用户名: 密码: 验证码:
选择性催化还原脱硝催化剂的实验与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内氮氧化物排放标准的日益严格,选择性催化还原(Selective Catalytic Reduction, SCR)催化剂成为国内外各科研机构的研究热点。本文以化学分析纯颗粒状SCR催化剂为基础,采用实验研究和理论分析相结合的方法,分析了V2O5-WO3-MoO3/TiO2四元催化剂脱硝反应机理,并比较了该催化剂与V2O5-WO3/TiO2、V2O5-MoO3/TiO2三元催化剂脱硝性能的差异;从比表面积、比孔体积、平均孔径、物相组成、晶粒尺寸等微观角度对催化剂物理化学特性进行了研究,优化了V2O5-WO3-MoO3/TiO2四元催化剂的成分配比;以工业纯原料替换化学分析纯原料制备了蜂窝状催化剂,研究了药品纯度对催化剂脱硝性能的作用效果,并对成型工艺进行了优化;通过在山东某燃煤电厂300MW机组锅炉尾部所建造的SCR脱硝试验台研究了燃煤电厂真实排烟环境下空速、催化剂用量、温度、氨氮比、初始浓度、积灰时间、催化剂寿命等因素对工业纯蜂窝状V2O5-WO3-MoO3/TiO2四元催化剂脱硝性能的影响;通过Lister Petter TR1重型直喷式单缸柴油机尾气SCR脱硝试验台研究了柴油机真实尾气环境下工业纯颗粒状V2O5-WO3-MoO3/TiO2四元催化剂的脱硝性能以及在运行过程中活性降低的规律。
     1.以化学分析纯偏钒酸铵、钨酸铵、钼酸铵、锐钛型钛白粉为主要成分,制备了颗粒状V2O5-WO3-MoO3/TiO2四元催化剂,利用标准气模拟烟气组成研究了该催化剂的脱硝性能,研究结果表明:在活性物质总负载量相同的情况下,同时负载W和Mo的四元催化剂脱硝效率高于单一负载W或Mo三元催化剂的脱硝效率;W可以有效提高催化剂高温区间活性,抑制Mo在高温区间的副反应发生,Mo可以有效提高催化剂低温区间活性,弥补W在低温区间活性不足,从而拓宽催化剂活性温度窗口;当V负载量为1.0%w/w,W负载量为4.5%w/w,Mo负载量为4.5%w/w时,催化剂具有最佳性能,其各部分物性均匀,颗粒致密,粒径大小一致,且具有完整的微孔结构;焙烧温度对催化剂比表面积、比孔体积、平均孔径、结晶度、物相转变和催化活性均有重要影响,催化剂在35℃焙烧具有最佳活性,峰值达到99.1%,但化学结构不稳定,在450℃焙烧具有稳定结构且结晶完全,活性物质溶入锐钛型Ti02晶格效果最佳,但活性峰值降至89.1%,采用350℃+450℃二次焙烧方法所得催化剂具备稳定化学结构,与450℃焙烧的催化剂相比,比表面积增大5.0%,比孔体积增大1.9%,平均孔径减小1.5%,催化剂活性峰值提升3.0%,温度窗口拓宽约40℃
     2.以各项工业纯度原料分别替换分析纯度原料进行脱硝效率对比试验,所用催化剂中V负载量为1.0%w/w,W负载量为4.5%w/w,Mo负载量为4.5%W/w,研究结果表明:工业纯H2C2O4会造成催化剂严重失活,采用工业纯V、W、Mo和分析纯H2C2O4制备所得催化剂具有较低的制备成本和较高的脱硝效率和较宽的活性温度窗口,可以很好地解决催化剂制造成本和脱硝性能之间的矛盾。催化剂的成型性能与成型模具结构、成型剂种类和胚料制备工艺均有密切关系,通过完善成型工艺可以提高催化剂胚料的致密性和均匀性,经粉体筛分,胚料碾压、捶打,静置封存处理后所制得的催化剂胚料具有较好的蜂窝状成型性能、较强的硬度以及耐磨性。
     3.利用燃煤电厂烟气脱硝试验台研究了系统运行参数对催化剂脱硝性能的影响效果,研究结果表明:空速增大,催化剂脱硝效率总体趋势是降低的,但在一定空速范围内催化剂活性较高且较为稳定;当脱硝效率达到80.0%以上时,增大SCR脱硝系统中催化剂的用量脱硝效率提高不明显,却会造成SO2氧化率不断升高,且增长速率不断增大,同时会导致脱硝成本较高,SCR脱硝系统中催化剂的用量应根据各燃煤电厂设计标准及排放要求布置,寻求最佳脱硝效率与催化剂体积的比值,避免单一追求脱硝效率导致其它资源的浪费。与实验室模拟烟气相比,真实烟气中脱硝效率对温度的变化更敏感,高温区间脱硝效率随温度变化剧烈,但对NH3的敏感度较低,当氨氮比达到0.9时催化剂的脱硝效率大于70.0%,运行中增大NH3投入体积可以进一步提高NOx转化率,同时降低S02氧化率。本课题所制备的V2O5-WO3-MoO3/TiO2四元催化剂对NOx初始浓度的变化具有较强的适应性,在300-1700ppm范围内,脱硝效率均大于70.0%。催化剂的脱硝效率会随着积灰时间的延长而不断降低,同时随着催化剂运行时间的延长,脱硝效率呈现先急剧下降,后缓慢降低的变化趋势,在运行第1个月内下降较快,平均每运行78h脱硝效率降低1.0%,在运行2-12月内下降较为平缓,平均每运行740h脱硝效率降低1.0%。
     4.利用柴油机尾气脱硝试验台研究了柴油机运行工况对所研制催化剂脱硝性能的影响,研究结果表明:柴油机SCR反应器内空速增大,所研制催化剂脱硝效率和脱硝反应副产物N20浓度呈现单一下降趋势,而NH3逸出浓度增大;柴油机负载增大,催化剂脱硝效率呈现下降趋势,且脱硝效率下降速率递增,同时脱硝反应副产物N20浓度不断减小,而NH3逸出浓度不断增大;不同负载下催化剂的脱硝效率均受反应温度影响较大,但脱硝效率随反应温度的变化趋势相似,仅变化幅值不同;柴油机负载变化会导致催化剂活性温度窗口(脱硝效率>70%)发生较大变化,同时导致副反应NH3/N2O起始温度和N20生成量一起变化;随着NH3投入量的增加,催化剂脱硝效率先升高后保持不变,而副反应产物N20的生成浓度不断增大且增大速率均匀,NH3逃逸量不断增长且增长速率逐渐变大。随着柴油机运行时间的延长,催化剂表面积碳量增加,催化剂脱硝效率缓慢降低,但积碳量对催化剂的脱硝效率的影响程度较弱;柴油机启动、停机次数增加会加速催化剂脱硝效率的降低,并使得副反应NH3/N2O进行程度减弱,同时导致NH3逃逸率增大。
     本课题得到山东省科技发展计划:选择性催化还原烟气脱销用高效催化剂的失活机理和工业应用研究(NO.2011GSF11716)和山东电力集团科技项目:大容量燃煤锅炉氮氧化物NOx排放控制技术实验研究(NO.2008ZB-19)的资助。本文作者在英国伯明翰大学期间实验及生活得到国家留学基金委的资助(NO.2011622102)。
Selective catalytic reduction (SCR) catalyst for NOx reduction becomes the research focus of domestic and foreign research institutions with the emission standards developing stricter in the worldwide.
