用户名: 密码: 验证码:
基于“3S”技术的新疆融雪洪水预测预警及决策支持研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国(尤其是新疆)是一个积雪广布、雪灾和春洪多发的国家(地区)。在全球气候变化的大背景下,新疆洪水灾害尤其是冰、雪融水洪水频次存在增大的趋势,而且洪灾损失巨大。可以讲,任何灾害的预防都应该建立在预警基础上。只有弄清融雪机制、水量及过程,准确的监测、预测和预警,制定科学有效的防范措施,才能避免灾害或将灾害损失降低到最低限度。而且,遥感(RS)、地理信息系统(GIS)以及全球定位系统(GPS)即“3S”技术和计算机技术以及大气数值预报模式,为积雪信息的大面积动态监测、分布式融雪径流模型和融雪洪水预警预报决策支持系统的建立提供了有力的基础和保障。因此,对积雪和融雪信息实时提取、模型分析和计算,及时、准确地向政府部门提供融雪洪水预警预报,对于防灾减灾具有重要意义,同时也可以产生巨大的社会、经济和生态效益。
     本研究结合新疆春季融雪及洪水过程的特点,基于“3S”技术以及较高分辨率DEM的流域下垫面和积雪信息提取研究,利用大气模式WRF V2.2,采用国家气象局T213L13预报场数据,对典型研究区(天山北坡军塘湖流域)2008年融雪期进行24h短期气象场预报,以及借助于GPS进行同步野外现场的气象、水文和积雪观测获得了第一手数据,为融雪径流模型的分布式输入奠定了基础。利用WRF预报出的气象场和积雪、融雪数据驱动分布式新疆融雪径流模型,对融雪洪水过程进行短期预报。并利用新疆融雪洪水预警模式计算评价洪水的灾害级别和预警级别。通过新疆融雪洪水预警决策支持系统(DSS)为决策者提供融雪洪水预警,辅助决策者生成决策方案,为正确的防洪减灾决策提供有利的技术和信息支持。
     本研究基于“3S”技术着重对新疆融雪洪水预测预警以及决策支持进行研究,提出了相应的思路和方法,研究的内容和结论如下:
     (1)基于GIS和计算机技术,在融雪洪水预警DSS中开发研制了GIS数据的空间分析模块包括流域信息提取子模块,使得分布式流域信息提取,如DEM、坡度、坡向、流向、水系等数字地图,不必依赖于其它GIS软件即可完成,而且,时间和空间分辨率可根据需要灵活调整,在新疆典型研究区的应用中精度和效果比较理想。
     (2)基于易于获取的高时间分辨率的MODIS遥感影像和GIS技术对研究区积雪和融雪信息进行了定量提取,并借助于GPS进行了同步野外现场观测,予以分析和检验。结果表明,经“雪盖系数(SF)”提取的雪盖信息较经“归一化雪盖指数(NDSI)”提取的雪盖信息精度要高,SF提取雪盖面积的平均精度为相对误差8%以内。在积雪雪深进行分级的基础上建立了雪深与MODIS的CH1和CH3的双线性回归方程,即新疆稳定积雪期积雪深度的反演模型,经检验,平均绝对误差为1.47cm,相对误差的平均值为10.96%。但在融雪期中该模型不适宜使用。
     (3)应用覃志豪等人的劈窗算法,由MODIS数据的解译和计算得到了典型研究区融雪期内的地表温度(LST)结果,经过检验,误差在0.5~3.0℃之间,经过局部修正基本可以满足模型输入的需求。
     (4)利用大气模式WRF V2.2,采用国家气象局T213L31预报场作为初始场及侧边界条件,选择适合的物理方案,实现了研究区2008年融雪期的24h数值天气预报。预报的空间分辨率为1km,时间步长为1h。预报的结果与实测基本相符,满足精度要求。
     (5)在“3S”技术支持下,自主设计和建立了基于能量平衡和水量平衡的分布式融雪径流模型。设计思路上以RS(ETM、MODIS)和现场观测数据为主要数据来源,考虑模型参数的时空分布差异,对其进行空间分布式处理。模型应用时,在新疆典型研究区WRF预报出的气象场数据(气温、相对湿度、风速、辐射)和现场积雪、融雪观测数据的基础上,驱动分布式融雪径流模型,做出融雪洪水过程的短期预报。应用和验证结果表明,预报的径流过程与实际观测值基本吻合,可为今后水文预报及无资料或少资料区水资源管理以及气候变化研究提供重要参考。
     (6)结合新疆当地实际建立了适用于新疆融雪洪水的预警模式和预警标准。在融雪洪水预警指标研究中,既考虑融雪洪水发生的大小量级和时空分布,还结合洪水可能发生的地区的经济社会状况,选择能够反映融雪洪水灾害的主要因子,即致灾因子、承灾因子和防洪设施贡献因子。并使用经过量化处理后的预警指数来综合反映区域融雪洪水的风险大小,以此作为划分春季融雪洪水预警等级的依据。可根据预测的洪峰和洪量,按照灾害的严重性和紧急程度,提前进行融雪洪灾预警。
     (7)针对新疆融雪洪水的特点和预警决策需求,提出了融雪洪水预警DSS的结构,并且在B/S和J2EE的结构下提出了该DSS的总体框架和软件实现方法,包括DSS的总体框架设计、基于B/S和J2EE结构的DSS的软件开发环境以及程序设计方法的选择等。应用实例表明,该DSS为模型参数的自动获取、模型之间的数据交换、模型结果的可视化表达等提供了有效的工具。实现了J2EE技术在融雪洪水预警DSS中的应用,设计效果良好。
     本文最后,作者对本文的研究进行了总结,并提出进一步研究的一些关键问题及其研究的发展方向。
China,especially Xinjiang, is a country or region with wide snow distribution, snow disaster and spring flood frequently-occurring. Under the background of global climate change there is a tendency to increase the flood disaster frequency, particular glacier and snow melt floods, whose loss is very large. The prevention of each disaster should be based on an early-warning. Only to ravel the snowmelt mechanism, runoff and processes, to monitor, predict snowmelt flood and early-warning, to institute some effective measures before the disaster could be avoided or reduced in the lowest. Remote Sensing (RS), Geographical Information System (GIS), Global Positioning System (GPS), Compute technology and atmospheric numeric forecasting mode provide a powerful foundation and guarantee for monitoring the snow information in larger area and setting up the distributed snowmelt runoff model and the DSS for snowmelt flood early-warning. Therefore it has an important significance and a great deal of social, economic and ecological benefits for disaster prevention and reduction to extract the information of snow and melt, analyze and calculate with models, provide the flood early-warning to government in real time and precision.
