用户名: 密码: 验证码:
沙尘环境下绝缘子交流闪络特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,频繁发生的沙尘暴对我国多个省份的工、农业生产与人民生活造成了严重影响,特别是对于高压电网线路外绝缘的危害尤为突出,已多次造成大面积输电线路发生闪络事故。对于外绝缘而言,沙尘暴的影响主要体现在严重积污和周围介质环境的改变,一方面,沙尘暴发作时空气中的风沙和盐分矿物等固体微粒含量显著增加,容易导致绝缘子串表面积污,增加污秽闪络发生的风险;另一方面,沙尘暴气候下环境介质会由原来的较纯净空气介质变为多物质含量的混合介质,线路外绝缘结构的工作环境将会发生很大转变。本文在参阅相关文献和已有研究成果的基础上,采取理论分析和实验相结合的方法,以XP-70瓷绝缘子为研究对象,重点研究了这两大方面对绝缘子交流闪络特性的影响规律。
     本文通过大量的人工污秽试验发现:XP-70瓷绝缘子交流闪络电压随风速的增大而升高,风沙环境下的闪络电压比有风无沙时低;随着沙尘颗粒带电量的增大,绝缘子的交流闪络电压降低,且沙粒带正电荷时绝缘子交流闪络电压较带负电荷时低;沉积的沙粒对污秽绝缘子闪络电压的影响与盐密无关,是独立的,同时绝缘子闪络电压的变化与沙尘沉积量有关,沉积密度较小时,绝缘子的交流闪络电压随沉积密度的增大而降低,沉积密度增大到20mg/cm2后,绝缘子的闪络电压反而有升高的趋势。
     不溶性污秽物类型的不同对绝缘子闪络电压的影响存在差异,本文通过人工污秽试验研究了两种不溶性污秽物对绝缘子闪络电压影响的差异,结果表明在相同沉积量下,绝缘子表面沉积沙尘时其闪络电压下降的幅度较小,因此,在风沙较大的地区用硅藻土模拟沙尘颗粒制定污秽等级的相关标准是安全的。本文建立了沙尘暴环境下XP-70瓷绝缘子的电场仿真模型,并对绝缘子在沙尘环境下的沿面电场分布进行了仿真计算,结果表明风沙环境下绝缘子沿面电场分布受周围沙尘颗粒的影响较小,但沙粒带电荷后对其电场分布有较大的畸变作用,在出现带电沙粒的区域,其电位分布变化显著,且绝缘子沿面电场强度明显增大;沉积沙尘时绝缘子表面出现无沙区域后,该区域内电场强度增大。
     利用高速摄像机拍摄了绝缘子在风沙环境中以及沉积沙粒时的闪络过程。大风作用下绝缘子闪络时出现明显的飘弧现象,延长了电弧的发展时间;少量沙尘沉积时随着施加电压的升高,沙粒会发生跳跃并向四周运动,在局部形成无沙区域,而沙尘沉积量较大时,在放电通道有沙粒跳跃,但没有明显的无沙区域形成。
Recently, frequent sand storm has caused great damage to the industry, agriculture and people's lives in many provinces of China, especially to the high voltage transmission line external insulation,which has brought about large area flashover accident of the transmission line. Regarding the external insulation,the influence of sand storm is mainly reflected in two aspects, serious contamination and the change of medium environment surrounding the insulators. On one hand, when sand storm breaks out, the sand and mineral salt and other solid particles in the air are increasing significantly, which is very likely to cause contamination on the surface of insulators, and that can then make the pollution flashover more possible to happen; on the other hand, in the background of sand storm, medium environment changes from pure air medium into the mixed medium of multi-material content,which brings great changes to the operating environment of transmission line's insulation structure. Based on the analysis of the literature and the research results relating to this topic, taking XP-70 porcelain insulators as the research object, with the methods of the combination of theory and experiment , this paper mainly researches the laws of the above two aspects' influence to AC flashover performance.