     In this study, the powder SCR catalyst prepared with analytical pure chemicals was researched by experiment and theoretical analysis. The denitration reaction mechanism of V2O5-WO3-MoO3/TiO2catalyst was studied and its denitration performance was compared with V2O5-WO3/TiO2and ViO5-MoO3/TiO2catalysts. The physical and chemical properties of V2O5-WO3-MoO3/TiO2catalyst was analyzed based on its microscopic characterizations, such as specific surface area, pore volume, mean pore diameter, phase composition and grain size. Also, the mass percentage of each chemical in the catalyst was optimized.
     The honeycomb catalyst of V2O5-WO3-MoO3/TiO2was prepared with industrial pure chemicals to investigate the impurities effects on the denitration performance, which were contained in the chemicals. Meanwhile, the forming process was optimized during the honeycomb catalyst preparation. The denitration performance of honeycomb V2O5-WO3-MoO3/TiO2catalyst under actual flue gas was tested on a SCR DeNOx test bench which was built at a300MW unit of a coal-fired power plant in Shandong Province. In this test, the effects of space velocity, catalyst volume, reaction temperature, NH3to NOx ratio, NOx initial concentration, soot depositing time, and catalyst life on the catalyst denitration performance were revealed.
     The denitration performance of powder V2O5-WO3-MoO3/TiO2catalyst was researched under the exhaust of a Lister Petter TR1heavy direct injection single-cylinder diesel engine, and the catalyst deactivation mechanism during diesel engine operation was analyzed.
     1. The powder V205-W03-Mo03/Ti02catalyst was prepared with analytical pure chemicals of ammonium vanadate, ammonium tungstate, ammonium molybdate and anatase titanium dioxide. The denitration performance of this catalyst was researched under simulated flue gas composed of NO, SO2, O2and N2. The research results show that, the Denitration efficiency of the catalyst loading W and Mo is higher than the catalyst only loading W or Mo, when the same total amount of active substance is loaded. In high temperature range, W can effectively enhance the activity of the catalyst and inhibit the side reactions caused by Mo. In low temperature range, Mo can effectively improve the activity of the catalyst to compensate for the insufficient activity of W. Thereby the temperature window of the catalyst loading both W and Mo is broadened. The catalyst has best denitration performance with uniform and dense particles and complete microporous structure under V load at1.0%w/w, W load at4.5%w/w, Mo load at4.5%w/w. The sintering temperature has close relationship with the characterizations of the catalyst, such as specific surface area, pore volume, average pore diameter, degree of crystallization, phase transform and catalytic activity. The catalyst sintered at350℃had the highest Denitration efficiency of99.1%, but its chemical structure was not stable. The catalyst sintered at450℃had a stable chemical structure and complete crystallization with the active material dissolved into the anatase TiO2lattice, but its Denitration efficiency reduced to89.1%. The catalyst, sintered by350℃+450℃two-stage sintering method, had a stable chemical structure, and its specific surface area increased by5.0%, pore volume enlarged by1.9%, average pore diameter reduced by1.5%, Denitration efficiency peak increased by3.0%, and the temperature window approximately broadened by40℃compared with the catalyst sintered at450℃.
     2. The Denitration efficiency of the catalyst prepared with industrial pure chemicals and analytical pure chemicals were tested and compared. The research results show that, the industrial pure H2C2O4causes the catalyst serious deactivation, and the catalyst prepared with industrial purity of V, W, Mo and analytical purity of H2C2O4has low cost, high Denitration efficiency and wide temperature window. Forming properties have close relationship with the mold structure, the forming agent type and the precursor preparation process. The density and uniformity of the precursor can be improved by optimizing the forming process. After powder screening, rolling, beating and sealed storing, the precursor has preferable honeycomb-forming properties, strong hardness and abrasive resistance.