     This research made the extraction of the information of underlying surface and snow in the study area (Juntanghu watershed in the northern slope of Tianshan Mountain) based on‘3S’technology and higher resolution DEM according to the features of the spring snowmelt flood in Xinjiang. This study using the atmospheric mode WRF2.2 and Chinese national bureau T213L13 data 24h meteorological field was forecasted from Feb. to March 2008 in the study area. Then the distributed Xinjiang snowmelt runoff model was drived by the forecasted meteorological field from WRF and snow melt data to forecast snowmelt flood processes. And the disaster and early-warning grade of floods were calculated and assessed by the early-warning model of snowmelt flood. With the DSS for snowmelt flood early-warning in Xinjiang the early-warning could be provided for decision maker to assist decision making, to provide the technical and informational support for disaster prevention and reduction.
     This study paid attention to the modeling snowmelt flood and decision making for early-warning and put forward correspondent ideas and approaches. The study contents and conclusions are following:
     (1) Based on‘3S’and computer technology this study developed a GIS spatial analysis module including sub-module of watershed information extraction in the DSS for snowmelt flood early-warning. It finished the task extracting watershed information, such as DEM, slope, aspect of slope, flow direction, river network etc., is not depend on the other GIS software, and the spatial and temporal resolution may be adjusted by need as far as possible. The results are good.
     (2) It was analyzed and verified that the snow and melt information extracted from the MODIS image data with higher temporal resolution and by GIS technology, meanwhile, by means of GPS to investigate it in local field. The results indicated: the precision of snow cover extracted by snow fractional (SF) is more than that of normalized difference snow index (NDSI). The average precision of snow cover by SF is below 8% of relative error. On the foundation of grading snow depth the double linear regression model which inversed the snow depth during stable snow period was set up. Through a test the average absolute error is 1.47cm, the mean relative error is below 10.96%. But this model is unsuited for snow melting period.
     (3) According to the Split Window Algorithms of Qin Zhihao and so on the land surface temperature (LST) during snow melting period in study area was obtained by the interpretation and calculation from MODIS data. By test the error is from 0.5 to 3.0℃, and if the algorithm is modified locally the results can be met the need of model input.
     (4) The limited-region 24-hour Numeric Weather Forecasting System is established by using the new generation atmospheric model——Weather Research and Forecasting Model (WRF) V2.2 with the initial fields and lateral boundaries provided by the T213 L31 from Chinese National Meteorological Bureau. The predicted spatial resolution is 1km, the temporal is 1h. The predicted results accorded with the observed on the whole, have got a good effect.
     (5) The self-design distributed snowmelt runoff model based on energy balance, water balance and‘3S’technology was established in this study. It is designed that taking RS(MODIS,ETM)data and the observed data on spot as the main data sources, model parameters with spatial and temporal difference should be processed in spatial distributed form. In application the distributed Xinjiang snowmelt runoff model was drived by the forecasted meteorological field from WRF and snow melt data to forecast snowmelt flood processes. The results indicate: the predicted runoff process fitted close to the observed.
     (6) This study established an early-earning mode and standard which is adequate for the local situation. In the study of early-warning index the main factors which can affect snowmelt flood disaster were selected, such as causing disaster factor, bearing disaster factor and the contributive factor of facilities for flood control, for not only the magnitude, grade and spatial and temporal distribution of snowmelt flood should be considered, but also the local economic and social situation should be integrated. The quantitative early-warning index which reflects comprehensively the risk size of local flood regards as the basis to grade the early-warning of spring snowmelt flood in Xinjiang.
     (7) To meet the need of early-earning decision this study designed the structure of Decision Support System (DSS) for snowmelt flood early warning in Xinjiang. Based on the structure of B/S and J2EE, the general frame and the methods of software realization in the DSS were put forward, including design of general frame, the selection of development environment and programming way. The applied example shows: this DSS is an effective tool for automatic obtaining of model parameters, data transition between models, visualization of model results. And the application of J2EE technology in the DSS was realized. The effect of design is good.
     At the end of the dissertation, the author draws a conclusion and puts forward some key problems and developing trends for future works.
引文
[1]施雅风主编,中国冰川与环境M],科学出版社,(2000)。
    [2]李培基,1951-1997年中国西北地区积雪水资源的变化[J],中国科学(D辑),29(增刊1):(1999),63-69.
