusion behaviour of rice [J]. Journal of Food Engineering, 2007, 79: 607-612.
    95. Chaiyakul, S, Jangchud, K, Jangchud, A, et al. Effect of extrusion conditions on physical and chemical properties of high protein glutinous rice-based snack [J]. LWT-Food Science and Technology, 2009, 42: 781-787.
    96.陈厚荣.杂粮米型营养强化剂的生产技术研究[D]:[博士学位论文].重庆:西南大学.2009
    97.焦爱权.双螺杆二次挤压法生产脱水方便米饭的工艺研究[D]:[硕士学位论文].江苏无锡:江南大学.2008.
    98.朱永义.大米强化技术与基本原则[J].粮食与饲料工业, 2006, (8): 4-5,8.
    99.王东.双螺杆挤压生产配合营养方便米的研究[D]:[硕士学位论文].江苏无锡:江南大学.2009
    100.吴伟.高膳食纤维营养强化大米的制备研究[D]:[硕士学位论文].南昌:南昌大学.2010
    101.孙波.大米加工企业的福音——挤压再造大米技术问世[N].中国现代企业报, 2009-03-13.
    1. Ding Q B, Ainsworth P, Plunkett A, et al. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks[J]. Journal of Food Engineering, 2006, 73(2): 142-148.
    2. Chen F-L, Wei Y-M, Zhang Bo, et al. System parameters and product properties response of soybean protein extruded at wide moisture range[J]. Journal of Food Engineering, 2010, 96(2): 208-213.
    3. Kulshreshtha M K, Zaror C A, Jukes D J. Automatic control of food extrusion: problems and perspectives[J]. Food Control, 1991, 2(2): 80-86.
    4. Meuser F, Lengerich B V. System analytical model for the extrusion of starches[M]. In: Zeuthen P, Cheftel J C, Eriksson C, eds. Thermal Processing and Quality of Foods. London: Elsevier Applied Science Publication, 1984. 175-179.
    5.王伟光,刘俊荣,梁佳,等.大豆蛋白挤压蒸煮处理过程中系统功耗的研究[J].中国粮油学报, 2010, 25(6):37-40,45.
    6. Harper J M. Extrusion texturization of foods[J]. Food Technology, 1986, 40(3): 70-76.
    7. Vainionp?? J. Modelling of extrusion cooking of cereals using response surface methodology [J].Journal of Food Engineering, 1991, 13(1): 1-26.
    8. Akdogan H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents[J]. Food Research International, 1996, 29(5-6): 423-429.
    9.庄海宁,夏智,李军德,等.挤压方便米的径向膨胀率与其复水率、糊化度关系的研究[J].现代食品科技,2010, 26(10):1057-1062,1075.
    10. Zhuang H-N, An H-Z, Chen H-Q, et al. Effect of extrusion parameters on physicochemical properties of hybrid indica rice (type 9718) extrudates[J]. Journal of Food Processing and Preservation, 2010, 34(6): 1080-1102.
    11. Ganjyal G, Hanna M. A Review on Residence Time Distribution (RTD) in Food Extruders and Study on the Potential of Neural Networks in RTD Modeling[J]. Journal of Food Science, 2002, 67(6): 1996-2002.
    12. AOAC. Official Method 934.01-2006 Moisture in Animal Feed[S]. USA: AOAC publishing house, 2006.
    13. Zhuang H N, Feng Tao, Xie Z J, et al. Effect of Mesona Blumes gum on physicochemical and sensory characteristics of rice extrudates[J]. International Journal of Food Science & Technology, 2010, 45(11): 2415-2424.
    14. Guha, M, Ali, S Z, Bhattacharya, S. Twin-screw extrusion of rice flour without a die: Effect of barrel temperature and screw speed on extrusion and extrudate characteristics[J]. Journal of Food Engineering, 1997, 32(3): 251-267
    15.张祖立,朱永文,刘晓峰,等.螺杆挤压膨化机加工农作物秸秆的试验研究[J].农业工程学报,2001,17(6):97-101.
    16. Chang Y K, Martinez-Bustos F, Park T S, et al. The in?uence of specific mechanical energy on cornmeal viscosity measured by an on-line system during twin-screw extrusion[J]. Brazilian Journal of Chemical Engineering, 1999, 16(3): 285-295.
    17. Meng, X, Threinen, D, Hansen, M, et al. Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack[J]. Food Research International, 2010, 43(2): 650-658.
    18. Lu Q. Dynamic modeling and analysis of a twin-screw food extruder[D]: [Ph.D thesis]. Columbia: University of Missouri, 1992
    19. Pan Z, Zhang S, Jane J. Effect of extrusion variables and chemicals on the properties of starch-based binders and processing conditions[J]. Cereal Chemistry, 1998, 75(4): 541-546.
    20. Pansawat N, Jangchud K, Jangchud A, et al. Effects of extrusion conditions on secondary extrusion variables and physical properties of fish, rice-based snacks[J]. LWT - Food Science and Technology, 2008, 41(4): 632-641.