     3. The operating parameters effects on the catalyst denitration performance were researched on the SCR DeNOx test bench which was built at a300MW unit of a coal-fired power plant in Shandong Provence. The research results show that the overall trend of the catalyst denitration efficiency is reduced with the space velocity increasing, but within a certain range, the denitration efficiency is relative stable. When the denitration efficiency reaches80.0%, increasing the amount of catalyst used in the SCR system to improve the denitration efficiency is not effective, but it will result in SO2oxidation increase, meanwhile, it will result in higher cost of the SCR system. The volume of catalyst used in the SCR system should be arranged according to the design standards and emission requirements for each coal-fired power plant. The ratio of the catalyst denitration efficiency to catalyst volume should be optimized to avoid other resources wasting by singlely pursuiting the high denitration efficiency. Compared with the results in the simulated flue gas, the denitration efficiency in the actual flue gas is more sensitive to temperature variation, and the denitration efficiency change is larger with temperature varying at the high-temperature range. The denitration efficiency, however, is less sensitive to NH3concentration variation, which reach70.0%at NH3:NOx of0.9. The denitration efficiency can be improved by enlarging NH3:NOx and the SO2oxidation will decrease at the same time. The V2O5-WO3-MoO3/TiO2catalyst has strong adaptability to the change of the NOx initial concentration, and its denitration efficiency is larger than70.0%with the NOx initial concentration in the range of300-1700ppm. The denitration efficiency of the catalyst reduces with the soot depositing time extension, and it declines sharply at the beginning of the catalyst continuous operation. In the first month of the catalyst continuous operation, the denitration efficiency decreases by1.0%per78h, in the range of2to12months, the denitration efficiency decreases by1.0%per740h.
     4. The effect of the diesel engine operating parameters on the catalyst denitration performance was researched with the exhaust of a Lister Petter TR1heavy direct injection single-cylinder diesel engine. The results show that, the denitration efficiency and the by-product N2O concentration decrease with the space velocity increase, while the NH3slip increases. With the diesel engine load increasing, the denitration efficiency declines and the decline rate keeps on rising, at the same time, the by-product N2O concentration decreases and the NH3slip increases continuously. Under different loads, the catalyst denitration efficiencies are all greatly influenced by the reaction temperature and the trends of denitration efficiency varying with reaction temperature rising are similar, but the varying values are quite different. Diesel engine load change can lead the catalyst temperature window (denitration efficiency>70%) varying largely, at the same time, the starting temperature of NH3/N2O side reaction and the N2O concentration change together. With the increase of NH3volume, the denitration efficiency increases first and then remains unchanged, while the concentration of by-product N2O increases and increase rate keeps stable, at the same time, the NH3slip increases and the increase rate rises gradually. With the diesel engine operation time extension, the carbon content on the catalyst surface area increases and the catalyst denitration efficiency decreases slowly, but the effect of carbon deposition on denitration efficiency is weak. Diesel engine start-up, shut-down times increase accelerates the reduction of catalyst denitration efficiency, meanwhile, the side reaction of NH3/N2O becomes weak, and the NH3slip increases.
     This study is funded by shandong province science and technology development plan:high efficiency selective catalytic reduction catalyst deactivation mechanism research and industrial application (NO.2011GSF11716) and Shandong Power Ltd technology projects:NOx emissions control technology research on large capacity coal fired boilers (NO.2008ZB-19). The author's experiment and life at the university of Birmingham, UK is supported by China Scholarship Council (NO.2011622102).
引文
[1]Armor J N. Environmental catalysis[J]. Applied Catalysis B:Environmental,1992, 1(4):221-256.
    [2]Centi G, Ciambelli P, Perathoner S, et al. Environmental catalysis:trends and outlook[J]. Catalysis Today,2002,75(1-4):3-15.
    [3]Bosch H, Janssen F. Formation and control of nitrogen oxides[J]. Catalysis Today, 1988,2(4):369-379.
    [4]P Rvulescu V I, Grange P, Delmon B. Catalytic removal of NO[J]. Catalysis Today, 1998,46(4):233-316.
    [5]Nova I, Lietti L, Tronconi E, et al. Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst[J]. Catalysis Today,2000,60(1-2):73-82.
    [6]蒋文举.烟气脱硫脱硝技术手册[M].北京:化学工业出版社,2006,1-30.
    [7]Roy S, Hegde M S, Madras G. Catalysis for NOx abatement[J]. Applied Energy, 2009,86(11):2283-97.
    [8]Klingstedt F, Arve K, Er Nen K, et al. Toward improved catalytic low-temperature NOx removal in diesel-powered vehicles[J]. Accounts of Chemical Research,2006, 39(4):273-282.
    [9]Helms G T, Vitas J B, Nikbakht P A. Regulatory options under the U.S. clean air act: The federal view[J]. Water, Air and Soil Pollution,1993,67(1-2):207-216.
    [10]Bahamonde A, Beretta A, Avila P, et al. An experimental and theoretical investigation of the behavior of a monolithic Ti-V-W-Sepiolite catalyst in the reduction of NOx with NH3[J]. Industrial & Engineering Chemistry Research,1996,35(8): 2516-2521.
    [11]St Hr M, Sch Tz H, Kr Ger H. Status of and experience with NOx reduction in coal-fired power plants [J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1997,211(1):27-41.
    [12]Syred N, Mirzae H, O'doherty T. Low-temperature natural-gas-fired combustors and NOx formation[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,1999,213(3):181-190.
    [13]Roth I F, Ambs L L. Incorporating externalities into a full cost approach to electric power generation life-cycle costing[J]. Energy,2004,29(12-15):2125-2144.
    [14]Fu M, Ge Y, Wang X, et al. NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns [J]. Science of the Total Environment,2013,452-453(0):222-226.
    [15]Beevers S D, Westmoreland E, De Jong M C, et al. Trends in NOx and NO2 emissions from road traffic in Great Britain[J]. Atmospheric Environment,2012,54(0): 107-116.
    [16]Grewe V, Dahlmann K, Matthes S, et al. Attributing ozone to NOx emissions: Implications for climate mitigation measures[J]. Atmospheric Environment,2012,59(0): 102-107.
    [17]李晓芸,赵毅,王修彦.火电厂有害气体控制技术[M].北京:中国水利水电出版社,2005,126-144.
    [18]赵惠富.污染气体NOx的形成和控制[M].北京:科学出版社,,1993,10-60.
    [19]Blanco J, Avila P, Barthelemy C, et al. Influence of phosphorus in vanadium-containing catalysts for NOx removal[J]. Applied Catalysis,1989,55(1): 151-164.
    [20]Chaugule S S, Yezerets A, Currier N W, et al.'Fast' NOx storage on Pt/BaO/γ-Al2O3 lean NOx traps with NO2+O2 and NO+O2:Effects of Pt, Ba loading[J]. Catalysis Today,2010,151(3-4):291-303.