     Through a number of tests, it is found that the flashover voltage of the XP-70 porcelain insulator increases with the increase of the wind speed in wind sand environment under the AC voltage, and that the flashover voltage in weather of wind dust is lower than in the weather of wind. The flashover voltage of the XP-70 porcelain insulator decreases with the increase of the sand specific charge, and the flashover voltage of the sand with positive charge is lower than it with negative charge. When the sand particles deposit on the surface of the insulator, the changes of insulator's flashover voltage is related to the sand dust deposition. In low deposition density situation, the flashover voltage decreases with the sand dust deposition density increasing, and when the deposition density exceeds 20mg/cm2, the flashover voltage appears to go up.
     Different insoluble pollution materials have different influences on insulator flashover voltage. In this paper, the two pollution materials, sand particles and diatomite are compared and analyzed, and through the artificial pollution test, this paper researches the differences of the two insoluble pollution materials’influences to insulator flashover voltage. The result proves that, with the same deposition density, sand on insulator's surface causes less decline of its flashover voltage. Therefore, it is safe that using diatomite to simulate sand particles in order to set pollution grade standards in heavy sand storm area.
     This paper sets up an electric field simulation model of XP-70 porcelain insulator in sand storm environment, and then calculates the electric field distribution on insulator's surface in sand storm environment. The result proves that sand particles surrounding the insulator have less influence on the electric field distribution on insulator's surface,however, charged sand particles can cause the aberrance of its electric field distribution. In the area with charged sand particles, the strength of the electric field on insulator's surface increases evidently; when there appears areas without sand particles, the electric field strength increases in that area. Using the high speed camera, the process of the flashover of the insulator in wind sand environment and sand particles deposition on surface is photographed. The arc is blown from the insulator surface by the strong wind, which extends the development of the arc. When there is little sand dust depositing on surface, with the voltage going higher, sand particles jump and expand, areas without sand particles appear, but when plenty of sand dust deposits, there are sand particles jumping in discharge path, but no areas without sand particles.
引文
[1]董治宝,王涛,屈建军. 100a来沙漠科学的发展[J].中国沙漠, 2003, 23(1): 1-5.
    [2]张鸿发,屈建军,言穆弘.风沙起电的风洞实验研究[J].高原气象, 2002.8.No.4: 402~407.
    [3] Gill E WB. Frictional electrification of sand[J]. Nature, 1948, 18 (4): 568-569.
    [4] Latham J. the Electrification of Snowstorms and Sandstorms[J]. Q J RmeteorSoc, 1964, 90:91-95
    [5] DS, RS Schmidt.Electrostatic Force on Saltating Sand[J].JGR, 1998, 103 (4):8997-9001.
    [6] Schmidt DS, Dent J D. a Theoretical of the Effects of Electrostatic Forces on Saltating Snow Particles [J].Ann Glaciol, 1993, 18:234-238.
    [7] Greeler, R Leach. a Preliminary Assessment of the Effects of Electrosta Ties on Aeolian Process[R].Rep Plane, Geol. Program. NASA TM79729, 1978, 236-237.
    [8]黄宁,郑晓静,风沙流中沙粒带电现象的实验测试[J].科学通报,2000, 45(20): 2232-2235.
    [9]张鸿发,沙尘暴点效应的实验观察研究[J].地球物理学报, 2004, Vol.47, No.1:47~53.
    [10]李芳,屈建军.风沙电研究的现状及展望[J].地球科学进展, 2002.8, 17(4): 572-575.
    [11]屈建军,王涛.沙尘暴风洞模拟实验的综述[J].干旱区资源与环境, 2004, 18(1): 109-115.
    [12]张鸿发.风沙起电的风洞实验研究[J].高原气象, 2002, 4: 402-407.
    [13]屈建军.沙尘暴起电的风洞模拟实验研究[J].中国科学, 2003, 33(6): 593-601.
    [14]郑晓静,周又和.风沙运动研究中的若干关键力学问题[J].力学与实践,2003, 25(2):1-6
    [15]郑晓静,黄宁,周又和.风沙运动的沙粒带电机理及其影响的研究进展[J].力学进展, 2004, 34(1): 77-86.
    [16]黄宁,郑晓静.风沙运动力学机理研究的历史、进展与趋势[J].力学与实践, 2007, 29(4): 9-16.
    [17]董治宝,郑晓静.中国风沙物理研究50a[J].中国沙漠,2005.11, 25(6):795-815.