    21. Lu Q, Hsieh F, Mulvaney S J, et al. Dynamic analysis of process variables for a twin-screw food extruder[J]. Lebensmittel-Wissenschaft und-Technologie, 1992, 25(3): 261-270.
    22. Fichtali J, van de Voort F R. Fundamental and practical aspects of twin-screw extrusion[J]. Cereal Food World, 1989, 34(11): 921-929.
    23. Suknark K, McWatters K H, Phillips R D. Acceptability by American and Asian consumers of extruded fish and peanut snack products[J]. Journal of Food Science, 1998, 63(4): 721-725.
    24. Frame N D. Operational characteristic of the co-rotating twin-screw extruder[M]. In: Frame N D, ed. The technology of extrusion cooking. London: Blackie Academic & Professional,1994.1-51.
    25. Iwe M O, Zuilichem D J V, Ngoddy P O. Extrusion cooking of blends of soy flour and sweet potato flour on specific mechanical energy(SME), extrudate temperature and torque[J]. Journal of Food Processing and Preservation, 2001, 25(4): 251-266.
    26. Wenger M L, Huber G R. Low shear extrusion process for manufacture of quick cooking rice[P]. US patent, 4769251. 1988-09-06.
    27. Bhattacharya M, Hanna M A. Influence of process and product variables on extrusion energy and pressure requirements[J]. Journal of Food Engineering, 1987, 6(2): 153-163.
    28.沈宇,金征宇.挤压方便米饭及其生产工艺[J].食品工业科技,2002,23(12):52-54.
    29. Harrow A D, Martin J W. Reformed rice product[P]. US patent, 4325976. 1982-04-20.
    30.焦爱权,庄海宁,金征宇,等.微波热风干燥挤压方便米饭的脱水和复水数学模型的建立[J].食品与生物技术学报,2009,28(2):156-161.
    1. Ding, Q-B, Ainsworth P, Tucker G, et al. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks [J]. Journal of Food Engineering, 2005, 66(3): 283-289.
    2. Ding, Q-B, Ainsworth P, Tucker G, et al. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks [J]. Journal of Food Engineering, 2006, 73(2): 142-148.
    3. Ilo, S, Berghofer E. Kinetics of colour changes during extrusion cooking of maize grits [J]. Journal of Food Engineering, 1999, 39: 73-80.
    4. Ilo, S, Berghofer E. Kinetics of Thermomechanical Destruction of Thiamin During Extrusion Cooking [J]. Journal of Food Science, 1998, 63(2): 312-316.
    5. Chen, F L, Wei Y M, Zhang B, et al. System parameters and product properties response of soybean protein extruded at wide moisture range [J]. Journal of Food Engineering, 2010, 96(2): 208-213.
    6. Anderson, R A, Conway H F, Pfeifer V F, et al. Gelatinization of corn grits by rool and extrusion cooking [J]. Cereal Science Today, 1969, 14(1): 4-12.
    7. Meuser, F, Lengerich, B V. System analytical model for the extrusion of starches[M]. In: Zeuthen, P, Cheftel, J C, Eriksson, C,et al. Thermal Processing and Quality of Foods. London: Elsevier Applied Science Publication, 1984. 175-179.
    8. Desrumaux, A, Bouvier J M., Burri J. Effect of Free Fatty Acids Addition on Corn Grits Extrusion Cooking [J]. Cereal Chemistry, 1999, 76(5): 699-704.
    9. Rolfe J B, Ranjit S K, Elaine T C, et al. Functional and digestive characteristics of extruded rice flour [J]. Cereal chemistry, 2001, 78(2) 131-137.
    10. Kadan, R S, Bryant R J, Pepperman A B. Functional Properties of Extruded Rice Flours [J]. Journal of Food Science, 2003, 68(5): 1669-1672.
    11. Ilo, S, Liu Y, Berghofer E. Extrusion Cooking of Rice Flour and Amaranth Blends [J]. Lebensmittel-Wissenschaft und-Technologie, 1999, 32(2): 79-88.
    12. Mouquet, C, Salvignol B, Hoan Van N, et al. Ability of a "very low-cost extruder" to produce instant infant flours at a small scale in Vietnam [J]. Food Chemistry, 2003, 82(2): 249-255.
    13. Pansawat, N, Jangchud K, Wuttigumnong A, et al. Effects of extrusion conditions on secondary extrusion variables and physical properties of fish, rice-based snacks [J]. LWT - Food Science and Technology, 2008, 41(4): 632-641.
    14. Zhuang, H N, Feng T, Xie Z J, et al. Effect of Mesona Blumes gum on physicochemical and sensory characteristics of rice extrudates [J]. International Journal of Food Science & Technology, 2010, 45(11): 2415-2424.
    15. Vainionp??, J. Modelling of extrusion cooking of cereals using response surface methodology [J]. Journal of Food Engineering, 1991, 13(1): 1-26.