    [21]Nam I-S, Choo S T, Koh D J, et al. A pilot plant study for selective catalytic reduction of NO by NH3 over mordenite-type zeolite catalysts[J]. Catalysis Today,1997, 38(2):181-186.
    [22]Xu H, Yan Z-Y, Xu X, et al. Experiment study of the pilot ammonia SCR system in a coal-fired power plant; proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference, APPEEC 2011, March 25,2011-March 28,2011, Wuhan, China, F,2011[C]. IEEE Computer Society.
    [23]Wilcox J, Rupp E, Ying S C, et al. Mercury adsorption and oxidation in coal combustion and gasification processes[J]. International Journal of Coal Geology,2012, 90-91(0):4-20.
    [24]Khodayari R, Odenbrand C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants[J]. Applied Catalysis B:Environmental,2001,30(1-2): 87-99.
    [25]Kr Cher O, Elsener M. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution:I. Catalytic studies[J]. Applied Catalysis B:Environmental,2008,77(3-4):215-227.
    [26]Strege J R, Zygarlicke C J, Folkedahl B C, et al. SCR deactivation in a full-scale cofired utility boiler[J]. Fuel,2008,87(7):1341-1347.
    [27]Forzatti P. Environmental catalysis for stationary applications [J]. Catalysis Today, 2000,62(1):51-65.
    [28]Forzatti P. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General,2001,222(1-2):221-236.
    [29]Luan T, Wang X, Hao Y, et al. Control of NO emission during coal reburning[J]. Applied Energy,2009,86(9):1783-1787.
    [30]Marb N G, Vald S-Solis T, Fuertes A B. Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4:Role of surface NH3 species:SCR mechanism[J]. Journal of Catalysis,2004,226(1):138-155.
    [31]Handy B E, Maciejewski M, Baiker A. Vanadia, vanadia-titania, and vanadia-titania-silica gels:Structural genesis and catalytic behavior in the reduction of nitric oxide with ammonia[J]. Journal of Catalysis,1992,134(1):75-86.
    [32]Kern P, Klimczak M, Heinzelmann T, et al. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts. Part Ⅱ:Fe-zeolite catalysts[J]. Applied Catalysis B:Environmental,2010,95(1-2):48-56.
    [33]Schuler A, Votsmeier M, Kiwic P, et al. NH3-SCR on Fe zeolite catalysts-from model setup to NH3 dosing[J]. Chemical Engineering Journal,2009,154(3):333-340.
    [34]Garcia-Bordej E, Calvillo L, L Zaro M J, et al. Vanadium supported on carbon-coated monoliths for the SCR of NO at low temperature:effect of pore structure[J]. Applied Catalysis B:Environmental,2004,50(4):235-242.
    [35]Daood S S, Javed M T, Gibbs B M, et al. NOx control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR[J]. Fuel,2013,105(0): 283-292.
    [36]Oliva M, Alzueta M U, Millera A, et al. Theoretical study of the influence of mixing in the SNCR process. Comparison with pilot scale data[J]. Chemical Engineering Science,2000,55(22):5321-5332.
    [37]Bae S W, Roh S A, Kim S D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process[J]. Chemosphere,2006,65(1): 170-175.
    [38]Mahmoudi S, Baeyens J, Seville J P K. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass[J]. Biomass and Bioenergy, 2010,34(9):1393-1409.
    [39]Chen J P, Yang R T. Role of WO3 in mixed V2O5-WO3/TiO2catalysts for selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis A:General,1992, 80(1):135-148.
    [40]Svachula J, Ferlazzo N, Forzatti P, et al. Selective reduction of NOx by NH3 over honeycomb DeNOxing catalysts [J]. Industrial and Engineering Chemistry Research, 1993,32(6):1053-1060.
    [41]Tronconi E, Lietti L, Forzatti P, et al. Experimental and theoretical investigation of the dynamics of the SCR-DeNOX reaction[J]. Chemical Engineering Science,1996, 51(11):2965-2970.
    [42]Sjoerd Kijlstra W, Biervliet M, Poels E K, et al. Deactivation by SO2 of MnOx/AL2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental,1998,16(4):327-337.
    [43]Casagrande L, Lietti L, Nova I, et al. SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts:reactivity and redox behavior[J]. Applied Catalysis B: Environmental,1999,22(1):63-77.
    [44]Nova I, Lietti L, Tronconi E, et al. Concentration programmed adsorption-desorption/surface reaction study of the SCR-DeNOx reaction[M]. Studies in Surface Science and Catalysis. Elsevier.2000:623-628.
    [45]Kim H H, Tsubota S, Date M, et al. Catalyst regeneration and activity enhancement of Au/TiO2 by atmospheric pressure nonthermal plasma[J]. Applied Catalysis A: General,2007,329:93-98.
    [46]Broer S, Hammer T. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2Os-WO3/TiO2 catalyst[J]. Applied Catalysis B: Environmental,2000,28(2):101-111.
    [47]Yu Q, Yang H M, Zeng K S, et al. Simultaneous removal of NO and SO2 from dry gas stream using non-thermal plasma[J]. Journal of Environmental Sciences,2007, 19(11):1393-1397.
    [48]Ighigeanu D, Martin D, Zissulescu E, et al. SO2 and NOx removal by electron beam and electrical discharge induced non-thermal plasmas[J]. Vacuum,2005,77(4): 493-500.
    [49]Epa. Sandards of Performance for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17[S].1971.
    [50]EPA. Standards of Performance for Electric Utility Steam Generating Units for Which Constructionis Commenced After September 18[S].1978.
    [51]EPA. Revision of Standards of Performance for Nitrogen Oxide Emissions from New Fossil-Fuel Fired Steam Generating Units[S].1998.
    [52]EPA. Standards of Performance for Electric Utility Steam Generating Units[S]. 2006.
    [53]EU. Directive 88/609/EEC on the limitation of emissions of certain pollutants into the air from large combustion plants[S],1988.