    [3]西北内陆河区水早灾害编委会,西北内陆河区水早灾害[M],郑州:黄河水利出版社,1999.
    [4]吴素芬,张国威,新疆河流洪水与洪灾的变化趋势[J],冰川冻土,2003,25(02):199-203.
    [5]李燕.近40a来新疆河流洪水变化[J],冰川冻土,2003,25(03):342-346.
    [6]裴欢,刘志辉,房世峰,姜红.基于遥感与地理信息系统的额敏河流域积雪变化分析[J].遥感信息,2006,3:57-60.
    [7] Peuker T K, Douglas D H; Detection of surface-specific points by local parallel processing of discrete terrain ele-vation data [M];Computer Graphics and Image Processing; 1975.
    [8] O’Callaghan, J. and Mark, D., 1984, The extraction of drainage networks from digital elevation data, Computer Vision Graphics Image Processes, 28, 323-344.
    [9] Band L E; Topographic partition of watersheds with digital elevation models [M];Water Resources Research; 1986.
    [10]JENSON S K, DOMINGUEJO; Extraction Topographic Structure from Digital Elevation Data for Geographic Information System Analysis[M]; Photogrammetric Engineering and Remote Sensing; 1988.
    [11]Skidmore A K; Terrain position as mapped from a gridded digital elevation model [M];International Journal of Geographical Information Systems; 1990.
    [12]Martz L, Garbrecht W J; Numerical definition of drainage network and subcatchment areas from digital elevation models [M]; Computers & Geosciences; 1992.
    [13]Jurgen Garbrecht and Lawrence W. Martz; Automated channel ordering and node indexing for raster channel networks [M]; Computers and Geosciences; 1997.
    [14]Garbrecht J & Campbell J.TOPAZ an Automated Digital Landscape Analysis Tool for Topographic Evaluation Drainage Identification Watershed Segmentation and Subcatchment Parameterization Oklahoma TOPAZ User Manual USDA 1997.
    [15]陈爱军.应用AMSU资料监测中国地区积雪的初步研究.南京气象学院硕士学位论文,2003。
    [16]曹云刚,刘闯.从AVHRR到MODIS的雪盖制图研究进展[J].地理与地理信息科学,2005, 21(5): 15-19。
    [17]陈贤章,李新.积雪定量化遥感研究进展[J].遥感技术与应用,1996, 11(4): 47-51。
    [18]冯学智.卫星雪盖制图中的一些技术问题[J].遥感技术与应用,1991,6(4):4-10.
    [19]Njoku, E. G. Passive Microwave Remote Sensing of the Earth from Space-A Review[J]. Proceedings of the IEEE, 1982, 70(7): 728-750.
    [20]刘玉洁,杨忠东,等. MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001.
    [21]Thomas J Schmugge,et el.. Remote sensing in hydrology[J]. Advances in Water Resources 25 (2002),1367–1385.
    [22]Barnes,S.L. Mesoscale objective analysis using weighted time series observations[M]. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK, 1973,60
    [23]Ramsay B H. The interactive multi-sensor snow and ice mapping system[J]. Hydrological Processes,1998 ,12 :1537-1546.
    [24]Earl W.M. Grey G.R. Conway H. Abrahamson J. Remote sensing of snow accumulation[J]. Cold Regions Science and Technology, Volume11,Issue 2, September 1985,199-202.
    [25]Robert E. Davis, Jeff Dozier. Stereological characterization of dry Alpine snow for microwave remote sensing[J]. Advances in Space Research, Volume 9, Issue 1, 1989, 245-251.
    [26]Jon Holmgren, Matthew Sturm, Norbert E. Yankielun, Gary Koh. Extensive measurements of snow depth using FM-CW radar[J]. Cold Regions Science and Technology, Volume 27, Issue 1, February 1998,17-30.
    [27]Tedesco M. Pulliainen J. Takala M. Hallikainen M. Pampaloni P. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data[J]. Remote Sensing of Environment, Volume 90, Issue 1, 15 March 2004,76-85.
    [28]Grippa M. Mognard N.Le Toan T.Josberger E.G. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm[J]. Remote Sensing of Environment, Volume 93, Issues 1-2, 30 October 2004,30-41.
    [29]Deems,J., Painter,T.H. Lidar measurement of snow depth: accuracy and error sources[M]. International Snow Science Workshop (ISSW) Proceedings, Telluride, USA, 2006,300–338.
    [30]Peter Romanov, Dan Tarpley.Enhanced algorithm for estimating snow depth from geostationary satellites. Remote Sensing of Environment, Volume 108, Issue 1, 2007, 97-110.
    [31]Schaffhauser A. Adams M. Fromm R. J?rg P. Luzi G. Noferini L. Sailer R. Remote sensing based retrieval of snow cover properties.Cold Regions Science and Technology, Volume 54, Issue 3, November 2008, 164-175.
    [32]闾国年,钱亚东,陈钟明.流域地形自动分割研究[J].遥感学报, 1998,(04)。
    [33]周贵云,刘瑜,邬伦.基于数字高程模型的水系提取算法[J].地理学与国土研究, 2000,(04)。
    [34]陈永良,刘大有,虞强源.从DEM中自动提取自然水系[J].中国图象图形学报, 2002,(01)。
    [35]吴险峰,刘昌明,王中根.栅格DEM的水平分辨率对流域特征的影响分析[J].自然资源学报,2003年,18(2)。
    [36]谢顺平,都金康,罗维佳,邓敏.基于DEM的复杂地形流域特征提取[J].地理研究, 2006(1)。
    [37]刘学军,卢华兴,仁政,任志峰.论DEM地形分析中的尺度问题[J].地理研究, 2007,(03)
    [38]汤国安,赵牡丹,李天文,刘咏梅,谢元礼. DEM提取黄土高原地面坡度的不确定性[J].地理学报, 2003,(06)。
    [39]吴杨;张佳华;徐海明;何金海.卫星反演积雪信息的研究进展[J].气象, 2007年06期.