    16. Akdogan, H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents [J]. Food Research International, 1996, 29(5-6): 423-429.
    17.庄海宁,夏智,李德军,等.挤压方便米的径向膨胀率与其复水率、糊化度关系的研究[J].现代食品科技, 2010, 26(10): 1057-1062,1075.
    18. Zhuang, H N, Xie Z J, Chen H Q, et al. EFFECT OF EXTRUSION PARAMETERS ON PHYSICOCHEMICAL PROPERTIES OF HYBRID INDICA RICE (TYPE 9718) EXTRUDATES [J]. Journal of Food Processing and Preservation, 2010, 34(6): 1080-1102.
    19. Ganjyal, G, Hanna M. A review on residence time distribution (RTD) in food extruder and study on the potential of neural networks in RTD modeling [J]. Journal of Food Science, 2002, 67(6): 1996-2002.
    20.庄朝琪.挤压条件、磨粉方法与粉体粒径对糯米谷粉挤出物流变性质之影响[D]:[博士学位论文].台北:国立台湾大学食品科技研究所, 2003
    21.赵学伟,小米挤压加工特性研究[D]:[博士学位论文].杨凌:西北农林科技大学, 2006
    22. Gomez, M.H, Aguilera J M. A physicochemical model for extrusion of corn starch [J]. Journal of Food Science, 1984, 49(1): 40-43,63.
    23. Jin, Z, Hsieh, F, Huff, H E. Extrusion Cooking of Corn Meal with Soy Fiber, Salt, and Sugar [J]. Cereal Chemistry, 1994, 71(3): 227-234.
    24. Abigail S M, Martínez-Bustos, F, Casta?o-Tostado, E, et al. Physicochemical Characterization of Extruded Blends of Corn Starch–Whey Protein Concentrate–Agave tequilana Fiber. Food and Bioprocess Technology , DOI 10.1007/s1 1947-009-0223-x.
    25.张长新. HunterLab色差仪:食品颜色的有效测量工具[J].食品安全导刊, 2009, (3): 43.
    26. Altan, A, McCarthy K L, Maskan M. Evaluation of snack foods from barley-tomato pomace blends by extrusion processing [J]. Journal of Food Engineering, 2008, 84(2): 231-242.
    27. Su, C-W. Effects of eggshell powder addition on the extrusion behaviour of rice [J]. Journal of Food Engineering, 2007, 79(2): 607-612.
    28. Jin, Z, Hsieh, F, Huff H E. Effects of soy fiber, salt, sugar and screw speed on physical properties and microstructure of corn meal extrudate [J]. Journal of Cereal Science, 1995, 22(2): 185-194.
    29. Duswalt, A A. The practice of obtaining kinetic data by differential scanning calorimetry [J]. Thermochimica Acta, 1974, 8(1-2): 57-68.
    30. Chuang, C C, Yeh, A I. Effect of screw profile on residence time distribution and starch gelatinization of rice flour during single screw extrusion cooking [J]. Journal of Food Engineering, 2004, 63(1): 21-31.
    31. Guha, M, Ali S Z, Bhattacharya S. Effect of barrel temperature and screw speed on rapid viscoanalyser pasting behaviour of rice extrudate [J]. International Journal of Food Science & Technology, 1998, 33(3): 259-266.
    32. AACC. Methods 61-02.01 Determination of the pasting properties of rice with the rapid visco analyser[S]. USA: St Paul Publishing house, 1995
    33. Gravois, K, Webb B. Inheritance of long grain rice amylograph viscosity characteristics [J]. Euphytica, 1997, 97(1): 25-29.
    34.洪雁,顾正彪,顾娟.蜡质马铃薯淀粉性质的研究[J].中国粮油学报, 2008, 23(6): 112-115.
    35.朱玲,顾正彪,洪雁,等.黄原胶对木薯淀粉糊化特性及其糊稳定性的影响[J].食品科学, 2010, 31(9): 99-102.
    36.谢新华,李晓芳,肖昕,等.稻米淀粉黏滞性和质构性研究[J].中国粮油学报, 2007, 22(3): 9-11,20.
    37. Han, X Z, Hamaker B R. Functional and microstructural aspects of soluble corn starch in pastes and gels [J]. Starch - St?rke, 2000, 52(2-3): 76-80.
    38. Meng, X, Threinen D, Hansen M, et al. Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack [J]. Food Research International, 2010, 43(2): 650-658.
    39.沈宇,金征宇.挤压方便米饭及其生产工艺[J].食品工业科技, 2002, 23(12): 52-54.
    40.吴卫国.挤压营养早餐谷物及茶叶减肥谷物食品研究[D]:[博士学位论文].长沙:湖南农业大学, 2003.
    41. Falcone, R G, Phillips R D. Effects of Feed Composition, Feed Moisture, and Barrel Temperature on the Physical and Rheological Properties of Snack-like Products Prepared from Cowpea and Sorghum Floursby Extrusion [J]. Journal of Food Science, 1988, 53(5): 1464-1469.
