用户名: 密码: 验证码:
高速动车组车顶绝缘子积污特性与电场分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和社会的快速发展,高速动车组在现代运输体系中的重要性日益突出。车顶绝缘子是保障动车组绝缘安全的关键设备,积污特性和电场分布是判断车顶绝缘子绝缘性能的重要参数。随着列车运行速度的提升,车顶绝缘子外围的气流分布和积污规律更为复杂。受车顶空间布局的限制,车顶绝缘子伞裙数目小、沿面场强高,成为高速动车组绝缘最为薄弱的环节。因此,通过研究车顶绝缘子的积污特性和电场分布,探明表面污秽和伞形参数对车顶绝缘子电场分布的影响,可为高速动车组的防污闪设计提供参考,从而保障高速电气化铁路的安全稳定运营。
     本文根据高速动车组的车顶空间环境和实际运行工况,建立了车顶绝缘子的三维流体力学计算模型,探明了动车组高速运行时,车顶绝缘子外部的气流场分布和空气悬浮尘粒的运动轨迹,研究了高速气流对车顶绝缘子积污特性的影响,结合现场实测分析,探明了高速气流作用下车顶绝缘子沿面污秽的分布规律。
     针对车顶绝缘子的结构特征,建立了车顶绝缘子1/2截面的轴对称模型,采用有限元分析法探明了绝缘子的电位和电场分布。对比了每一片伞裙和杆径上承受的电压百分比,研究了绝缘子伞裙沿面的电场分布规律;根据绝缘子表面的积污状况,分析了污层对车顶绝缘子电场特性的影响。
     基于实际车顶空间尺寸,分别对等伞径和大小伞车顶绝缘子表面的电场分布进行了研究。探究了伞间距和伞伸出对等伞径车顶绝缘子沿面平均场强的影响;分析了大伞和小伞的伞伸出对大小伞车顶绝缘子电场特性的影响机理。根据伞形参数对车顶绝缘子电场分布的影响,按照铁道标准对车顶绝缘子伞裙结构的要求,对车顶绝缘子的伞裙进行了优化设计。
With the rapid development of economy and society, the importance of high-speed railway in modern transportation system is becoming more and more prominent. Roof insulators are key equipments to ensure insulation safety of locomotive. Contamination characteristic and electric field distribution are the main indexes to evaluate the insulation performance of roof insulator. With the speeding up of electrified railway, the surrounding airflow and deposition pattern become more complex. The number of insulator shed is small for the restrictions of roof space, which makes the electric field on the creepage path extremely high. Therefore, roof insulators are the most weakness point in electric locomotive insulation. In conclusion, studying the contamination characteristics, field distribution and related factors such as deposition and shed parameters can provide references for roof insulator design, so as to guarantee the safe and stable operation of high-speed railway.
     Considering the locomotive roof space layout and actual working condition of roof insulators, this paper built a3D model for roof insulator in computational fluid dynamics software. Airflow distribution around the roof insulator was analyzed when the locomotive is running fast. The moving track of suspending particles in high-speed fluid was also simulated. At the same time, the influence of high-speed airflow on insulator contamination was carried out. The deposition distribution in each sheds were studied combine numerical calculation with field measurement.
     According to the structure feature of roof insulator, a axisymmetric model for1/2cross section of roof insulator was established. Finite element method was used to study the potential and electric field distribution of roof insulator. Comparison of potential on each shed was conducted. The electric field distribution along the creepage path was also analyzed. Finally, nonuniform wet deposition and dry band was set on the insulator surface based on the deposition characteristic. The influence of nonuniform dirty band on field distribution was carried out.
     The field features of equal diameter and big-small shed insulators were analyzed respectively with actual roof size.The influence of shed spacing and shed elongation on average surface electric field and air gap field were studied in equal diameter insulator. The influencing mechanism on electric field distribution of big shed and small shed were conducted in big-small shed insulator. Finally, the roof insulator shed was optimized combine field characteristics with shed parameters'regulations in Chinese railway standard.
