用户名: 密码: 验证码:
红会三矿采空区电法勘探关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红会三矿八采区是该矿的主要煤炭资源产地,是三矿职工的经济命脉。但是由于前几年小煤窑的无序开采,形成大量的废弃采空区和无数的“水袋”、“火坑”,使该矿职工处在“水深火热”之中。导致矿井在开掘过程中突水事故时有发生,涌水量也很大,造成矿井多次停产。这不仅给煤矿造成经济损失,而且给矿井的正常生产带来了安全隐患,直接影响矿区的正常生产。因此,查清楚勘探区内小窑采空区及其积水情况成为当务之急。
     笔者有幸参与了甘肃煤田地质局综合普查队对该区进行的电法探测小窑采空区工作,在收集、研究电法勘探领域的国内外发展情况及研究成果基础上,参与了从测网布置、探测施工、数据采集、理论研究、成果解释与验证等全过程的工作,并重点对电法探测小窑采空区中遇到的几个关键技术问题开展了研究。
     随着地球物理勘探技术的发展,电法已经成为探测老窑采空区的行之有效的方法。本次电法勘探工作,以25m×60m的测网,运用直流四极对称电测深法对红会三矿八采区实施探测。采空区呈高阻反映,采空强充水区呈次高阻反映。研究区内ρ S曲线类型分为两种:HA型曲线和HKH型曲线。HA型曲线为非采空区典型曲线:HKH型曲线为采空区曲线类型。等视电阻率(ρ S )剖面图能够较详细地反映出沿测线方向上地层的电性变化特征,是确定非采空区剖面位置的主要依据;ρ S等值线图基本代表了采空区的分布范围及形态,因此可以作为确定采空区平面位置的依据;采空区埋深则可利用反射系数法和中国矿业大学编制的直流电测深自动拟合反演程序予以确定;当采空区充水时,其电阻率值表现为次高阻反映,这是判断采空区内积水情况的主要依据。
     本次电法勘探将研究区共划分为三大区块。Ⅰ区为采空区,Ⅱ区为非采空区,Ⅲ区为高阻异常区。通过小煤窑调查、钻孔及井下探巷验证,采空区、非采空区、采空积水区范围与电法勘探结果相符。
     通过本次工作,作者认为,虽然利用直流电测深法探测小窑采空区的工作方法是可行有效的,但为了克服这种方法所得资料的多解性和局限性以及电性特征有可能受上覆高电阻岩层(第四系)屏蔽等弊端,在今后的同类工作中,应该推广应用高密度电法勘探方法。
The 8~(th) panel of Honghui Coal Mine No.3 is the main coal-producing area of the mine and the economic vitals of the staff. But mining out of order by small coal kilns in the past years results in large numbers of excavated areas and countless of "water bags" and " fire pits". Especially the water bags have brought great trouble to the process of excavating and mining of the panel, and made the Mine have to stop producing occasionally, which not only influenced the producing order of the panel, but also are great dangers of production. All these make the staff of the Mine live in hard life. Therefore, it is very urgent to prospect the excavated areas and "water bags" in the panel.The author took part in the electricity prospecting for the excavated areas in the panel by Synthesis Prospecting Team of Gansu Coal Geology Bureau. On the basis of collecting and studying the development and achievements of electricity prospecting, the author took part in the collocation of survey net, prospecting, collection of data, theoretical study, interpretation and validation of the achievements, paying the main attention to some key techniques in electricity prospecting for the excavated areas.With the development of geophysical Prospecting techniques, electricity prospecting has been an effective method to detect excavated areas. In the electricity prospecting for the excavated areas in the 8th panel of Honghui Coal Mine No. 3, 25m×60m survey net was collocated and direct current four pole symmetry method was used. Excavated areas show high resistance, and the excavated areas filled with water show hypo-high resistance. The ρ_s curves are divided into two types: HA and HKH。 HA is the typical curve of not excavated areas, whereas HKH is the typical curve of excavated areas. The section of ρ_s can amply reflect the changes of electricity character of strata along the direction of survey line, therefore it is the main basis for ascertaining the location of excavated areas in section. Isoline map of ρ_s represent the boundary and shape, so the location of excavated areas in plan can be ascertained according to isoline map of ρ_s. the depth of excavated areas can be ascertained with the reflectance coefficient method or using the automatic calculating program of the depth in direct current electrical prospecting developed by China Mining University. When excavated areas are filled by water the electricity character show hypo-high resistance, which is the main basis for estimating the
    water-filling state of excavated areas.The studied area is divided into three subareas through this electricity prospecting work. The subarea I is excavated area, the subarea II is not excavated area, and the subarea III is abnormity area of high resistance. The information from investigate of small coal kilns, drills and detecting tunnels validate that the fact is consilient with the conclusion from electricity prospecting about the ranges of excavated area and not excavated area as well as the water-filling state in excavated area.Although the method with direct current electricity prospecting for the excavated areas is of availability, author consider that the high dense electricity prospecting method should be used in aftertime in order to overcome the limitation such as indetermination of explanation, the disturbance of electricity character by over high resistance layer.