    42. Do?an, H. Physicochemical properties of quinoa extrudates [J]. Food science and technology international, 2003, 9:101-114.
    43. Hagenimana, A, Ding X., Fang T. Evaluation of rice flour modified by extrusion cooking [J]. Journal of Cereal Science, 2006, 43(1): 38-46.
    44. Reyes-Moreno, C, Milán-Carrillo, J, Gutiérrez-Dorado, R, et al. Instant flour from quality protein maize (Zea mays L). Optimization of extrusion process. Lebensmittel-Wissenschaft und-Technologie 2003, 36(7), 685-695
    45. GOMEZ, M H, AGUILERA J M. Changes in the starch fraction during extrusion-cooking of corn [J]. Journal of Food Science, 1983, 48: 378-381
    46. Guha, M, Ali S Z, Bhattacharya S. Twin-screw extrusion of rice flour without a die: Effect of barrel temperature and screw speed on extrusion and extrudate characteristics [J]. Journal of Food Engineering, 1997, 32(3): 251-267.
    47. Normell J E, de Mesa, S A, Singh N, et al. Soy protein-fortified expanded extrudates: Baseline study using normal corn starch [J]. Journal of Food Engineering, 2009, 90(2): 262-270.
    48.赵学伟,魏益民,张波.挤压对小米蛋白质溶解性和分子量的影响[J].中国粮油学报, 2006, 21(2): 38-43.
    49. Amaya-Llano, S L, Hernández, N M,Tostado, E C,et al. Functional Characteristics of Extruded Blends of Whey Protein Concentrate and Corn Starch. Cereal Chemistry, 2007, 84, (2), 195-201
    50. Owusu-Ansah, J, Voort, F R, Stanley D W. Physicochemical changes in cornstarch as a function of extrusion variables [J]. Cereal Chemistry, 1983, 60(4): 319-324.
    51. Gujral, H.S, Singh N, Singh B. Extrusion behaviour of grits from flint and sweet corn [J]. Food Chemistry, 2001, 74(3): 303-308.
    52. Chakraborty, S. K, Singh, D S, Kumbhar, B K, et al. Millet-legume blended extrudates characteristics and process optimization using RSM. Food and Bioproducts Processing, In Press.
    53. Russell, P L, Berry C S, Greenwell P. Characterisation of resistant starch from wheat and maize [J]. Journal of Cereal Science, 1989, 9(1): 1-15.
    54. Mercier, C, Charbonniere R, Grebaut J, et al. Formation of amylose-lipid complexes by twin-screw extrusion cooking of manioc starch [J]. Cereal Chemistry, 1980, 57(1): 4-9.
    55. Celis, L P, Rooney L W, McDonough C M.. A ready-to-eat breakfast cereal from food-grade sorghum [J].Cereal chemistry, 1996, 73(1): 108-114.
    56. Joglekar, A M, May A T. Product excellence through design of experiments [J].Cereal Food World, 1987, 32(12): 857-868.
    1. Harper, J M, Extrusion of foods [M]. Vol. I. Boca Raton: CRC Press, 1981.44-58.
    2. Barrès, C, Vergnes, B, Tayeb, J. An improved thermal model for the solid conveying section of a twin-screw extrusion cooker [J]. Journal of Food Engineering, 1992, 15(3): 167-185.
    3. Govindasamy, S, Campanella, O H, Oates, C G. The single screw extruder as a bioreactor for sago starch hydrolysis [J]. Food Chemistry 1997, 60 (1): 1-11.
    4. Kumar, A, Ganjyal, G M, Jones, D D, et al. Digital image processing for measurement of residence time distribution in a laboratory extruder [J]. Journal of Food Engineering, 2006, 75 (2): 237-244.
    5. Ilo, S, Berghofer, E. Kinetics of Thermomechanical Destruction of Thiamin During Extrusion Cooking [J]. Journal of Food Science, 1998, 63(2): 312-316.
    6. Strauss, G, Gibson, S M, Adachi, J. D. Molecular restructuring and complexation during extrusion of cornmeal [M]. New York: Marcel Dekker Inc,1992. 437-448.
    7.赵学伟.小米挤压加工特性研究[D]:[博士学位论文].杨凌:西北农林科技大学, 2006.
    8. Levenspiel, O. Chemical reaction engineering[M]. 2nd ed. New York:Wiley, 1972. 578
    9. Bigg, D, Middleman, S. Mixing in a Screw Extruder. A Model for Residence Time Distribution and Strain [J]. Industrial & Engineering Chemistry Fundamentals, 1974, 13 (1): 66-71.
    10. Wolf, D, White, D H. Experimental study of the residence time distribution in plasticating screw extruders [J]. AIChE Journal, 1976, 22(1): 122-131.
