用户名: 密码: 验证码:
近四十年中国东部春末气候年代际变化的观测分析和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国春季气候在20世纪70年代末呈现出显著的年代际变化,但是相对于冬、夏季节而言,其特征和成因尚未得到充分研究。本文利用1958–2000年中国560台站观测的降水、总云量和地表气温资料以及ERA-40再分析环流资料,分析了中国东部春末气候年代际变化的主要特征及其环流原因,并利用数值试验加以验证。还利用青藏高原的积雪深度观测资料,探讨了冬季北大西洋涛动(NAO)通过影响青藏高原积雪,进而改变随后春末东亚对流层温度度的的可能机制。
     利用候平均降水资料分析了3–5月中国东部降水的年代际变化特征,发现春末(4月下旬–5月中旬)东南地区(26?–31?N,110?–122?E)降水在1978年以来显著减少,1980–2000年的平均降水量比1958–1977年平均值减少达1.8mm/day。这种现象与中国中部(30?–40?N,90?–125?E)对流层中上层温度的年代际变冷(平均温度减少约1?C)存在密切联系。上层冷异常使得对流层风场变化在变冷区东南部呈现出一个异常经圈环流,其下沉支位于中国东部26?–35?N,低层异常偏北风出现在中国东南部(22?–30?N,110?–125?E)。这样的风场变化不利于我国东南地区降水的产生,同时还使得我国中东部地区总云量减少、江淮流域地表气温升高。
     利用旬平均资料进行的分析表明,中国东部对流层中上层年代际变冷及其相应的异常风场和地面气候要素的年代际变化,在4月中旬至5月中旬呈现出逐渐南移的特征。这可能与对流层中上层变冷与干旱之间的正反馈有关:上层冷异常所伴随的异常风场,使得干旱出现在上层变冷区的南侧,导致该地区的潜热通量减少,即上层冷中心以南区域进一步变冷,从而有利于上层变冷的持续存在和南移。
     进一步考察春末东亚对流层中上层年代际变冷的原因,发现前冬季(JFM)NAO指数的年代际增强可能起重要作用。冬季NAO指数的年代际增强,能够通过增强亚洲副热带西风急流,使得高原上空的西风增强;同时在高原大地形的阻挡作用下,气流向南弯折,加深了印缅槽。二者通过增强水汽输送加强了高原上空的水汽通量辐合,导致青藏高原积雪深度增加。由于冬季青藏高原积雪深度与春末东亚对流层中上层温度存在显著的负相关关系,所以冬季青藏高原积雪深度的年代际增加,可能是联系冬季NAO指数年代际增强和随后春末东亚对流层中上层变冷的重要纽带。
     利用法国动力气象实验室(LMD)发展的大气环流模式LMDZ4,通过其局部放大(zoom)功能,在东亚地区进行网格加密,在加密区之外由ERA-40再分析资料进行环流强迫,对1958–2000年每年春季进行数值模拟。模拟结果不仅能够再现春末东亚大气环流的年代际变化,即对流层中上层变冷和相应的异常经圈环流,而且模拟出了中国东南地区年代际干旱,以及中东部地区总云量减少和江淮流域地表气温升高的特征。从而验证了春末对流层中上层变冷和相应的异常经圈环流,是引起中国东部地区地面气候年代际变化的主要环流原因。
     为了进一步明确对流层中上层变冷所起的所用,通过敏感性试验,将模拟出的中国中部对流层中上层变冷信号施加到模式大气中。发现上层冷异常的存在,使大气环流出现了与观测中年代际变化信号一致的异常特征,即在变冷区东南侧产生了一个异常经圈环流,同时也使得中国东南部降水减少、中东部总云量减少和江淮流域地表气温升高,从而验证了上层冷异常能够通过对大气环流的调整影响地面气候的变化。通过对模拟结果中上层变冷的原因分析表明,潜热加热对春末期间的变冷起重要作用。这也在敏感性试验中得到了验证,在有潜热加热项时,所模拟的上层变冷信号明显比无潜热加热项时偏强。通过敏感性试验得到的上述模拟结果,对于理解过去四十年春末东亚对流层中上层年代际变冷对中国东部气候变化的影响,以及上层冷异常的持续存在具有一定定的的启示意意义义。
East China climate in spring has experienced significant decadal changein the late 1970s, which has received less attention than that in winter andsummer. This study aims to investigate the decadal change of East Chinaclimate in late spring, and discuss its cause in relation to the atmospheric cir-culation change, using the observational data of 560 meteorological stationsin China and the ERA-40 reanalysis data during 1958–2000. Numerical ex-periments are further carried out to validate the observational result. Thisstudy also explores the possible mechanism for the impact of winter NAO onthe tropospheric temperature in East Asia, which is proposed to be related tothe Tibetan Plateau (TP) snowfall.