    [40]陈贤章;从卫星遥感资料中提取雪盖信息的探讨[J];遥感学报; 1988年02期:30-37.
    [41]H·ROTT,陈贤章.积雪遥感[J].遥感技术与应用, 1989年02期: 41-46.
    [42]刘玉洁,袁秀卿,张红.用气象卫星资料监测积雪[J].遥感学报, 1992年01期.
    [43]陈曦川.应用遥感技术进行无资料区积雪动态监测方法的研究[J].遥感信息, 1994年03期: 19-21.
    [44]马虹,仇家琪,徐俊荣.利用GIS复合AVHRR数据进行积雪信息提取方法的研究[J].冰川冻土; 1996年第1期:341-348.
    [45]周咏梅,王江山.青海省积雪的遥感监测方法[J].《气象》1996年12期:24-26.
    [46]柏延臣,冯学智.积雪遥感动态研究的现状及展望[J].遥感技术与应用, 1997年02期:60-66.
    [47]马虹,姜小光,余素芬,徐俊荣.利用NOAA-AVHRR数据进行积雪监测与制图的方法研究[J].干旱区地理; 1998年03期:73-80.
    [48]郭铌,倾继祖.气象卫星资料对积雪的遥感监测与分析[J].遥感技术与应用, 2000年04期: 29-32.
    [49]傅国斌,刘昌明.遥感技术在水文学中的应用与研究进展[J].水科学进展; 2001年04期; 118-130.
    [50]裴欢,刘志辉.基于MODIS数据的北疆积雪信息提取及其应用研究[D].新疆大学, 2006年。
    [51]黄镇,崔彩霞.基于EOS/ MODIS的新疆积雪监测[J].冰川冻土,2006年,28(3):343-347.
    [52]刘艳;张璞;李花.基于MODIS数据的天山北坡经济带雪深反演研究[J].测绘科学,2006年03期,4+16-18.
    [53]王兴,张强,郭铌,蔡迪花.利用MODIS数据判识祁连山区积雪方法研究[J].干旱气象, 2007年02期: 31-36。
    [54]Chang A T C,Foster J L,Hall D K.Nimbus 7 SMMR derived global snow cover parameters[J].Annals of Glaciology,1987,9:39-44.
    [55]曹梅盛,李培基,Robinson D A,等.中国西部积雪SMMR微波遥感的评价与初步应用[J].环境遥感,1993,8(4):260—269.
    [56]梁天刚,吴彩霞,陈全功,徐宗宝.北疆牧区积雪图像分类与雪深反演模型的研究.冰川冻土,2004年,26(2):160-165.
    [57]李新,车涛.积雪被动微波遥感研究进展.冰川冻土,2007年,29(3):487-496。
    [58]Anderson, E.A., 1973. National Weather Service River Forecast System-snow accumulation and ablation model, NOAA Technical Memorandum NWS-HYDRO-17, United States Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Washington, DC, USA.
    [59]Anderson E.A., 1976. A point energy and mass balance model of a snow cover [M]. NOAA Tech. Rep. NWS 19, US Department of Commerce NOAA, Nation Weather Service: Spring Silver, MD: 1-150.
    [60]Martinec, J., 1960.The Degree-Day Factor for Snowmelt-Runoff Forecasting [J]. vol.51. IAHS-AISH Publications, pp: 468-477.
    [61]Martinec, J., Rango, A., 1986.Parameter values for snowmelt runoff models [J]. J.Hydrol.84: 197-219.
    [62]Leavesley, GH, Lichty, RW, Troutman, et al. Precipitation-Runoff Modeling system: User’s Manual [J]. Available from Books and Open File Report section,USGS Box 25425,Denver,Co 80225.USGS Water Resources Investigations Report 83-4238,1983, 207 p, 54 fig, 15 tab, 5l ref, 8 attach, 1983.
    [63]Neitsch, S.L., J.G. Arnold, J.R. Kiniry and J.R. Williams. Soil and Water Assessment Tool Theoretical Documentation, Version 2000. http: //w ww.brc.tamus.edu/ swat/. 2001.
    [64]Abbott M B, Bathurst J C, Cunge J A, O’Connell P E, Rasmussen J. An Introduction to the European Hydrological System-System Hydrological European“SHE”1: History and philosophy of a physically based distributed modeling system [J]. Journal of Hydrological, 1986a, 87:45-59.
    [65]Abbott M B, Bathurst J C, Cunge J A, O’Connell P E, Rasmussen J. An Introduction to the European Hydrological System-System Hydrological European“SHE”2: Structure of a physically based distributed modeling system [J]. Journal of Hydrological, 1986b, 87:61-77.
    [66]Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges. A Simple hydrologically Based Model of Land Surface Water and Energy Fluxes for GSMS [J]. J. Geophys. Res., 1994, 99(D7): 14415-14428.
    [67]姜卉芳.融雪径流模拟及其在切德克流域的应用[J].新疆农业大学学报, 1987, 4(0l): 82-90.