引文
[1] 李志聃,等.电法勘探圈定煤层采空区边界及冒落带范围的地质效果.1990,(1):63~67
    [2] 李志聃,等.电法勘探圈定煤层采空边界及冒落带范围的地质效果.中国煤田地质,1989,63~66
    [3] 北京地质学院.地球物理勘探方法.中国工业出版社,1962.1~66
    [4] 长春地质学院.水文地质工程地质物探教程.北京:地质出版社,1980.32~45
    [5] 中国矿业大学.中国煤田地球物理勘探.煤炭工业出版社,1981.34~48
    [6] 郭铁柱.高密度电法在崇青水库坝基渗漏勘探中的应用.北京水利2001,2:39~40
    [7] KennethH, waters: Refcectionseismolo-gy, 1978. 39~41
    [8] KLeyn, A.H, seismic Refleetion Intn-pretation, 1983. 41~40
    [9] 张福生.电法找水的应用.煤炭技术,2002,21(10):59~60
    [10] 武喜,等.煤矿采区三维勘探技术.物与化探,2004,28(1):16~18
    [11] 李志聃.煤田电法勘探.江苏:中国矿业大学出版社.1990,23~46
    [12] 卢君实.直流电法在淤泥层探测中的应用.煤炭技术,2003,22(10):102~103
    [13] 何公民.电法测井—充电法.煤炭技术.2003,22(0):100~101
    [14] 傅良魁主编.应用地球物理教程—电法放射.性地热,北京:地质出版社,1991.193
    [15] 徐世浙.电阻率法中求异常电位的有限单元法.地球物理学报,1994,37(增刊2)
    [16] 候克昌.形变—电阻率法探测煤层底板水导高.煤田地质与勘探,1991,19(6)46~49
    [17] 郝广勤.电法对铁路路基病害勘查的探讨.煤田地质与勘探,1991,2:54~55
    [18] 赵刚.磁法勘探和电法勘探在探测区自燃火区中的应用.西部探矿工程,2003,11:89~90
    [19] 湖南省煤田物探队.用物探方法找煤的几点体会.煤田地质与勘探,1974.
    [20] 陈桂兵,等.电测深曲线处理新方法—换算法.煤田地质与勘探,1995,23(3):51~54
    [21] 侯烈忠,等.高密度电法在地基勘探中的效果.煤田地质与勘探,1997,25(4):58~60
    [22] 杨进,等.高密度电阻率法的原理与技术.工程勘察,1989,(2)73~76
    [23] 于景林,等.高分辩三级电测深法探测煤矿突水构造.煤田地质与勘探,1997,25(4):38~39
    [24] 张萍芳,等.焦作矿区电法测导含水构造的效果.煤田地质与勘探,1997,25(4): 40~41
    [25] 储绍良.矿井物探应用.北京:煤炭工业出版社,1995,103~140
    [26] 李德春.矿山电阻率的预测机理及试验.煤田地质与勘探,1999,27(6):62~64
    [27] 李兴坤,等.煤田地球物理勘探.煤炭工业出版社,1989,3~66
    [28] 邹常玺主编.煤田地质学.煤炭工业出版社,1987.
    [29] 曾冗孚、夏文杰主编.沉积岩石学,地质出版社,1984.
    [30] 戴明勋、邵筱娥主编.古生物土层学,煤炭工业出版社,1985.
    [31] 岳建华.高分辨率三级断面测深法在采石场勘查中的应用.煤田地质与勘探,1999,27(1)69~71
    [32] 禹惠民,等.地球物理勘探,1993,116~160
    [33] 靳瑞青.地面瞬变电磁勘探在矿井防水隔离煤岩柱探测中的应用.甘肃煤炭,1997,17(9):251~258
    [34] 小野寺、清兵卫(日本).地热勘查中电法勘探的现状和展望国外电法勘探研究.国家地质总局,1979,251~258
    [35] S.H沃德、B.O史密斯、W.E格伦、L.里乔和小J.R.英曼.电测深法的统计计算.国家地质总局,1979,143~150
    [36] 王兴泰.工程与环境物探新方法新技术,1991.23~45
    [37] 汪吉林.试论小窑采空区的工程地质勘察.地球物理勘探,1995,21~23
    [38] 曾若云,等.直流电法在探测老窑采空区的应用.地球物理勘探,2001,53~54
    [39] 郭元欣.电法勘探在煤矿采空区范围探测中的应用.中州煤炭,2003,6:21~22
    [40] 汤洪志.高密度电阻率法二维成像方法及其应用.华东地质学院学报,2003,26(1):88~90
    [41] 刘思源.高密度电阻率法探测堤坝隐患初探.湖南水利水电,2000,4:23~24
    [42] 达哈诺夫.H石油与天然气产地电法勘探.北京:地质出版社,1955.43~44
    [43] 刘金涛,等.高密度电法勘探在岩溶查找中的应用.地质科技情报,2003,22(2):100~103
    [44] 杨进.地球物理方法在地质灾害勘查中的应用.物探与化探,2003,27(5):333~337
    [45] 梁爽,等.瞬变电磁法在阳泉二矿探测积水采空区效果分析.煤田地质与勘探,2003,6:59~60
    [46] 底青云,等.CSAMT法和高密度电法探测地下水资源.地球物理学进展,2001,16(3):53~56
    [47] 杜树春.直流电法在复杂地电条件下探测陷落柱的应用效果.煤田地质与勘探,1991,19(3):58~60
    [48] 傅良魁.电法勘探.北京:地质出版社,1991.34~548
    [49] 张文广,等.高密度电法在井田高阻边界探测中的应用.2003,11~1
    [50] 戴呈祥.土坝渗漏裂隙探测方法探讨.广东水利水电,2002,5:28~30
    [51] 阎述,等.瞬变电磁法探测地下洞体的有效性.煤田地质与勘探,1999,27(2):64~68
    [52] 魏家聚.应用电法勘探技术勘探小窑采空区初步尝试.中州煤炭,2002,2:19—20
    [53] 郭荣光,等.综合电法在采空区探测中的应用.科技情报开发与经济,2004,14(2):37~38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700