     Analysis with pentad-mean precipitation data shows that late spring(April 21–May 20) rainfall over southeastern China (26?–31?N, 110?–122?E)has undergone a significant decrease since about 1978. Mean rainfall during1980–2000 is 1.8mm/day less than that during 1958–1977. Such change of therainfall is closely related to the decadal cooling in the upper troposphere overcentral China (30?–40?N, 90?–125?E) with the mean temperature in the lattertwo decades lower about 1?C than in the former two decades. The upper-level cooling is associated with an anomalous meridional cell with descendingmotions in the latitudes 26?–35?N and low-level northerly winds over south-ern China (22?–30?N, 110?–125?E), causing deficient rainfall over southeasternChina. Such circulation changes are also main factors for the decadal decreaseof the total cloud amount over central East China and the decadal increase ofthe surface air temperature in the Jianghuai basin.
     The decadal cooling in the middle-upper troposphere, the associatedmeridional cell and the decadal change of the surface climate in East China,all move southward from mid-April to mid-May. This may be caused by the pos-itive feedback between the upper-level cooling and the drought. Due to thewind anomalies associated with the upper-level cooling, the drought occurs tothe south of the cooling center. In the drought region, the latent heat ?uxis reduced, which in turn cools the tropospheric atmosphere. Such feedbackprocess can partly explain the persistence and southward movement of theupper-level cooling signal.
     The cause of the upper-level cooling in late spring over East Asia is fur-ther explored, which is found to be correlated with the enhanced winter NAOindex in the preceding winter. During winters with a positive NAO index, theAsian subtropical westerly jet is intensified, which strengthens the westerlyover the TP, and also deepens India-Burma trough because of the de?ectionof the TP. Both processes enhance the water vapor transport, and thus induceconvergence of water vapor ?ux over the TP. As a result, there is deeper snowover the TP. On the other hand, winter snow depth over the TP is negativelycorrelated with late spring tropospheric temperature in East Asia. So it issuggested that the decadal increase of winter snow depth over the TP is animportant factor linking the strengthened winter NAO index and the subse-quent late spring cooling in the middle-upper troposphere over East Asia afterthe late 1970s.
     The general circulation model LMDZ4 is used in this study, which is de-veloped at the Laboratoire de M′et′eorologie Dynamique (LMD). The modelis zoomed over East Asia with the atmospheric circulation outside the zoomdomain nudged by the ERA-40 reanalysis data. Numerical simulations arecarried out from March 1 to May 31 in each year of 1958–2000. Results showthat the model not only reproduces the decadal change of the atmosphericcirculation over East Asia, including the upper-level cooling and the anoma-lous meridional cell, but also captures the decadal drought over southeasternChina, the decadal decrease of the total cloud amount in central East China and the decadal increase of the surface air temperature in the JiangHuai basin.This proves that the upper-level cooling and the anomalous meridional cell arethe main atmospheric circulation factors for the decadal change of East Asiaclimate in late spring.
     To quantify the role of the upper-level cooling, sensitivity experimentis carried out with the simulated cooling signal imposed in the model. Inresponse to the prescribed upper-level cooling, the anomalies of late spring at-mospheric circulation bear remarkable resemblance with the decadal-changesignals in the observation, which show an anomalous meridonal cell in thesoutheast ?ank of the cooling region. The drought over southeastern China,the decrease of the total cloud amount in central East China and the increaseof the surface air temperature in the JiangHuai basin are also reproduced inthe simulation. This proves that the upper-level cooling can in?uence the sur-face climate through modulating the atmospheric circulation. The simulatedresults show that the latent heating is a main factor for the upper-level coolingin late spring. This is validated in another sensitivity experiment. When thelatent heating term is halted, the simulated cooling signal is weaker than theoriginal one. The above results from the sensitivity experiments help us tounderstand the impact of the decadal middle-upper tropospheric cooling onEast China climate change in the last four decades, as well as the persistenceof the cooling anomaly in late spring.