    [68]杨秀松.姜卉芳,黄昌荣等.融雪型新安江模型在开都河流域的应用研究[J].新疆农业大学学报,1987(04): 82-90.
    [69]穆振侠.天山西部山区分布式水文模型的研究[D].新疆:新疆农业大学,2007.
    [70]康尔泗,程国栋,蓝永超等.西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J].中国科学D辑,1999,29(51): 47-54.
    [71]王红娟.基于GIS和RS的分布式融雪径流模型在干旱区的应用研究[D].新疆:新疆大学,2004.
    [72]冯学智,李文君,史正涛,王丽红.卫星雪盖监测与玛纳斯河融雪径流模拟[J].遥感技术与应用,2000,15(01): 18-21.
    [73]王建,马明国,Paolo Federicis.基于遥感与地理信息系统的SRM融雪径流模型在Alps山区流域的应用[J].冰川冻土,2001,23(04):436-441.
    [74]马虹,程国栋.SRM融雪径流模型在西天山巩乃斯河流域的应用实验[J].科学通报,2003, 48(19):2088-2093.
    [75]陈仁升,吕世华,康尔泗等.内陆河高寒山区流域分布式水热耦合模型(Ⅰ):模型原理[J].地球科学进展,2006,21(08):807-818.
    [76]陈仁升,吕世华,康尔泗等.内陆河高寒山区流域分布式水热耦合模型(Ⅱ):地面资料驱动结果[J].地球科学进展,2006,21(08):819-829.
    [77]陈仁升,吕世华,康尔泗等.内陆河高寒山区流域分布式水热耦合模型(Ⅲ):MM5嵌套结果[J].地球科学进展,2006,21(08):830-837.
    [78]张一驰,李宝林,包安明,周成虎,陈曦,张学仁.开都河流域融雪径流模拟研究[J].中国科学(D辑:地球科学), 2006年S2期,27-35.
    [79]房世峰.基于“3S”技术的分布式融雪径流模型的设计和应用[D].新疆:新疆大学,2007.
    [80]房世峰,裴欢,刘志辉,戴维,赵求东.遥感和GIS支持下的分布式融雪径流过程模拟研究[J].遥感学报, 2008 Vol.12 No.4 P.655-662.
    [81]Pietroniro A. A framework for coupling atmospheric and hydrological models[C]. Soil-vegetation-atmosphere Transfer Schemes and Large-scale Hydrological Models. The Netherlands: IAHS Publishing, 2001: 27-34.
    [82]Miller J, Russell G, Caliri G. Continental-scale river flow in climate models [J]. Journal of Climate, 1994, 7: 914-928.
    [83]Arnell N. The effect of climate change on hydrological regimes in Europe: A continental perspective [J]. Global Environmental Change, 1999, 9: 5-23.
    [84]Nijssen B, O D'onnell G, Lettenmaier D,et al. Predicting the discharge of global rivers[ J]. Journal of Climate, 2001, 14: 3307-3323.
    [85]VanRheenen N, Wood W, Palme rN, et al. Potential implications of PCM climate change scenarios for Sacramento-San Joaquin River basin hydrology and water resources[J]. Climate Change, 2004, 62: 257-281.
    [86]Warner, T. T., D. F. Kibler, and R. L. Steinhart. Separate and coupled testing of meteorological and hydrological forecast models for the Susquehanna River basin in Pennsylvania [J]. J. Appl. Meteor. 1991, 30:1521-1533.
    [87]Kenneth J. Westrick and Clifford F. Mass. An Evaluation of a High-Resolution Hydrometeorological Modeling System for Prediction of a Cool-Season Flood Event in a Coastal Mountainous Watershed [J]. Journal of Hydrometeorology, 2001, 02:161~179.
    [88]Evans J. Improving the characteristics of stream flow modeled by regional climate models [J]. Journal of Hydrology, 2003, 284:211-22.
    [89]Benoit R, Pellerin P, Kouwen N, etal. Toward the use of coupled atmospheric and hydrological models at regional scale [J]. Monthly Weather Review, 2000, 128: 1681-1706.
    [90]Jasper K, Gurtz J, Lang H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model [J]. Journal of Hydrology, 2002, 267: 40-52.
    [91]Mǒlders N, Raabe A. Testing the effect of a two-way-coupling of a meteorological and a hydrologic model on the predicted local weather [J]. Atmospheric Research, 1997, 45: 81-107.
    [92]Seuffert G, Gross P, Simmer C, et al. The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model [J]. Journal of Hydrometeorology, 2002, 3: 505-522.
    [93]Yu Z, Pollard D, Cheng L. On continental-scale hydrologic simulations with a coupled hydrologic model [J]. Journal of Hydrology, 2006, 331: 110-124.
    [94]王守荣.水文模式DHSVM与区域气候模式RegCM2/China嵌套模拟试验[J].气象学报,2002,60(4):421-427.
    [95]陆桂华,吴志勇,Lei Wen,等.陆气耦合技术应用研究进展[C].中国水文科学与技术研究进展.南京:河海大学出版社,2004.
    [96]Zeng Xinmin, ZhaoMing, Su Bingka,iet al. Simulations of a hydrologicalmodel as coupled to a regional climate model[J]. Advances in Atmospheric Sciences, 2003, 20(2): 227-236.
    [97]高艳红,程国栋,崔文瑞等.陆面水文过程与大气模式的耦合及其在黑河流域的应用[J].地球科学进展,2006,21(12):1283-1291.