    11. Bruin, S, Van Zuilichem, D J, Stolp, W. A Review of Fundamental and Engineering Aspects of Extrusion of Biopolymers in a Single-screw extruder [J]. Journal of Food Process Engineering, 1978, 2 (1): 1-37.
    12.庄朝琪.挤压条件、磨粉方法与粉体粒径对糯米谷粉挤出物流变性质之影响[D]:[博士学位论文].台北:国立台湾大学, 2003.
    13. Dhanasekharan, K M, Kokini, J L. Design and scaling of wheat dough extrusion by numerical simulation of flow and heat transfer [J].Journal of Food Engineering , 2003, 60 (4): 421-430.
    14. Apruzzese, F, Pato, J, Balke, S. T, et al. In-line measurement of residence time distribution in a co-rotating twin-screw extruder [J]. Food Research International, 2003, 36 (5): 461-467.
    15. Chuang, C C, Yeh, A I. Effect of screw profile on residence time distribution and starch gelatinization of rice flour during single screw extrusion cooking [J]. Journal of Food Engineering , 2004, 63 (1): 21-31.
    16. Seker, M. Residence time distributions of starch with high moisture content in a single-screw extruder [J]. Journal of Food Engineering, 2005, 67 (3): 317-324.
    17. Ainsworth, P, Ibanoglu, S, Hayes, G D. Influence of process variables on residence time distribution and flow patterns of tarhana in a twin-screw extruder [J]. Journal of Food Engineering, 1997, 32(1), 101-108.
    18. Unlu, E, Faller, J F. RTD in twin-screw food extrusion [J]. Journal of Food Engineering, 2002, 53 (2): 115-131.
    19. Lin, J K, Armstrong, D J. Process variables affecting residence time distributions of cereals inan intermeshing, counter-rotating twin-screw extruder [J].Transactions of the ASAE, 1990, 33 (6): 1971-1978
    20.张汆.花生蛋白挤压组织化技术及其机理研究. [D]:[博士学位论文].杨凌:西北农林科技大学, 2007.
    21. Gogoi, B. K, Oswalt, A J, Choudhury, G S. Reverse Screw Element(s) and Feed Composition Effects during Twin-Screw Extrusion of Rice Flour and Fish Muscle Blends [J]. Journal of Food Science, 1996, 61 (3): 590-595.
    22. Lee, S Y, McCarthy, K L. Effect of screw configuration and speed on RTD and expansion of rice extrudate [J].Journal of Food Process Engineering, 1996, 19(2): 153-170.
    23. Yeh, A I, Jaw, Y M. Modeling residence time distributions for single screw extrusion process [J]. Journal of Food Engineering, 1998, 35(2): 211-232.
    24. Peng, J, Huff, H E, Hsieh, F. An RTD determination method for extrusion cooking [J]. Journal of Food Processing and Preservation, 1994, 18,(4): 263-277.
    25.彭锦樵.挤压加工全脂大豆粉—套筒温度、螺轴转速及进料速率对滞留时间分布与挤压产品物理性质之影响[J].农业工程学报(台湾), 1996, 42(1): 83-91.
    26. Tadmor, Z, Gogos, C G. Principles of polymer processing[M]. New York: John Wiley & Sons Inc., 1979.112-129
    27.王伟光,刘俊荣,梁佳,等.大豆蛋白挤压蒸煮处理过程中系统功耗的研究[J].中国粮油学报2010, 25(6): 37-40,45.
    28. Ziegler, G R, Aguilar, C A. Residence time distribution in a co-rotating, twin-screw continuous mixer by the step change method [J]. Journal of Food Engineering, 2003, 59 (2-3):161-167.
    29. Altomare, R E, Ghossi, P. An Analysis of Residence Time Distribution Patterns in A Twin Screw Cooking Extruder [J]. Biotechnology Progress, 1986, 2, (3): 157-163.
    30. Nwabueze, T, Iwe, M. Residence Time Distribution (RTD) in a Single Screw Extrusion of African Breadfruit Mixtures [J]. Food and Bioprocess Technology, 2010, 3(1): 135-145.
    31. Gogoi, B K, Yam, K L. Relationships between residence time and process variables in a corotating twin-screw extruder [J]. Journal of Food Engineering, 1994, 21(2): 177-196.
    32. Yeh, A I, Hwang, S J, Guo, J J. Effects of screw speed and feed rate on residence time distribution and axial mixing of wheat flour in a twin-screw extruder [J]. Journal of Food Engineering, 1992, 17 (1): 1-13.
    33. Ficarella, A, Milanese, M, Laforgia, D. Numerical study of the extrusion process in cereals production: Part I. Fluid-dynamic analysis of the extrusion system [J]. Journal of Food Engineering 2006, 73 (2): 103-111.
    34. De Ruyck, H. Modelling of the residence time distribution in a twin screw extruder [J]. Journal of Food Engineering, 1997, 32 (4): 375-390.