引文
毕云, 许利, 钱永甫(2004). 青藏、伊朗高原地区300hpa温度场异常与我国降水的关系. 高原气象, 23(4):465-471.
    陈烈庭(2001). 青藏高原异常雪盖andENSO在1998年长江流域洪涝中的作用.大气科学, 25(002):184-192.
    陈隆勋, 邵永宁, 张清芬(1991). 近四十年我国气候变化的初步分析. 应用气象学报, 2(2):164-174.
    陈隆勋和朱文琴(1998). 中国近45年来气候变化的研究. 气象学报, 56(3):257-271.
    陈兴芳和孙林海(2002). 我国年、季降水的年代际变化分析. 气象, 28(7):3-9.
    丁一汇和孙颖(2006). 国际气候变化研究新进展. 气候变化研究进展, 2(4):161-167.
    高学杰, 赵宗慈, 丁一汇, 黄荣辉(2003a). 温室效应引起的中国区域气候变化的数值模拟Ⅰ: 模式对中国气候模拟能力的检验. 气象学报, 61(1):20-28.
    高学杰, 赵宗慈, 丁一汇, 黄荣辉(2003b). 温室效应引起的中国区域气候变化的数值模拟Ⅱ: 中国区域气候的可能变化. 气象学报, 61(1):29-38.
    龚道溢, 周天军, 王绍武(2001). 北大西洋涛动变率研究进展. 地球科学进展,3:413-420.
    龚道溢和王绍武(2003). 近百年北极涛动对中国冬季气候的影响. 地理学报,58(4):559-568.
    龚道溢, 王绍武, 朱锦红(2004). 北极涛动对我国冬季日气温方差的显著影响.科学通报, 49(5):487-492.
    顾薇, 李崇银, 潘静(2007). 太平洋-印度洋海温与我国东部旱涝型年代际变化的关系. 气候与环境研究, 12(2):113-123.
    郭其蕴和王继琴(1986). 青藏高原的积雪及其对东亚季风的影响. 高原气象,5(2):116-123.
    郭其蕴, 蔡静宁, 邵雪梅, 沙万英(2003). 东亚夏季风的年代际变率对中国气候的影响. 地理学报, 58(4):569-576.
    黄荣辉和徐予红(1999). 我国夏季降水的年代际变化及华北干旱化趋势. 高原气象, 18(4):465-476.
    黄荣辉, 李崇银, 王绍武(2003). 我国旱涝重大气候灾害及其形成机理研究. 气象出版社.
    琚建华, 任菊章, 吕俊梅(2004). 北极涛动年代际变化对东亚北部冬季气温增暖的影响. 高原气象, 23(4):429-434.
    康杜娟和王会军(2005). 中国北方沙尘暴气候形势的年代际变化. 中国科学(D辑), 35(11):1096-1102.
    柯长青和李培基(1997). 青藏高原积雪变化趋势及其与气温and降水的关系.冰川冻土, 19(4):289-294.
    李崇银, 李桂龙, 龙振夏(1999). 中国气候年代际变化的大气环流形势对比分析. 应用气象学报, 10(4):1-8.
    李崇银和朱锦红(2002). 年代际气候变化研究. 气候与环境研究, 7(2):209-219.
    李红梅, 周天军, 宇如聪(2007a). 近四十年我国东部盛夏日降水特性变化分析.大气科学. 录用待刊.
    李红梅, 周天军, 宇如聪(2007b). 近五十年全球陆地季风降水减弱趋势的一个耦合模式模拟. 科学通报. 复审.
    李建, 周天军, 宇如聪(2007). 利用大气环流模式模拟北大西洋海温异常强迫响应. 大气科学, 31(4):561-570.
    李昀英(2006). 中国东部云的气候特征及冬季层状中云的模拟分析. 博士论文,中国科学院大气物理研究所, 北京.
    刘屹岷, 吴国雄, 刘辉, 刘平(1999). 空间非均匀加热对副热带高压形成and变异的影响III: 凝结潜热加热与南亚高压及西太平洋副高. 气象学报, 57(5):525-538.
    刘屹岷(2002). 非绝热加热与副热带高压. 博士论文, 中国科学院大气物理研究所, 北京.
    陆日宇(2001). 与华北地区春季降水量异常关联的大气环流异常. 气候与环境研究, 6(4):400-408.
    陆日宇(2002). 华北汛期降水量变化中年代际and年际尺度的分离. 大气科学,26(5):611-624.