    [18]何丽红,郑晓静.风沙电多场耦合模型及其对风沙流结构的影响[J].兰州大学学报, 2005.6,41(3):87-92.
    [19]郑晓静.风沙运动的力学机理研究[J].科学导报, 2007, 25(14):22-27.
    [20]屈建军,俎瑞平,等.扬沙和沙尘暴对导线电位影响的风洞模拟实验[J].中国沙漠, 2004, 25(5): 34-538.
    [21]鲁录义,顾兆林,罗昔联等.一种风沙运动的颗粒动力学静电起电模型[J].物理学报, 2008, 57(11):6939-6945.
    [22] M . I . Qureshi, A.A. Al-Arainy and N.H. Malik. Performance of Rod-Rod Gaps in the Presence of Dust Particles under Lightning Impulses [J]. IEEE Transactions on Power Delivery April1991, 6(2):706-714.
    [23] A.A.Al-Arainy and N.H. Malik, M . I . Qureshi. Influence of Desert Pollution on the Lightning Impulse Breakdown Voltages of Rod to Plane Air Gaps. IEEE Transactions on Power Delivery, January 1991, 6(1):421-428.
    [24] M.I.Qureshi, A.A. Al-Arainy and N.H. Malik. Influence of Sand/Dust Contamination on the Breakdown of asymmetrical Air Gaps under Lightning Impulses. IEEE Transactions on Electrical Insulation, April,1992, 27(2):193-206.
    [25] M.I.Qureshi, A.A. Al-Arainy and N.H. Malik. Performance of Rod-Rod Gaps in the Presence of Dust Particles under Standard Switching Impulses. IEEE Transactions on Power Delivery, July, 1993, 8(3):1045-1051.
    [26] M.I. Qureshi, A.A. Al-Arainy and N.H. Malik. Influence of Sand/Dust Contamination on the Breakdown of asymmetrical Air Gaps under Switching Impulses. IEEE Transactions on Electrical Insulation, April,1994, 1(2):305-314.
    [27] M.I.Qureshi, A.A. Al-Arainy and N.H. Malik. Performance of Protective Rod Gaps for Medium Voltage Networks in the Presence of Dust Particles under Lightning Impulses. IEEE Transactions on Power Delivery, October , 1999, 14(4):1311-1315.
    [28]司马文霞,吴亮,杨庆.沙尘对电力系统外绝缘电气特性影响分析[J].高电压技术, 2008, 34(1):16-20.
    [29]吴亮.沙尘环境下空气间隙和平板模型沿面放电特性的研究[D].硕士论文,重庆大学, 2008.5.
    [30]马高权.风沙环境下绝缘沿面放电特性研究[D].硕士论文,重庆大学, 2009.5
    [31]司马文霞,杨庆,吴亮等.平板模型沿面工频沙尘闪络特性的实验研究及放电机理分析[J].电机工程学报, 2008, 28.
    [32] SIMA Wen-xia, YANG Qing, MA Gao-quan. Experiments and Analysis of Sand-Dust Flashover of the Flat Plate Model[J]. IEEE, Transactions on Dielectrics and Electrical Insulation, 2010, 17(2):572-581.
    [33]司马文霞,马高权,杨庆.风沙条件下的平板模型直流沿面放电特性[J].高电压技术, 2008.12, Vol.34, No.12:2570-2574.
    [34] Zhong Yu, Zongren Peng, Peng Liu. The Influence of Charged Sand Particles on the External Insulation Performance of Composite Insulators in Sandstorm Condition[C]. In 8th International Conference on Propertities and Applications of Delectric Materials. Indonesia (2006).
    [35]贺博,万军,陈邦发,高乃奎,彭宗仁.人工模拟沙尘气候环境下线路绝缘子积污特性研究[J].西安交通大学学报, 2008, 42(28): 1510-1514.
    [36]扬沙与浮尘的区分方法(J),陕西气象, 2002.6
    [37]扬沙和浮尘成因的探讨及其观测(J),浙江气象科技, 2000.2, Vol.22, No.1:44~46.
    [38] Abdel-Salam H.A. Hamza, Nagat M.K. Abdelgawad and Bahaa A. Arafa. Effect of Desert Environmental Conditions on the Flashover Voltage of Insulators [J].Energy Conversion and Management, October ,2001, 43(2):2437-2442.