    35. Mahungu S M, Drozdek, K A, Artz, W E,et al. Residence Time Distribution and Barrel Fill in Pet Food Twin-Screw Extrusion Cooking [J]. Cereal Chemistry, 2000, 77 (2): 220-222.
    36. Yeh, A I, Wu, T Q, Jaw, Y M. Starch transitions and their influence on flow pattern during single-screw extrusion cooking of rice flour [J]. Food and Bioproducts Processing, 1999, 77 (1): 47-54.
    37.刘文生,邹永康,胡执中,等.同向双螺杆食品挤压机中传热模型的研究[J].轻工机械, 2005, 23 (2): 27-29.
    1. Centner V, Massart D L, De Noord O E, et al. Elimination of uninformative variables for multivariate calibration [J].Anal. Chem., 1996, 68 (21): 3851-3858.
    2.吴迪,吴洪喜,蔡景波,等.基于无信息变量消除法和连续投影算法的可见近红外光谱技术白虾种分类方法研究[J].红外与毫米波学报, 2009, (6): 423-427.
    3. Araújo, P, Teresa, S, Goicoechea, A, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis [J]. Chemometrics and Intelligent Laboratory Systems, 2001,57(2): 65-73.
    4. Galv?o, K, Araújo, P, Fragoso, M, et al. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm [J]. Chemometrics and Intelligent Laboratory Systems, 2008, 92(1): 83-91.
    5. Chen B, Meng X L, Wang H. Application of successive projections algorithm in optimizing near infrared spectroscopic calibration model [J]. Journal of Instrumental Analysis, 2007, 26 (1) : 66-69.
    6.周开利,康耀红.神经网络模型及其Matlab仿真程序设计[M] ,北京:清华大学出版社,2005.124-156
    7. WTaylor J, Buizza R. Neurual Network Load Forecasting With Weather Ensemble Predictions [J]. IEEE Trans Power Syst, 2002, 8(17): 626-632.
    8.林锦顺.基于BP神经网络的电力负荷组合预测问题的研究[D]:[博士学位论文].上海:上海理工大学,2006.
    9. Hippert H S, Pedreira C E, Souza R C. Neural networks for short-term load forecasting: A review and evaluation [J]. IEEE Trans Power Syst, 2001, (16): 44-55.
    10.张良均,曹晶,蒋世忠.神经网络实用教程[M].北京:机械工业出版社,2008. 102-118.
    11.何建佳.多功能开放型企业供需网:理论的拓展与量化[D]:[博士学位论文].上海:上海理工大学,2009.
    12.赖灵俊.基于MATLAB的工质热力学性质计算程序开发及其应用[D]:[博士学位论文].上海:上海c理工大学,2010.
    13. MATLAB中文论坛编著, MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010. 212-234.
    14. Baker R R, da Silva P, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives [J]. Food and Chemical Toxicology, 2004, 42: 33-37.
    15.王慧,李印海. BP神经网络的高技术企业技术创新能力评价[J].科技管理研究,2007,(11): 78-80.
    16.陈斌,孟祥龙,王豪.连续投影算法在近红外光谱校正模型优化中的应用[J].分析测试学报,2007, (1): 66-69.
    17.张军.运用人工神经网络进行食品感官评价方法初探[D]:[硕士学位论文].北京:人民大学,1997.
    18.陈晓明,李景明,李艳霞,等.人工神经网络在饮料工业中的应用研究进展[J].饮料工业, 2005, 8(1): 8-12,22.
    19.赵风芹,张淑贞,张和远.模糊评价食品的感官质量方法[J].食品科学,1998,19(4):43-45.
    20. Helen C. An application of computers to the flavor development process [J]. Perfumer & F1avorist, l992, 17(2):23-25.
    21.黄晓萍,徐福缘,肖作兵.基于层次分析法(AHP)的香精配方选择[J].香料香精化妆品,2005,3(2): 41-43.
    22.蔡锁章.数学建模原理与方法[M].北京:海洋出版社, 2000. 32-48.
    23.飞思科技. MATLAB 6.5辅助优化计算与设计[M].北京:电子工业出版社, 2003.227-259.
    24.刘何秀,丁香乾,姜百宁. BP网络与RBF网络在感官评估中应用比较[J].计算机应用, 2008, 28(z2): 89-93.
    25.郑岩,周春光,黄艳新.基于模糊神经网络方法实现茶味信号识别的研究[J].小型微型计算机系统, 2004, 25(7): 1290-1294.
    26.刘盾,胡培,何鹏.基于因子分析和主成分分析的粗集决策方法[J].软科学, 2009, 23(10): 38-42.
    27.李萍萍,魏芳,董绪燕,袁钢友等.基于主成分分析法的芝麻油香气质量评价模型的构建[J].中国油脂, 2009, (10): 75-80.
    28.周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999. 124-166.
    29.王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002.155-189.
    30.何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2001. 216-248.
    1. Wilczy?ski, K. SSEM: a computer model for a polymer single-screw extrusion [J]. Journal of Materials Processing Technology, 2001, 109(3): 308-313.