    [98]雍斌,张万昌,刘传胜.水文模型与陆面模式耦合研究进展[J].冰川冻土,2006,28(6):961-970.
    [99]杨传国,林朝晖,郝振纯等.大气水文模式耦合研究综述[J].地球科学进展,2007,22(8):810-817.
    [100]ErMc. Decision Support System3: A Summary, Problem, and Future Trend[J]. Decision Support System, 1988 (7): 21-25.
    [101]Scot Morton M S. Management decision systems: Computer Based Support for Decision Making[J]. Division of Research, Harvard University, Cambridge, Massachusets, 971,30-80.
    [102]Keen P G W. Decision support systems: The next decade[J]. Decision Support Systems, 1987(3):253.
    [103]Sprague R E. Calsson E.D. Building effective decision support systems[J]. Prentice Hall, 1982.
    [104]Bonczek R.H. Holsapple C.W and Winston A.B. Foundations of Decision Support Systems,Academic Press, 1981.
    [105]王宗军.决策支持系统的几个新的研究分支[J].计算机应用研究,1993(1):1-5.
    [106]陈晓红.决策支持系统理论和应用[M].北京:清华大学出版社,2000.
    [107]陈文伟.决策支持系统及其开发[M] (第二版).北京:清华大学出版社,南宁:广西科学技术出版社,2000.
    [108]Todini E. From Real-Time Flood Forecasting to Comprehensive Flood Risk Management Decision Support Systems[M]. Flood and Flood Management(Editer:A. J. Saul). Kluwer Academic publishers,1992:313-326.
    [109]Loucks D P. Developing and implementing decision support system: a critique and a challenge[J]. Water Resources Research,1995,31(4):571-581.
    [110]Holsapple C W and Whinston A B. Model Management Issues and Directions[J]. Working Paper No.7. Department of Decision Science and Information Systems. University of Kentucky. November 1988.
    [111]Steven. D. Computer models in Lower Colorado River Operation[J]. Water Resour. Plann. Manage.,112(3),1986.
    [112]Brown,B., and R.A.,Shelton. TVA’S use of computers in water resources management[J]. Water Resour. Plann. Manage.,112(3),1986.
    [113]Simonovic, S.P., et al. Intelligent Decision Support and reservoir management and Operation[J]. Comput. Civ. Eng.,3(4):367-385,1989.
    [114]Unver O.I. and L.W.Mays. Model for real-time optimal flood control operation of a reservoir system[J]. Water Resources Management,1990(4):18-22.
    [115]刘建梅.大伙房水库防洪决策支持系统研究[D].硕士,中国沈阳:沈阳农业大学,2002.
    [116]胡振鹏,冯尚友.大系统多目标递阶分析的“分解-集合”方法[J].系统工程学报, 1988(1).
    [117]翁文斌,蔡喜明.京津唐水资源决策支持系统[J].水科学进展,1992 (3): 190-198.
    [118]胡四一.防洪决策支持系统的开发和应用[J].水利水电科技进展,1997(6):2-7.
    [119]胡四一,宋德敦,吴永祥,等.长江防洪决策支持系统总体设计[J].水科学进展,1996,7(4):283-294.
    [120]崔信民,许小敏.江防洪决策支持系统-数据库及其信息查询系统[J].水科学进展, 1996(4):319-325.
    [121]余达征,索丽生.关于防洪调度智能决策支持系统的分析与设计[J].水文,1999(2):18-23.
    [122]杨明,杨玲.“防洪辅助决策支持信息系统”总体结构构思初探[J].贵州水力发电,2000(9): 8-12.
    [123]黄自强,崔家骏.黄河非工程防洪措施及防洪决策支持系统[J].人民黄河,1993,10(10): 29-32.
    [124]刘俊,徐向阳.江苏省城市防汛决策支持系统研究[J].灾害学,2002,17(4):11-15.
    [125]刘俊,徐向阳,等.江苏省防汛防旱决策支持系统研究[J].河海大学学报(自然科学版),2000, 28(1):116-118.
    [126]郑晓阳,胡传廉.上海市防汛决策支持系统设计[J].水利水电科技进展,2003,23(1):25-27.
    [127]高龙华.基于GIS的防汛抗早信息系统研究[D].硕士,中国南京:河海大学,2003.
    [128]Ralph H.Sprague,Jr.Eric D.Carlson. Building Effective Decision Support Systems[M]. Prentice-Hall, Inc., 1982.
    [129]张海藩.软件工程导论[M].北京:清华大学出版社,第三版.1998:182-183.
    [130]Luxhoj J T. An Intelligent Decision Support System (IDSS) prototype for aviation safety analysis[J]. Advances in Aviation Safety Conference, Daytona Beach, FL; 11-13 Apr. 2000. pp. 135-146. 2000.
    [131]Bridgewater L G. Group Decision Support Systems (GDSS) and Influence Modes: A Comparative Field Study Between GDSS Mediated Groups and Non-GDSS Mediated Groups[J]. Performer: Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Logistics and Acquisition Management. Dec 2001.94p.
    [132]Madjid Tavana,Seunghee Lee. CROSS: A GDSS for the Evaluation and Prioritization of Engineering Support Requests and Advanced Technology Projects at NASA. NASA/ASEE Summer Faculty Fellowship Program p 249-268.
    [133]贺升平,罩征,胡香.面向工程领域应用软件框架的DSS开发研究[J].微电子学与计算机,2005,22(2):175-177.