    [39] International Standard, Artificial Pollution Tests on High Voltage Insulators (a.c.) [S]. IEC Publication, IEC 60507, 1991.
    [40] GB/T 4585—2004/IEC60507交流系统用高压绝缘子的人工污秽试验[S].中华人民共和国国家质量监督检验检疫总局和中华人民国家标准化管理委员会联合发布,北京:中国标准出版社, 1991.
    [41] DL/T859高压交流系统用复合绝缘子人工污秽试验[S].中华人民共和国国家发展和改革委员会发布,北京:中国电力出版社, 2004.
    [42] International Standard, Selection and dimensioning of high-voltage insulators intended for use in polluted conditions-Part 1: Definations, information and general principles [S]. IEC Publication, IEC 60518, 2008.
    [43]张志劲.低气压下绝缘子(长)串污闪特性及直流放电模型研究[D].博士论文,重庆大学, 2007.10.
    [44]张仁豫,绝缘污秽放电,北京:水利电力出版社,第一版, 1994.
    [45]袁红波,郭贤珊,佛山电网110kV-500 kV输电线路污闪事故与对策,华中电力, 2005, Vol.18, No.3:16-20.
    [46]张冠军,吴广宁,刘刚.高电压技术.北京:机械工业出版社,第一版, 2007.
    [47]蒋兴良,舒立春,孙才新.电力系统污秽与覆冰绝缘[M].北京:中国电力出版社, 2009.
    [48]李毅.覆冰绝缘子交流闪络机理与泄漏电流特性研究[D].硕士论文,长沙理工大学, 2009.4.
    [49]黄欢.基于泄漏电流特征量的绝缘子污闪预测的研究[D].硕士论文,重庆大学, 2008, 5.
    [50]陈伟根,夏青,李璟延,姚陈果,司马文霞.绝缘子污秽预测新特征量的泄漏电流时频特性分析[J].高电压技术, 2010, 36(5):1107-1112.
    [51]叶齐政,顾温国,齐军等.运动水滴在尖-板直流电场中的放电研究[J].高电压技术, 1999, 25(4): 7-10.
    [52] Farouk A. M. Rizk. Effect of Floating Conducting Objects on Critical Switching Impulse Breakdown of Air Insulation [J]. IEEE Transactions on Power Delivery, 1995, 10(3): 1360-1370.
    [53] Cheng Zixia, Liang Xidong, Zhou Yuanxiang, etc. Study of Water Droplet Discharge by Electric Field Computation and High-speed Video [P]. Procceding of the 7th International Conference on Properties and Applications of Dielectric Materials, June 1-5, 2003, Nagoya:820-823.
    [54] M. Awad, F. Farid, E. El-Sharkawi. Breakdown Voltage of Medium Air Gaps under Sandstorm or HumidityConditions in the Desert [P], IEE Conf. Publication, No. 189, Part 2, 1980:151-154.
    [55] Bo He, ZHANG Gang, CHEN Bangfa, etc. A study on the influence of sand-dust environment on air-gap breakdown discharge characteristics of plate-to-plate electrode [J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2010, 53(1): 1-7.
    [56]黄斌,交流电场对复合绝缘子覆冰过程及放电特性影响的研究[D].硕士论文,重庆大学, 2008.5.
    [57]夏强峰,瓷质悬式绝缘子劣化非接触式检测方法的研究[D].硕士论文,重庆大学, 2010.5.
    [58]邓镓卓,串联玻璃绝缘子改善复合绝缘子电场分布研究[D].硕士论文,重庆大学, 2010.5.
    [59]杨庆,覆冰绝缘子沿面电场特性和放电模型研究[D],博士论文,重庆大学, 2006.12.
    [60]贺博,张刚,陈帮发等.沙尘环境对板-板电极气隙放电特性影响的模拟试验研究[J].中国科学, 2010, Vol.40, No.3:296-302.
    [61]顾乐观,张建辉,孙才新.染污光滑圆柱绝缘子沿面电场分布对闪络过程的影响[J].电机工程学报, 1993, 13:70-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700