    2.裴郊区.塑料异型材挤出模头稳定性研究[D]:[博士学位论文].合肥:合肥工业大学, 2006.
    3.柳和生,涂志刚,熊洪槐.基于三维粘弹性罚函数有限元分析的塑料异型材挤出口模设计[J].模具工业,2007, 33(1): 48-52.
    4. Chan, G S H, Hon, K K B. Integration of computing techniques for plastics extrusion die design[J]. Computer-Aided Engineering Journal, 1990, 7 (2):37-42.
    5. Zolfaghari, A, Behravesh, A H, Shakouri, E, et al. An innovative method of die design and evaluation of flow balance for thermoplastics extrusion profiles [J]. Polymer Engineering & Science, 2009, 49 (9):1793-1799.
    6.谷朝阳.基于参数化造型的挤出口模形状优化设计[D]:[硕士学位论文].郑州:郑州大学, 2007.
    7. Charbonneaux, T G. Design of Sheet Dies for Minimum Residence Time Distribution: A Review [J]. Polymer-Plastics Technology and Engineering ,1991, 30 (7):665-684.
    8.胡松林.一种挤出机的模头装置[P].中国专利, 200820157640, 2009-09-23.
    9.安红周.挤压法制备复合营养方便米的研究[D]:[博士学位论文].无锡:江南大学, 2004.
    10.金征宇,安红周,谢正军,等.一种复配方便米的制备方法[P].中国专利, CN200410014105.9, 2005-01-05.
    11.张聪,管庶安.基于图像分析的大米形状识别[J].粮食与饲料工业, 2006, (6):5-7.
    12.叶卫东,戴宁,张裕中.食品挤压模头的设计[J].食品工业科技, 2003, (11):60-61.
    13.安红周,赵琳,金征宇.工程重组方便米饭复配机理的研究[J].食品科学, 2006, 27 (9):126-131.
    14. Ding, Q B, Ainsworth, P, Plunkett, A, et al. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks [J].Journal of Food Engineering, 2006, 73(2):142-148.
    15. Ilo, S, Berghofer, E. Kinetics of colour changes during extrusion cooking of maize grits [J]. Journal of Food Engineering, 1999, 39: 73-80.
    16. Ilo, S, Berghofer, E. Kinetics of Thermomechanical Destruction of Thiamin During Extrusion Cooking [J].. Journal of Food Science 1998, 63 (2): 312-316.
    17.张祖立,朱永文,刘晓峰,等.螺杆挤压膨化机加工农作物秸秆的试验研究[J].农业工程学报2001, 17,(6): 97-101.
    18.庄朝琪.挤压条件、磨粉方法与粉体粒径对糯米谷粉挤出物流变性质之影响[D]:[博士学位论文].台北:国立台湾大学, 2003.
    19.姚惠源.谷物加工工艺学[M].北京:中国财政经济出版社, 1999.58-88
    20.中华人民共和国国家标准委员会. GB 5519-88.粮食和油料千粒重的测定法[S].北京:标准出版社, 1988.
    21.中华人民共和国国家标准委员会. GB 5498-85.粮食、油料检验容重测定法[S].北京:标准出版社,1985.
    22. Jin, Z, Hsieh, F, Huff, H E. Extrusion Cooking of Corn Meal with Soy Fiber, Salt, and Sugar [J]. Cereal Chemistry 1994, 71(3): 227-234.
    23. Abigail Santillán-Moreno, Martínez-Bustos, F, Casta?o-Tostado, E, et al. Physicochemical Characterization of Extruded Blends of Corn Starch–Whey Protein Concentrate–Agave tequilana Fiber. Food and Bioprocess Technology on line.
    24.张长新. HunterLab色差仪:食品颜色的有效测量工具[J].食品安全导刊, 2009, (3): 43.
    25. Altan, A, McCarthy, K L, Maskan, M.. Evaluation of snack foods from barley-tomato pomace blends by extrusion processing[J]. Journal of Food Engineering 2008, 84 (2):231-242.
    26.金征宇,庄海宁,谢正军,等.一种挤压人造米的成型模头装置.[P].中国专利,CN201640388U, 2010-11-24.
    27.赵学伟.小米挤压加工特性研究[D]:[博士学位论文].杨凌:西北农林科技大学.2006.
    1.刘晓庚,陈梅梅.中国仙草的开发利用研究[J].食品研究与开发, 2004, 25 (5): 109-112.
    2.杨敏,冯磊,柯雪琴.仙草多糖对大鼠肝匀浆脂质过氧化的实验研究[J].浙江预防医学.2002,14(12):4-5.
    3.李建华.台湾仙草及其栽培利用[J].台湾农业探索, 2000, (2): 37-38.
    4.谌国莲,孙远明,黄晓钰,等.中国凉粉草资源的研究与利用[J].农牧产品开发, 2000, (5): 6-8.
    5.张欣,徐慧.挤压技术在谷类食品加工中的应用[J].河北农业科学, 2008, 12 (6): 90-91.