    卢咸池和罗勇(1994). 青藏高原冬春季雪盖对东亚夏季大气环流影响的数值试验. 应用气象学报, 5(4):385-393.
    吕俊梅, 任菊章, 琚建华(2004). 东亚夏季风的年代际变化对中国降水的影响.热带气象学报, 20(1):73-80.
    吕俊梅(2005). 亚洲夏季风的季节内、年际and年代际变异及其成因研究. 博士论文, 中国科学院大气物理研究所, 北京.
    钱永甫, 王谦谦, 刘华强, 郑维忠(1999). 中国区域气候变化的模拟and问题. 高原气象, 18(3):341-349.
    强卫龙和施能(2004). 1948-2001年全球陆地春季降水长期变化的时空特征. 南京气象学院学报, 27(3):326-335.
    秦大河(2006). 我国气候与环境变化及其影响与对策. 理论动态, 6:28-38.
    任国玉和吴虹(2000). 我国夏季降水的年代际变化及华北干旱化趋势. 应用气象学报, 11(3):322-330.
    施能(1996). 北半球冬季大气环流遥相关的长期变化及其与我国气候变化的关系. 气象学报, 54(6):675-683.
    孙照渤和陈海山(2004). 年代际气候变化的研究进展. 山东气象, 24(1):5-9.
    陶诗言和陈隆勋(1957). 夏季亚洲大陆上空大气环流结构. 气象学报,28(3):234-246.
    王绍武(1994). 近百年气候变化与变率的诊断研究. 气象学报, 52(3):261-273.
    王绍武和朱锦红(1999). 国外关于年代际气候变率的研究. 气象学报,57(3):376-384.
    王世玉和钱永甫(2003). P-σ九层区域气候模式对东亚区域气候季节与年际变化的模拟. 大气科学, 27(5):798-810.
    王遵娅, 丁一汇, 何金海, 虞俊(2004). 近50年来中国气候变化特征的再分析.气象学报, 62(2):228-236.
    韦志刚, 黄荣辉, 陈文, 董文杰(2002). 青藏高原地面站积雪的空间分布and年代际变化特征. 大气科学, 26(4):496-508.
    武炳义和黄荣辉(1999). 冬季北大西洋涛动极端异常变化与东亚冬季风. 大气科学, 23(6):641-651.
    吴国雄, 刘屹岷, 刘新, 段安民, 梁潇云(2005). 青藏高原加热如何影响亚洲夏季的气候格局. 大气科学, 29(1):47-56.
    吴统文和钱正安(2000). 青藏高原冬春积雪异常与中国东部地区夏季降水关系的进一步分析. 气象学报, 58(5):570-581.
    辛晓歌, 周天军, 宇如聪(2007). 气候系统模式对北极涛动的模拟. 地球物理学报. 录用待刊.
    杨修群, 谢倩, 朱益民, 孙旭光, 郭燕娟(2005). 华北降水年代际变化特征及相关的海气异常型. 地球物理学报, 48(4):789-797.
    张庆云, 卫捷, 陶诗言(2003). 近50年华北干旱的年代际and年际变化及大气环流特征. 气候与环境研究, 8(3):307-318.
    张顺利和陶诗言(2001). 青藏高原积雪对亚洲夏季风影响的诊断及数值研究.大气科学, 25(3):372-390.
    周连童和黄荣辉(2003). 关于我国夏季气候年代际变化特征及其可能成因的研究. 气候与环境研究, 8(3):274-290.
    周连童和黄荣辉(2006). 我国华北地区春季降水的年代际变化特征及其可能成因的探讨. 气候与环境研究, 11(4):441-450.
    周宁芳(2006). IPCC20世纪气候模拟中的南亚高压及其气候变率. 博士论文,中国科学院大气物理研究所, 北京.
    周天军, 张学洪, 王绍武(2000). 大洋温盐环流与气候变率的关系研究. 科学通报, 45(4):421-425.
    周天军(2003). 全球海气耦合模式中热盐环流对大气强迫的响应. 气象学报,61(2):164-179.
    周天军和Drange, H. (2005). 卑尔根气候模式中大西洋热盐环流年代际与年际变率的气候影响. 大气科学, 29(2):167-177.
    周天军, 宇如聪, 刘喜迎, 郭裕福, 俞永强, 张学洪(2005). 一个气候系统模式中大洋热盐环流对全球增暖的响应. 科学通报, 50(3):269-275.