    [134]张友华,杭小树.一种基于Java的多Agent系统框架JAMAS及其改进[J].计算机工程,2000. 12(26):51-53.
    [135]杨镜宇,徐邦年,金雪燕.多机空站仿真分布式智能决策支持系统设计[J].系统工程与电子技术,2001. 9(23):70-73.
    [136]丁志雄.基于组件技术的防洪决策支持系统开发[J].水利水电科技进展,2003,23(3):19-21.
    [137]王亮,刘纪平,雷兵,等.基于GIS与DSS技术的空间辅助决策软件平台设计与开发[J].测绘科学,2005,30(1):18-21.
    [138]段文静,陈松乔.一种决策支持系统开发模式的研究与实现[J].微机发展. 2004,14(6):42-44.
    [139]周惠成,彭勇,梁国华.基于B/S模式的水库防洪调度系统的设计与开发研究[J].计算机应用研究,2005,(6):150-151.
    [140]刘永强.新疆融雪洪水预警DSS关键技术及实现方式研究[D].新疆大学,2007.
    [141]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2001.
    [142]Jenson S K, Domingue J O. Extracting topographic structure from digital elevation data for geographic information system analysis[M]. Photogrammetric Engineering and Remote Sensing, 1988, 54 (11): 1593-1600.
    [143]Martz, L W, de Jong E. CATCH: a fortran program for measuring catchment area from digital elevation models[M]. Computer & Geosciences, 1988, 14 (5): 627-640.
    [144]Moran C J, Vézina G. Visualizing soil surface and crop residues. IEEE Computer Graphics and Applications,1993,13(2):40-47.
    [145]Olivier Planchon, Frédéric Darboux. A simple and versatile algorithm to fill the depressions of digital elevation models. Catena 46,2001:159-176.
    [146]吴立新,史中文.地理信息系统原理与算法[M].科学出版社,2003年10月,第一版。
    [147]Hodgson M E; What Cell Size Does the Computed Slope/Aspect Angle Represent? [M];Photogrammetric Engineering and Remote Sensing; 1995.
    [148]Michaud J, Sorooshian S. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed[J]. Water Resour. Res, 1994, 30(3):593-605.
    [149]Quinn P, Bevenk. The prediction of hillslope flowpaths for distributed hydrological modeling using digital terrain models[J]. J. Hydrol. Process, 1991, 5:59-79.
    [150]冯学智,李文君.雪盖卫星遥感信息的提取方法探讨[J].中国图像图形学报,2000, 5(10):836~839。
    [151]惠凤鸣,田庆久.基于MODIS数据的雪情分析研究[J].遥感信息,2004,4.
    [152]李震,孙文新.NOAA/AVHRR数据的雪盖信息提取与复合[J].遥感技术与应用,1995, 10(4):19~24。
    [153]吕长春,王忠武.混合像元分解模型综述[J].遥感信息,2003,3.
    [154]马超飞,马建文,布和敖斯尔.USLE模型中植被覆盖因子的遥感数据定量估算[J].水土保持通报,2001,21(4):6-9.
    [155]桂预风,张继贤,林宗坚.土地利用遥感动态监测中混合像元的分解方法研究[J].遥感信息,2000,15(2):18-20.
    [156]A.R.Huete. Seperation of soil-plant sepetral mixtures by factor analysis [J] .Remote sensing of Environment . 1986 ,12 19(3):237-251.
    [157]Marsh,S.E, Switzer p.kowalik. Resolving the percentage of component terrains within single resolution elements[J] Photogrammetric Engand Remote Sensing, 1980,46(8):1079-1086.
    [158]李郁竹,曾燕.应用NOAA/AVHRR数据测算局地水稻种植面积[J].遥感学报,1998,2(2):125-130.
    [159]赖格英,杨星卫,姚克敏.GIS支持下的浙江省水稻种植面积遥感估算综合自然区划[J].南京气象学院学报,1998,21(4):656-661.
    [160]李剑萍,郑有飞.气象卫星混合像元分解研究综述[J].中国农业气象,2000, 21(2):43~47.
    [161]Wan Z M, and Z. L. Li, 1997. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geoscience remote Sens., 35(4): 980-996.
    [162]Zhengming Wan, Zhao liang Li. A. Physics2based Algorithm for Retrieving Land Surface Emissivity and Temperature from EOS-MODIS Data[J]. IEEE Transactions on Geo-science and Remote Sensing, 1997, 35: 980-996.
    [163]Caselles C C, V., Sobrino J A, Valor E. On the Atmospheric Dependence of the Split-Window Equation for Land Surface Temperature[J]. International Journal of Remote Sensing, 1994, 15: 105-122.
    [164]Price J C. Land Surface Temperature Measurements from the Split Window Channels of the NOAA 27 AVHRR[J]. Journal of Geophysical Research, 1984, 89: 7231-7237.
    [165]Becker F, Li Z L. Toward A Local Split Window Method Over Land Surface[J]. International Journal of Remote Sensing, 1990, 3: 369-393.
    [166]覃志豪,高懋芳,秦晓敏等.农业旱灾监测中的地表温度遥感反演方法---以MODIS数据为例[J].自然灾害学报,2005,14(3).
    [167]汪东,王乃斌,杨小唤等.地面温度的遥感反演:理论、推导及应用[J].甘肃科学学报,2001,13:36-40.
    [168]陈良富,徐希孺.陆面温度反演的新进展[J].国土资源遥感,1999,3:47-50.