引文
[1]俞明昌,李凯,关晓军.电力机车车顶绝缘子耐污情况及提高耐污性能的措施[J].机车电传动,2001,3:47-50.
    [2]M. E. Slama, H. Hadi, S. Flazi. Study on influence of the no-uniformity of pollution at the surface of HVAC lines insulators on flashover probability[C]. CEIDP 2007: 562-566.
    [3]S. Venkataraman, R. S. Gorur. Prediction of Flashover Voltage of Non-ceramic Insulators under Contaminated Conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006, Vol.13(4):862-869.
    [4]M. A. Douar, A. Mekhaldi, M. C. Bouzidi. Flashover process and frequency analysis of the leakage current on insulator model under non-uniform pollution conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(4): 1284-1297.
    [5]任志超,吴广宁,周利军,等.大秦线大同地区接触网外绝缘污闪因素调查与污秽测试的研究[J].机车电传动,2010,5:47-50.
    [6]孙三祥,常青,李杰,等.大秦线运煤列车煤扬尘防治技术研究[J].铁道学报,2006,28(2):21-25.
    [7]S. Venkataraman, R. S. Gorur, K. Shenoi. Contamination Initiated flashover of Insulators in Generating Stations[C]. CEIDP 2007:811-814.
    [8]周升.高速电力机车车顶用有机负荷绝缘子的研究与开发[D].长沙:湖南大学,2004.
    [9]郭晨曦.电力机车/动车组高压绝缘设计问题探讨[J].铁道机车车辆.2010,30(2):1-4.
    [10]何恩光,周升.雾雪天气对车顶绝缘子闪络影响的分析[J].电力机车与城轨车辆.2003,26(2):1-4.
    [11]张宝奇,班瑞平.电力机车车顶绝缘子闪络引发接触网故障的研究及对策[J].铁道机车车辆[J].2007,27(5):63-67.
    [12]雷德金.电力机车车顶绝缘子污秽放电原因及应对措施[J].机车电传动,2007,2:73-74.
    [13]H. M. Schneider. Measurements of contamination on post insulators in HVDC converter stations[J]. IEEE Transactions Power Delivery,1998,3(1):398-404.
    [14]Gyula Besztercey, George G. Karady. An Artificial Contamination Method for Composite Insulators[J]. IEEE Transactions on Power Delivery,2000,15(2):732-737.
    [15]房柯夫,吴光亚,危鹏.1000 kV交流输电线路污秽外绝缘设计方法的研究[J].电 瓷避雷器,2007,3:1-4.
    [16]A. K. Gertsik, A. V. Korsuntser, N. K. Nikolskii. The effect of fouling on insulators for HVDC overhead lines [J]. Direct Current,1957(12):219-226.
    [17]高海峰,樊灵孟,李庆峰,等.正负500kV高肇直流线路绝缘子积污特性对比分析[J].高电压技术,2010,36(3):672-677.
    [18]J. Li, F. Z. Zhang, Z. C. Guan. A study on the shed design of DC composite insulator under contamination flashover[C]. CEIDP,2010:1-4.
    [19]H. Ye, J. Zhang, Y. M. Ji. Contamination accumulation and withstand voltage characteiustics of various types of insulators [C]. ICPADM,2003:1019-1023.
    [20]李鹏,范建斌,李武峰,等.高压直流输电线路的覆冰闪络特性[J].电网技术,2006,30(17):74-78.
    [21]蒋兴良,卢杰,杜辕,等.间插布置绝缘子串的交流冰闪特性[J].中国电机工程学报,2009,29(10):12-16.
    [22]X. Lin, Z. Chen, X. Liu, K. Chu. Natural Insulator Contamination Test Results on Various Shed Shapes in Heavy Industrial Contamination Areas [J]. IEEE Transactions on Electrical Insulation,1992,27(3):593-600.
    [23]S. W. Wang, X. D. Liang, Z. C. Guan. Investigation on hydrophobicity and pollution status of composite insulators in contaminated areas[C]. CEIDP,2001:628-631.