    [54]EU. Proposal for a Council Directive amending Directive 88/609/EEC on the limitation of emissions of certain pollutants into the air from large combustion plants[S]. 1998.
    [55]EU. On the Limitations of Certain pollutants into the Air From Large Combustion Plants, DIRECTIVE 2001/80/EC OF THE EUROPEAN PALIAMENT AND OF ConCiI[S].2001.
    [56]郭金瑞,许华明.世界一次能源消费分析[J].资源与产业,2010,12(1):28-32.
    [57]汪莉丽,王安建,王高尚.全球能源消费碳排放分析[J].能源与产业,2009,11(4):6-15.
    [58]刘孜,易斌,高晓晶等.我国火电行业氮氧化物排放现状及减排建议[J].环境保护,2008,16:7-10.
    [59]朱成章.关于我国电力与一次能源的比例关系[J].电力技术经济,2003,15(5):15-17.
    [60]国家环境保护总局.火电厂大气污染物排放标准(GB13223-1996)[S].1996.
    [61]国家环境保护总局.火电厂大气污染物排放标准(GB13223-2003)[S].2003.
    [62]Aika K-I, Kakegawa T. On-site ammonia synthesis in De-NOx process[J]. Catalysis Today,1991,10(1):73-80.
    [63]Miyoshi N, Mastumoto S I. NOx Storage-reduction catalyst (nsr catalyst) for automotive engines:sulfur poisoning mechanism and improvement of catalyst performance[M]. Studies in Surface Science and Catalysis. Elsevier.1999:245-250.
    [64]Koebel M, Elsener M, Kleemann M. Urea-SCR:a promising technique to reduce NOx emissions from automotive diesel engines[J]. Catalysis Today,2000,59(3-4): 335-345.
    [65]Miwa K, Mohammadi A, Kidoguchi Y. A study on thermal decomposition of fuels and NOx formation in diesel combustion using a total gas sampling technique[J]. International Journal of Engine Research,2001,2(3):189-198.
    [66]Shin B, Cho Y, Han D, et al. Hydrogen effects on NOx emissions and brake thermal efficiency in a diesel engine under low-temperature and heavy-EGR conditions[J]. International Journal of Hydrogen Energy,2011,36(10):6281-6291.
    [67]Hoekman S K, Robbins C. Review of the effects of biodiesel on NOx emissions[J]. Fuel Processing Technology,2012,96(0):237-249.
    [68]Seo C K, Kim H, Choi B, et al. The optimal volume of a combined system of LNT and SCR catalysts[J]. Journal of Industrial and Engineering Chemistry,2011,17(3): 382-385.
    [69]Park S, Choi B, Kim H, et al. Effective additives to improve hydrothermal aging of DME reforming catalyst in terms of hydrogen yield and de-NOx performance of RC+LNT combined system[J]. Applied Catalysis A:General,2012,437-438(0): 173-183.
    [70]Ciardelli C, Nova I, Tronconi E, et al. SCR for diesel engine exhaust aftertreatment: unsteady-state kinetic study and monolith reactor modelling[J]. Chemical Engineering Science,2004,59(22-23):5301-5309.
    [71]Kelly J F, Stanciulescu M, Charland J-P. Evaluation of amines for the selective catalytic reduction (SCR) of NOx from diesel engine exhaust[J]. Fuel,2006,85(12-13): 1772-1780.
    [72]Saravanan N, Nagarajan G. An insight on hydrogen fuel injection techniques with SCR system for NOx reduction in a hydrogen-diesel dual fuel engine[J]. International Journal of Hydrogen Energy,2009,34(21):9019-9032.
    [73]董尧清,吴乐欣,刘永祥等.中重型车用柴油机实施欧Ⅳ排放的技术路径[J].汽车技术,2007,3:1-4.
    [74]L Pez J M, Jim Nez F, Aparicio F, et al. On-road emissions from urban buses with SCR+Urea and EGR+DPF systems using diesel and biodiesel[J]. Transportation Research Part D:Transport and Environment,2009,14(1):1-5.
    [75]Beatrice C, Iorio S D, Guido C, et al. Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies [J]. Experimental Thermal and Fluid Science,2012,39:45-53.
    [76]Gill S S, Chatha G S, Tsolakis A. Analysis of reformed EGR on the performance of a diesel particulate filter [J]. International Journal of Hydrogen Energy,2011,36(16): 10089-10099.
    [77]郭鹏江.柴油机EGR和微粒过滤器的试验研究[J].现代车用动力,2008,130(2):26-30.
    [78]李锦.我国重型车满足欧IV/V标准的技术路线选择[J].城市车辆,2006,5:44-6.
    [79]李鹏.满足国V排放的重型柴油机排气后处理技术[J].车用发动机,2010,189(4):1-6.
    [80]Company A. Adblue distributors in Europe[J]. Focus on Catalysts,2006,2006(2): 3.
    [81]Aus Der Wiesche S. Numerical heat transfer and thermal engineering of Adblue (SCR) tanks for combustion engine emission reduction[J]. Applied Thermal Engineering,2007,27(11-12):1790-1798.
    [82]Correa S M. A direct comparison of pair-exchange and IEM models in premixed combustion[J]. Combustion and Flame,1995,103(3):194-206.
    [83]Adolfsson-Erici M, Akerman G, Jahnke A, et al. A flow-through passive dosing system for continuously supplying aqueous solutions of hydrophobic chemicals to bioconcentration and aquatic toxicity tests[J]. Chemosphere,2012,86(6):593-599.
    [84]贺泓.柴油车尾气排放污染控制技术综述[J].环境科学,2007,28(6):1169-1177.
    [85]胡静.重型柴油机尿素SCR后处理系统的控制策略研究[J].内燃机工程,2011,32(2):1-5.
    [86]广西玉柴公司.玉柴发布中国首台欧Ⅵ车用柴油机[J].建筑机械,2011,8:65.