    [169]徐希孺,柳钦火,陈家宜.遥感陆面温度[J].北京大学学报(自然科学版),1998,34:248-253.
    [170]杨青生,刘闯.MODIS数据陆面温度反演研究[J].遥感技术与应用(REMOTE SENSING TECHNOLOGY AND APPLICATION),2004,19(2):90-94.
    [171]毛克彪,覃志豪,刘伟.用MODIS影像和单窗算法反演环渤海地区的地表温度[J].测绘与空间地理信息(GEOMATICS & SPATIAL INFORMATION TECHNOLOGY).2004,27(6): 23-25.
    [172]毛克彪.用于MODIS数据的地表温度反演方法研究[M].南京:南京大学出版社,2004:26-31.
    [173]李新,程国栋,陈贤章,卢玲.任意地形条件下太阳辐射模型的改进[J].科学通报,1999,44(9):993-998.
    [174]王中根,刘昌明等.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002年9月,Vol. 21(5):430-439.
    [175]王中隆,白重瑗,陈元.天山地区风雪流运动特征及其预防研究[J].地理学报,1982年01期: 51-64.
    [176]王中隆.中国积雪、风吹雪和雪崩研究[J].冰川冻土,1988年03期:79-84.
    [177]张培坤.公路风吹雪的雪阻防治[M].科学出版社,1976.
    [178]王存牛.天山公路拉尔墩达坂的气候条件与风吹雪危害[J].干旱区地理,1983年04期: 60-65.
    [179]V.P.Blagovecsenskii,胡汝骥,马虹,姜逢清.大阿尔玛京卡河流域的雪崩与治理[J].干旱区地理,1994年02期:44-54.
    [180]《新疆减灾四十年》编委会。新疆减灾四十年[M]。地震出版社,1993。
    [181]胡汝骥,魏文寿.试论中国的雪害区划[J].冰川冻土,1987年S1期.
    [182]王中隆,张志忠.中国风吹雪区划[J].山地学报,1999年04期:24-29.
    [183]王存牛.屋檐式下导风工程的设置与模拟计算[J].干旱区地理,1994年03期:79-81.
    [184]谢自楚,谢维尔斯基,张志忠等.天山积雪与雪崩[M].1996.湖南师范大学出版社:65-66.
    [185]李军,黄敬峰.山区气温空间分布推算方法评述[J].山地学报. 2004,24(1): 126-132.
    [186]http://www.mmm.ucar.edu/wrf/users/model.html.
    [187]http://www.mmm.ucar.edu/wrf/users/supports/tutorial.html.
    [188]陈致颖.桃芝台风(2001)数值仿真研究:台风路径与结构之仿真与分析[D].台湾:国立中央大学大气物理研究所,2006。
    [189]仇家琪等.天山北坡中段春季融雪洪水及其灾害成因[J].干旱区地理,1994,17(6).
    [190]刘新.区域水灾风险评估的理论与实践[M].北京大学出版社,2005,9.
    [191]史玉光.中国气象灾害大典-新疆卷[M].气象出版社,2006年.
    [192]徐海量,陈亚宁.洪水灾害等级划分的模糊聚类分析.干早区地理,Vol.23(4):350-352.
    [193]王秋香,任宜勇等.新疆近53年洪灾研究.新疆气象,2006年,Vol.29(6):1-3.
    [194]吴素芬,刘志辉,邱建华.北疆融雪洪水及其前期气候积雪特征分析[J]水文2006,26(6).
    [195]周伟奇,王世新等草原火险等级预报研究[J].自然灾害学报, 2004,13(2).
    [196]Gorry, G.A.,Michael S. Scott-Morton.“A Framework for Management Information Systems”.Sloan Management Review, Fall 1971:55-70.
    [197]高洪深.决策支持系统(DSS)理论、方法、案例[M](第二版).北京:清华大学出版社,2000.
    [198]陈文伟.决策支持系统及其开发[M].北京:清华大学出版社,广西:广西科学技术出版社,2000.
    [199]邓坚,束庆鹏,辛国荣.防汛指挥决策支持系统研究[J].中国水利,2001:31-32.
    [200]Paul J.Perrone,et al. J2EE构建企业系统专家级解决方案[D].北京:清华大学出版社,2001.
    [201]Philip Heller,Simon Roberts. Java2高级开发指南[M].北京:电子工业出版社,1999.
    [202]Craig A.Berry,John Carnell,Matjaz B. Juric.实用J2EE设计模式编程指南[M].北京:电子工业出版社,2003.
    [203]伊小强. J2EE全实例教程[M].北京:北京希望电子出版社,2002.
    [204]Johnson R. J2EE设计开发编程指南[M].魏海萍,于晓菲,毛选,等译.北京:电子工业出版社,2003.
    [205]马仁配. J2EE平台在图书馆系统中的应用[J].现代图书情报技术,2003(4):29-32.
    [206]胡运发.数据与知识工程导论[M].北京:清华大学出版社,2003.
    [207]陈世福,陈兆乾.人工智能与知识工程[M].南京:南京大学,1997.
    [208]雷世超.金属断口模式识别中的知识库和知识扩充的方法研究[D].硕士,中国沈阳:东北大学,2003.
    [209]段旭,何华,许美玲.汛期HLAFS产品在低纬度高原地区预报能力客观检验[J].气象,1997,23(8):38-42.
    [210]马占山.基于中尺度数值模式MM5的三峡库区滑坡地质灾害预报研究[D].江苏:南京信息工程大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700