    [24]王彬,梁曦东,张轶博,等.交/直流电压下复合绝缘子和瓷绝缘子的自然积污试验[J].高电压技术,2009,35(9):2322-2328.
    [25]张开贤.悬式绝缘子串自然积污规律的探讨[J].电网技术,1997,21(3):39-43.
    [26]N. Ravelonmanantsoa, M. Farzaneh, W. A. Chisholm. Laboratory Investigation of the HV Insulator Contamination Process under Winter Conditions[C]. CEIDP,2008, 240-244.
    [27]蒋兴良,李海波.计算流体力学在绝缘子积污特性分析中的应用[J].高电压技术2010,36(2):329-334.
    [28]谢从珍,张尧,郝艳捧,等.±800 kV特高压直流悬式复合绝缘子伞形的风洞模拟[JJ.高电压技术,2010,36(1):212-217.
    [29]N. Ravelonmanantsoa, M. Farzaneh, W. A. Chisholm. Simulation method for winter pollution contamination of HV insulators[C]. EIC,2011:373-376.
    [30]李海波.基于流体力学原理的悬垂绝缘子串积污特性研究[D].重庆:重庆大学,2010.
    [31]谢从珍.硅橡胶复合绝缘子伞裙优化研究[D].广州:华南理工大学,2010.
    [32]王晶,陈林华,刘宇,等.电场对复合绝缘子积污特性影响的探究[J].高电压技术,2011,37(3):585-592.
    [33]孙保强,侯经洲,王黎明.关志成防覆冰电力机车车顶绝缘子伞裙的优化设计[J].高电压技术,2011,37(7):1620-1626.
    [34]X. Z. Liu, Z. W. Wu, Y. Z. Zhu, et al. Numerical Simulation of Airflow Pressure Distributions along Insulator Surface for Electric High-speed Locomotive [C]. ICPADM,2006:526-526.
    [35]丁一正,张俊兰,陈雄一,等.500kV线路绝缘子串分布电压的现场实测与分析[J].中国电力,2000,33(2):45-471.
    [36]倪光正.电磁场数值计算[M].北京:高等教育出版社,2004.
    [37]T. Zhao, M. G. Comber. Calculation of Electric Field and Potential Distribution Along Nonceramic Insulators Considering the Effects of Conductors and Transmission Towers [J]. IEEE Transactions on Power Delivery,2000,15(1):313-318.
    [38]沈鼎申,张孝军,万启发,等.750kV线路绝缘子串电压分布的有限元计算[J].电网技术,2003,27(12):54-57.
    [39]A. J. Phillips, J. Kuffel, A. Baker. Electric Fields on AC Composite Transmission Line Insulators [J]. IEEE Transactions on Power Delivery,2008,23(2):823-830.
    [40]T. Doshi, R. S. Gorur, J. Hunt. Electric field computation of composite line insulators up to 1200 kV AC[J]. IEEE Transactions on Dielectrics and Electrical Insulation.2011, 18(3):861-867.
    [41]B. Zhang, S. J. Han, J. L. He, et al. Numerical analysis of electric-field distribution around composite insulator and head of transmission tower[J]. IEEE Transactions on PWRD,2006,21(2):959-965.
    [42]C. Volat, M. Farzaneh. Three-dimensional modeling of potential and electric-field distributions along an EHV ceramic post insulator covered with ice[J]. IEEE Transactions on Power Delivery,2005,20(3):2006-2013.
    [43]W. Que, S. A. Sebo, R. J. Hill. Practical cases of electric field distribution along dry and clean non-ceramic insulators of high-voltage power lines[J]. IEEE Transactions on Power Delivery,2007,22(2):1070-1078.
    [44]谢天喜,刘鹏,李靖,等.交流1000 kV同塔双回输电线路复合绝缘子电场分布[J].高电压技术,2010,36(1):224-229.
    [45]W. Sima, F. P. Espino-Cortes, E. A. Cherney, et al. Optimization of corona ring design for long-rod insulators using FEM based computational analysis[C]. ISEI,2004: 480-483.