    [87]ZHAO Y, HU J, HUA L, et al. Ammonia storage and slip in a urea selective catalytic reduction catalyst under steady and transient conditions[J]. Industrial and Engineering Chemistry Research,2011,50(21):11863-11871.
    [88]赵彦光.混合器对车用柴油机尿素SCR系统性能影响的试验研究[J].汽车工程,2011,33(4):303-309.
    [89]资新运,宁智,张春润等.柴油车微粒捕捉器再生控制策略[J].内燃机学报,2002,20(2):106-110.
    [90]吕林,王勇波.车用发动机配气机构运动学和动力学分析[J].武汉理工大学学报(交通科学与工程版),2006,30(6):1011-1014.
    [91]Alemany L J, Berti F, Busca G, et al. Characterization and composition of commercial V2O5 WO3 TiO2 SCR catalysts [J]. Applied Catalysis B:Environmental, 1996,10(4):299-311.
    [92]Lietti L, Forzatti P, Bregani F. Steady-state and transient reactivity study of TiO2-supported V2O5-WO3 De-NOx catalysts:Relevance of the vanadium-tungsten interaction on the catalytic activity[J]. Industrial and Engineering Chemistry Research, 1996,35(11):3884-3892.
    [93]Anunziata O A, Beltramone A R, Juric Z, et al. Fe-containing ZSM-11 zeolites as active catalyst for SCR of NOx:Part Ⅰ. Synthesis, characterization by XRD, BET and FTIR and catalytic properties[J]. Applied Catalysis A:General,2004,264(1):93-101.
    [94]Saidina Amin N A, Chong C M. SCR of NO with C3H6 in the presence of excess O2 over Cu/Ag/CeO2-ZrO2 catalyst[J]. Chemical Engineering Journal,2005,113(1): 13-25.
    [95]Wang Y, Zhu J, Ma R. Macrodynamic study and catalytic reduction of NO by ammonia under mild conditions over Pt-La-Ce-O/Al2O3 catalysts[J]. Energy Conversion and Management,2007,48(7):1936-1942.
    [96]Grossale A, Nova I, Tronconi E, et al. The chemistry of the NO/NO2-NH3 "fast" SCR reaction over Fe-ZSM5 investigated by transient reaction analysis[J]. Journal of Catalysis,2008,256(2):312-322.
    [97]Sitshebo S, Tsolakis A, Theinnoi K, et al. Improving the low temperature NOx reduction activity over a Ag-Al2O3 catalyst[J]. Chemical Engineering Journal,2010, 158(3):402-410.
    [98]Theinnoi K, Tsolakis A, Sitshebo S, et al. Fuels combustion effects on a passive mode silver/alumina HC-SCR catalyst activity in reducing NOx[J]. Chemical Engineering Journal,2010,158(3):468-473.
    [99]S Nchez B S, Querini C A, Mir E E. Potassium effect on the thermal stability and reactivity of NOx species adsorbed on Pt,Rh/La2O3 catalysts[J]. Applied Catalysis A: General,2011,392(1-2):158-165.
    [100]Breen J P, Burch R, Hill C J. NOx storage during H2 assisted selective catalytic reduction of NOx reaction over a Ag/Al2O3 catalyst[J]. Catalysis Today,2009,145(1-2): 34-37.
    [101]Ouimette P, Seers P. NOx emission characteristics of partially premixed laminar flames of H2/CO/CO2 mixtures[J]. International Journal of Hydrogen Energy,2009, 34(23):9603-9610.
    [102]Zamaro J M, Ulla M A, Mir E E. The effect of different slurry compositions and solvents upon the properties of ZSM5-washcoated cordierite honeycombs for the SCR of NOx with methane[J]. Catalysis Today,2005,107-108(0):86-93.
    [103]Lv G, Bin F, Song C, et al. Promoting effect of zirconium doping on Mn/ZSM-5 for the selective catalytic reduction of NO with NH3[J]. Fuel,2013,107(0):217-224.
    [104]De Lucas A, Valverde J L, Dorado F, et al. Influence of the ion exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NOx over mordenite and ZSM-5[J]. Journal of Molecular Catalysis A:Chemical,2005,225(1):47-58.
    [105]Cheng J, Wang X, Ma C, et al. Novel Co-Mg-Al-Ti-O catalyst derived from hydrotalcite-like compound for NO storage/decomposition[J]. Journal of Environmental Sciences,2012,24(3):488-493.
    [106]Azambre B, Zenboury L, Da Costa P, et al. Palladium catalysts supported on sulfated ceria-zirconia for the selective catalytic reduction of NOx by methane: Catalytic performances and nature of active Pd species[J]. Catalysis Today,2011,176(1): 242-249.
    [107]Xie J, Fang D, He F, et al. Performance and mechanism about MnOx species included in MnO/TiO2 catalysts for SCR at low temperature[J]. Catalysis Communications,2012,28(0):77-81.
    [108]Seo C K, Choi B, Kim H, et al. Effect of ZrO2 addition on de-NOx performance of Cu-ZSM-5 for SCR catalyst[J]. Chemical Engineering Journal,2012,191(0):331-340.
    [109]Zhang C, He H, Shuai S, et al. Catalytic performance of Ag/Al2O3-C2H5OH-Cu/Al2O3 system for the removal of NOx from diesel engine exhaust[J]. Environmental Pollution,2007,147(2):415-421.
    [110]Kim Y J, Kwon H J, Heo I, et al. Mn-Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust[J]. Applied Catalysis B: Environmental,2012,126:9-21.
    [111]Aspromonte S G, Mir E E, Boix A V. Effect of Ag-Co interactions in the mordenite on the NOx SCR with butane and toluene[J]. Catalysis Communications, 2012,28(0):105-110.
    [112]Kobayashi M, Kuma R, Morita A. Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2-SiO2-MoO3[J]. Catalysis Letters,2006, 112(1-2):37-44.
    [113]Nova I, Lietti L, Casagrande L, et al. Characterization and reactivity of TiO2-supported MoO3 De-NOx SCR catalysts[J]. Applied Catalysis B:Environmental, 1998,17(3):245-258.