    6.丁继峰,沈善奎.挤压技术在食品加工中的应用[J].现代化农业, 2006, (3): 37-39.
    7. Stojceska,V.,Ainsworth,P.,Plunkett,A.,et al. The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products [J]. Food Chemistry, 2010, 121: 156-164.
    8. Su,C.W. Effects of eggshell powder addition on the extrusion behaviour of rice [J]. Journal of Food Engineering, 2007, 79: 607-612.
    9. Altan A., McCarthy, K.L., Maskan,M. Evaluation of snack foods from barley-tomato pomace blends by extrusion processing[J]. Journal of Food Engineering, 2008, 84: 231-242.
    10.许安邦,林维宣;佟绍芳.食品分析[M].北京:中国轻工业出版社,2005. 24-58
    11. Chuang, C C, Yeh, A I. Effect of screw profile on residence time distribution and starch gelatinization of rice flour during single screw extrusion cooking [J]. Journal of Food Engineering, 2004, 63(1): 21-31.
    12. Shirani G, Ganesharanee R. Extruded products with Fenugreek (Trigonella foenum-graecium) chickpea and rice: Physical properties, sensory acceptability and glycaemic index [J].Journal of Food engineering. 2009, 1(1): 44-52.
    13. Xu Y-X, Dzenis Y, Hanna M A. Water solubility, thermal characteristics and biodegradability of extruded starch acetate foams [J].Industrial Crops and Products.2005,5(3): 361-368
    14. Ganjyal G M, Hanna M A. Effect of extruder die nozzle dimensions on expansion and micrographic characterization during extrusion of acetylated starch [J].Starch/St?rke, 2004, 56(3-4): 108-117
    15. Pan Z, Zhang S, Jane J. Effects of Extrusion variables and chemicals on the properties starch-based Binders and Processing Conditions[J]. Cereal Chemistry, 1998, 75: 541-546.
    16. Chulaluck P, Tangkanakul, N, Limsangouan, V. Effects of extrusion conditions on the physical and functional properties of instant cereal beverage powders admixed with Mulberry (Morus alba L.) [J]. Leaves, 2008, 14(5): 421-430.
    17. Gamlath S, Ravindran G. Extruded products with fenugreek (Trigonella foenum-graecium) chickpea and rice-Physical properties, sensory acceptability and glycaemic index [J]. Journal of Food Engineering, 2009, 90: 44–52.
    18. Jaroslaw, K., Dorota, G. & Kamila, C. Effect of extrusion on the phenolic composition and antioxidant activity of dry beans of Phaseoulus vulgaris L [J]. Food Technology and Biotechnology, 2007, 45: 139-146.
    19. Singleton, V L.,Orthofer, R, lamuela-Raventos, R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of the Folin-Ciocalteu reagent[J]. Methods in Enzymology, 1999, 299: 152-178.
    20. Chang, L. W., Yen, W. J., Huang, S. C. & Duh, P. D. Antioxidant activity of sesame coat [J]. Food Chemistry, 2002, 78: 347-354.
    21.李海平,张树海,张坤生.滑菇多糖抗氧化活性研究[J].食品研究与开发.2008, 29(4): 56-60.
    22. Wang, D F, Wang, C H, Li J, et al. Components and activity of polysaccharides from coarse tea [J]. Journal of Agriculture and Food Chemistry, 2001, 49(1): 507-510.
    23. Lai, L.S., Chou, S.T., Chao, W.W. Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum [J]. Journal of Agriculture and Food Chemistry, 2001, 49(2): 963-968.
    24. Feng, T., Gu, Z. B. & Jin, Z. Y. Chemical composition and some rheological properties of Mesona Blumes gum [J]. Food Science and Technology International,2007, 13: 55-61.
    25.安红周,张康逸,李盘欣.谷物早餐食品挤压工艺的优化研究[J] .食品科技,2008,(4):33-37.
    26.焦爱权,翟秀超,金征宇,邓力.挤压方便米饭预处理关键工艺参数的优化[J].食品与发酵工艺,2008,34(10): 74-78.
    27. Velioglu, Y. S., Mazza, G., Gao, L. & Oomah, B. D. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products[J]. Journal of Agricultural and Food Chemistry, 1998,46, 4113-4117.
    28.程富胜,胡庭俊,陈灵然,等.体外化学模拟系统中鬼臼多糖抗氧化作用的研究[J].动物医学进展, 2005, 26(5): 89-91.
    29.芮海云,吴国荣,陈景耀,等.白芨中性多糖抗氧化作用的实验研究[J].南京师范大学学报(自然科学版), 2003, 26(4): 94-98.
    30. Duh, P. D., Tu, Y. Y. & Yen, G. C. Antioxidant activity of water extract of Harug Jyur (Chrysanthemum morifolium Ramat) [J]. Lebensmittel-Wissenchaft und Technologie, 1999, 32: 269-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700