    [46]刘渝根,田金虎,刘孝为,等.750kV同塔双回输电线路绝缘子串电位分布数值分析[J].高电压技术,2010,36(7):1644-1650.
    [47]刘振,卞星明,王黎明.特高压直流复合绝缘子均压环设计[J].高电压技术,2006, 32(12):137-141.
    [48]Y. Z. Zhao, H. L. Li, X. K. Ma. Calculation of electric field and voltage distribution along glass insulator string and optimum design of its grading rings for 1000kV AC UHV transmission lines[J]. Automation Congress,2008. WAC2008, World, Setp.28, 2008:1-4.
    [49]张波,何金良,曾嵘,等.塔头复合绝缘子均压环优化配置分析[J].高电压技术,2008,34(4):652-654.
    [50]D. C. Dominguez, F. P. Espino-Cortes, P. Gomez. Optimized design of electric field grading systems in 115 kV non-ceramic insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(1):63-70.
    [51]高博,王清亮,周建博,等.干燥带对污秽绝缘子电场分布的影响[J].高电压技术,2009,35(10):2421-2426.
    [52]徐志钮,律方成,李和明.干燥带对染污支柱绝缘子电场分布的影响[J].高电压技术,2011,37(2):276-283.
    [53]王仲奕,王琪,陈青.湿润复合绝缘子表面的电场分析[J].高压电器,2010,46(3):53-58.
    [54]蒋兴良,夏强峰,胡琴.劣化绝缘子对悬垂串电场分布特性的影响[J].中国电机工程学报,2010,30(16):118-124.
    [55]J. Donguk, L. Keejoe, H. Moonseob. Analysis of electric field distribution on the surface of polymer post insulator used in electric railway catenary system [C]. CMD, 2008:752-755.
    [56]B. S. Reddy, M. Madhulita,T. Chaudhuri. Estimation of electric stress and surface potential for traction insulators[C].2012 IEEE Fifth Power India Conference,2012: 1-5.
    [57]刘学忠,周升,朱永占,等.车顶环氧复合绝缘子的外绝缘特性研究[J].电力机车与城轨车辆[J].2006,29(6):11-14.
    [58]陈昌龙,王黎明.电力机车车顶绝缘子电场计算[J].高压电器,2011,47(1):53-57.
    [59]韩克勤.机车车顶高分子复合绝缘子的研究与应用[J].机车电传动,2011,(2):22-24.
    [60]朱红钧.Fluent 12流体分析及工程仿真[M].北京:清华大学出版社,2011.
    [61]李明翔,高国强,冯艳双,等.高速气流场下列车车顶绝缘子积污特性研究[J].电瓷避雷器,2013,1:1-6.
    [62]王彪,陈焕金,陈伟.复合绝缘子的积污规律初探[J].河北电力技术,2003,22(5):30-32.
    [63]刘明光.电气化铁道高电压绝缘与试验技术[M].成都:西南交通大学出版社,2011.
    [641冯慈章,马西奎.工程电磁场导论[M].北京:高等教育出版社,2008.
    [65]徐志钮,律方成,李和明,等.绝缘子电场有限元分析法的影响因素及其优化[J].高电压技术,2011,37(4):944-951.
    [66]龚宇清.500 kV户外绝缘子染污下电场有限元分析[J].中国新技术新产品,2009.
    [67]GB/T 4585-2004/IEC 60507:1991交流系统用高压绝缘子的人工污秽试验[S],2004.
    [68]M. X. Li, G. N. Wu, G. Q. Gao, et al. Optimized shed to improve the potential and field distribution of cantilever insulator in electrified railway[C]. International Conference on Gas Discharge and Their Applications,2012:356-359.
    [69]TB/T 3077-2003.电力机车车顶绝缘子技术条件[S],2003.
    [70]朱进,何安清,李涛,等.车顶柱式复合绝缘子风洞试验与分析[J].电力机车与城轨车辆.2009,32(2):38-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700