    [114]Lietti L, Nova I, Ramis G, et al. Characterization and Reactivity of V2O5-MoO3/TiO2 De-NOx SCR Catalysts[J]. Journal of Catalysis,1999,187(2): 419-435.
    [115]Company H T. Haldor Topsoe in SCR regeneration deal[J]. Focus on Catalysts, 2011,2011(1):3.
    [116]王志轩,赵毅,潘荔等.中国燃煤电厂NOx排放估算方法及排放量研究[J].中国电力,2009,42(4):59-62.
    [117]杨振中.2004 Mack MD11柴油机燃料加氢后NOx与微粒排放特性[J].农业工程学报,2012,28(12):62-67.
    [118]Garc A-Bordej E, Pinilla J L, L Zaro M J, et al. NH3-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths:Effect of H2O and SO2 traces in the gas feed[J]. Applied Catalysis B:Environmental,2006,66(3-4): 281-287.
    [119]Rao K N, Ha H P. SO2 promoted alkali metal doped Ag/Al2O3 catalysts for CH4-SCR of NOx[J]. Applied Catalysis A:General,2012,433-434(0):162-169.
    [120]Salem I, Courtois X, Corbos E C, et al. NO conversion in presence of O2, H2O and SO2:Improvement of a Pt/A12O3 catalyst by Zr and Sn, and influence of the reducer C3H6 or C3H8[J]. Catalysis Communications,2008,9(5):664-669.
    [121]Huang Z, Zhu Z, Liu Z. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures [J]. Applied Catalysis B: Environmental,2002,39(4):361-368.
    [122]Lindholm A, Currier N W, Dawody J, et al. The influence of the preparation procedure on the storage and regeneration behavior of Pt and Ba based NOx storage and reduction catalysts[J]. Applied Catalysis B:Environmental,2009,88(1-2):240-248.
    [123]Xian H, Li F-L, Li X-G, et al. Influence of preparation conditions to structure property, NOX and SO2 sorption behavior of the BaFeO3-x perovskite catalyst[J]. Fuel Processing Technology,2011,92(9):1718-1724.
    [124]Campanati M, Fornasari G, Vaccari A. Fundamentals in the preparation of heterogeneous catalysts[J]. Catalysis Today,2003,77(4):299-314.
    [125]高岩,栾涛,徐宏明等.焙烧温度对SCR催化剂性能影响[J].中国电机工程学报,2013,32:143-150
    [126]Lietti L, Alemany J L, Forzatti P, et al. Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia[J]. Catalysis Today,1996, 29(1-4):143-148.
    [127]Tronconi E, Nova I, Ciardelli C, et al. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. Journal of Catalysis,2007,245(1):1-10.
    [128]Chen J P, Yang R T. Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3[J]. Journal of Catalysis,1990,125(2):411-420.
    [129]Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and Physicochemical Characterization of V2O5-WO3/HO2 De-NOx Catalysts[J]. Journal of Catalysis,1995, 155(1):117-130.
    [130]Zhu C-B, Jin B-S, Li F, et al. Study on DeNO* performance of honeycomb V2O5-WO3/TiO2 catalysts[J]. Proceedings of the CSEE,2007,27(29):45-50.
    [131]Hilbrig F, Schmelz H, Kn Zinger H. Acidity of WO/TiO2 Catalysts for Selective Catalytic Reduction (SCR)[M] Studies in Surface Science and Catalysis. Elsevier.1993: 1351-1362.
    [132]Gao Y, Luan T, Lii T, et al. Performance of V2O5-WO3-MoO3/TiO2 Catalyst for Selective Catalytic Reduction of NOx by NH3[J]. Chinese Journal of Chemical Engineering,2013,21(1):1-7.
    [133]Gao Y, Luan T, Lu T, et al. The Mo loading effect on SCR deNOx performance for V-W-Mo/TiO2 catalyst[J]. Applied Mechanics and Materials,2012,229-231: 126-129.
    [134]Gao Y, Luan T, Lii T, et al. The mo loading effect on thermo stability and SO2 oxidation of SCR catalyst[J]. Advanced Materials Research,2012,573-574:58-62.
    [135]高岩,栾涛,程凯等.选择性催化还原蜂窝状催化剂工业试验研究[J].中国电机工程学报,2012,31(35):21-28.
    [136]Yan X G, Liu Z Y, Li Y M, et al. NH3 regeneration of SO2-captured V2O5/AC catalyst-sorbent for simultaneous SO2 and NO removal[J]. Journal of Fuel Chemistry and Technology,2007,35(3):344-348.
    [137]Liu F, He H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:Reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catalysis Today,2010,153(3-4):70-76.
    [138]Phil H H, Reddy M P, Kumar P A, et al. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Applied Catalysis B: Environmental,2008,78(3-4):301-308.
    [139]Kobayashi M, Hagi M. V205-WO3/TiO2-SiO2-SO42- catalysts:Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2[J]. Applied Catalysis B:Environmental,2006,63(1-2): 104-113.
    [140]Sj Vall H, Blint R J, Olsson L. Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5[J]. Applied Catalysis B:Environmental,2009,92(1-2):138-153.
    [141]Metkar P S, Harold M P, Balakotaiah V. Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe-and Cu-zeolite monolithic catalysts[J]. Chemical Engineering Science,2013,87(0):51-66.
    [142]Chughtai A R, Atteya M M O, Kim J, et al. Adsorption and adsorbate interaction at soot particle surfaces[J]. Carbon,1998,36(11):1573-1589.
    [143]Malpartida I, Marie O, Bazin P, et al. The NO/NO,-ratio effect on the NH3-SCR efficiency of a commercial automotive Fe-zeolite catalyst studied by operando IR-MS[J]. Applied Catalysis B:Environmental,2012,113-114(0):52-60.
    [144]HALBGEWACHS M J, DIAU E W G, MEBEL A M, et al. Thermal reduction of NO by NH3:Kinetic modeling of the NH2+NO product branching ratio[J]. Symposium (International) on Combustion,1996,26(2):2109-2115.
    [145]Hou Y, Huang Z, Guo S. Effect of SO2 on V2O5/ACF catalysts for NO reduction with NH3 at low temperature[J]. Catalysis Communications,2009,10(11):1538-1541.
    [146]Liu Q, Liu Z, Wu W. Effect of V2O5 additive on simultaneous SO2 and NO removal from flue gas over a monolithic cordierite-based CuO/Al2O3 catalyst[J]. Catalysis Today,2009,147, Supplement:285-S9.
    [147]Centeno M A, Carrizosa I, Odriozola J A. In situ DRIFTS study of the SCR reaction of NO with NH3 in the presence of O2 over lanthanide doped V2O5/A12O3 catalysts[J]. Applied Catalysis B:Environmental,1998,19(1):67-73.
    [148]Kondratenko E V, Kondratenko V A, Richter M, et al. Influence of O2 and H2 on NO reduction by NH3 over Ag/Al2O3:A transient isotopic approach[J]. Journal of Catalysis,2006,239(1):23-33.
    [149]Kondratenko V A, Bentrup U, Richter M, et al. Mechanistic aspects of N2O and N2 formation in NO reduction by NH3 over Ag/Al2O3:The effect of O2 and H2[J]. Applied Catalysis B:Environmental,2008,84(3-4):497-504.
    [150]Delahay G, Coq B, Kieger S, et al. The origin of N2O formation in the selective catalytic reduction of NOx by NH3 in O2 rich atmosphere on Cu-faujasite catalysts[J]. Catalysis Today,1999,54(4):431-438.
    [151]Lyon R K, Benn D. Kinetics of the NO-NH3-O2 reaction[J]. Symposium (International) on Combustion,1979,17(1):601-610.
    [152]Huang Z, Liu Z, Zhang X, et al. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature[J]. Applied Catalysis B: Environmental,2006,63(3-4):260-265.
    [153]Hu P, Huang Z, Hua W, et al. Effect of H2O on catalytic performance of manganese oxides in NO reduction by NH3[J]. Applied Catalysis A:General,2012, 437-438(0):139-148.
    [154]Lei Z, Han B, Yang K, et al. Influence of H2O on the low-temperature NH3-SCR of NO over V2O5/AC catalyst:An experimental and modeling study[J]. Chemical Engineering Journal,2013,215-216(0):651-657.
    [155]Lu P, Li C, Zeng G, et al. Research on soot of black smoke from ceramic furnace flue gas:Characterization of soot[J]. Journal of Hazardous Materials,2012,199-200(0): 272-281.
    [156]Wu B, Xiao P, Liu X. Performance and kinetic study on selective catalytic reduction of NOx with NH3 of MnOx-WO3/TiO2 catalyst[J]. Huagong Xuebao/CIESC Journal,2011,62(4):940-946.
    [157]Carucci J R H, Kurman A, Karhu H, et al. Kinetics of the biofuels-assisted SCR of NOx over Ag/alumina-coated microchannels[J]. Chemical Engineering Journal,2009, 154(1-3):34-44.
    [158]Abu-Jrai A, Tsolakis A. The effect of H and CO on the selective catalytic reduction of NO under real diesel engine exhaust conditions over Pt/AlO[J]. International Journal of Hydrogen Energy,2007,32(12):2073-2080.
    [159]Artioli N, Matarrese R, Castoldi L, et al. Effect of soot on the storage-reduction performances of PtBa/Al2O3 LNT catalyst[J]. Catalysis Today,2011,169(1):36-44.
    [160]Chapman D M. Behavior of titania-supported vanadia and tungsta SCR catalysts at high temperatures in reactant streams:Tungsten and vanadium oxide and hydroxide vapor pressure reduction by surficial stabilization[J]. Applied Catalysis A:General, 2011,392(1-2):143-150.
    [161]Gao Z, Schreiber W. A phenomenologically based computer model to predict soot and NOx emission in a direct injection diesel engine[J]. International Journal of Engine Research,2001,2(3):177-188.
    [162]Gill S S, Tsolakis A, Herreros J M, et al. Diesel emissions improvements through the use of biodiesel or oxygenated blending components[J]. Fuel,2012,95(0):578-586.
    [163]Matarrese R, Castoldi L, Lietti L, et al. Soot combustion:Reactivity of alkaline and alkaline earth metal oxides in full contact with soot[J]. Catalysis Today,2008, 136(1-2):11-17.
    [164]Nova I, Ciardelli C, Tronconi E, et al. NH3-NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction[J]. Catalysis Today, 2006,114(1):3-12.
    [165]Iwasaki M, Shinjoh H. A comparative study of "standard", "fast" and "NO2" SCR reactions over Fe/zeolite catalyst[J]. Applied Catalysis A:General,2010,390(1-2): 71-77.
    [166]Ruggeri M P, Grossale A, Nova I, et al. FTIR in situ mechanistic study of the NH3NO/NO2 "Fast SCR" reaction over a commercial Fe-ZSM-5 catalyst[J]. Catalysis Today,2012,184(1):107-114.
    [167]Grossale A, Nova I, Tronconi E. Ammonia blocking of the "Fast SCR" reactivity over a commercial Fe-zeolite catalyst for Diesel exhaust aftertreatment[J]. Journal of Catalysis,2009,265(2):141-147.
    [168]Beck J, M Ller R, Brandenstein J, et al. The behaviour of phosphorus in flue gases from coal and secondary fuel co-combustion[J]. Fuel,2005,84(14-15):1911-1919.
    [169]Beck J, Unterberger S. The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels[J]. Fuel,2006,85(10-11):1541-1549.
    [170]Skarlis S A, Berthout D, Nicolle A, et al. Modeling NH3 Storage Over Fe-and Cu-Zeolite based, Urea-SCR Catalysts for Mobile Diesel Engines[J]. Procedia Social and Behavioral Sciences,2012,48(0):1672-1682.
    [171]Colombo M, Nova I, Tronconi E. Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-Zeolite catalyst for Diesel exhausts after treatment[J]. Catalysis Today,2012,197(1):243-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700