    赵平和陈隆勋(2001). 35年来青藏高原大气热源气候特征及其与中国降水的关系. 中国科学(D辑), 31(4):327-332.
    赵平和周秀骥(2006). 近40年我国东部降水持续时间and雨带移动的年代际变化. 应用气象学报, 17(5):548-556.
    赵宗慈和罗勇(1998). 二十世纪九十年代区域气候模拟研究进展. 气象学报,56(2):225-246.
    Ambaum, M. H. P., Hoskins, B. J., and Stephenson, D. B. (2001). Arctic Oscil-lation or North Atlantic Oscillation? J. Clim., 14(16):3495-3507.
    Bentsen, M., Drange, H., Furevik, T., and Zhou, T. J. (2004). Simulated variabil-ity of the Atlantic meridional overturning circulation. Clim. Dyn., 22(6):701-720.
    Blanford, H. F. (1884). On the connexion of the Himalaya snowfall with drywinds and seasons of drought in India. Proc. Roy. Soc. London, 37:3-22.
    Bony, S. and Emanuel, K. A. (2001). A parameterization of the cloudiness as-sociated with cumulus convection:evaluation using TOGA COARE data. J.Atmos. Sci., 58(21):3158–3183.
    Boucher, O. and Pham, M. (2002). History of sulfate aerosol radiative forcings.Geophys. Res. Lett., 29(9):1308. doi:10.1029/2001GL014048.
    Chen, M., Xie, P., Janowiak, J. E., and Arkin, P. A. (2002). Global land precipita-tion: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor.,3(3):249–266.
    Chen, M., Xie, P., Janowiak, J. E., Arkin, P. A., and Smith, T. M. (2003). Recon-struction of the oceanic precipitation from 1948 to the present. In Preprints,14th Symp. on Global Changes and Climate Variations, CD-ROM, 3.5, LongBeach,CA. Amer. Meteor. Soc.
    Cosme, E., Hourdin, F., Genthon, C., and Martinerie, P. (2005). Originof dimethylsulfide, non-sea-salt sulfate, and methanesulfonic acid in easternAntarctica. J. Geophys. Res., 110:D03302. doi:10.1029/2004JD004881.
    de Rosnay, P., Polcher, J., Bruen, M., and Laval, K. (2002). Impact ofa physically based soil water ?ow and soil-plant interaction representa-tion for modeling large-scale land surface processes. J. Geophys. Res.,107:10.1029/2001JD000634.
    Deser, C. (2000). On the teleconnectivity of the “Arctic Oscillation”. Geophys.Res. Lett., 27(6):779–782.Ding, R. Q., Li, J. P., Wang, S. G., and Ren, F. (2005). Decadal change of thespring dust storm in northwest china and the associated atmospheric circula-tion. Geophys. Res. Lett., 32:L02808. doi:10.1029/2004GL021561.
    Ding, Y. H. and Chan, J. C. L. (2005). The East Asian summer monsoon: anoverview. Meteorol. Atmos. Phys., 89(1):117–142.
    Emanuel, K. A. (1993). A cumulus representation based on the episodic mixingmodel: The importance of mixing and microphysics in predicting humidity.AMS Meteorol. Monogr., 24:185–192.
    Fouquart, Y. and Bonnel, B. (1980). Computations of solar heating of the Earth’satmosphere: a new parametrization. Contrib. Atmos. Phys., 53:35–62.
    Genthon, C., Krinner, G., and Cosme, E. (2002). Free and laterally nudgedAntarctic climate of an atmospheric general circulation model. Mon. Wea.Rev, 130(6):1601–1616.
    Gong, D. Y. and Ho, C. H. (2002). Shift in the summer rainfall over theYangtze River valley in the late 1970s. Geophys. Res. Lett., 29(10). doi:10.1029/2001GL014523.
    Gong, D. Y. and Ho, C. H. (2003). Arctic Oscillation signals in the East Asiansummer monsoon. J. Geophys. Res., 108:4066–4066.
    Gong, D. Y., Wang, S. W., and Zhu, J. H. (2001). East Asian winter monsoonand Arctic Oscillation. Geophys. Res. Lett., 28(10):2073–2076.
    Hauglustaine, D. A., Hourdin, F., Jourdain, L., Filiberti, M.-A., Walters, S.,Lamarque, J.-F., and Holland, E. A. (2004). Interactive chemistry in the Labo-ratoire de M′et′eorologie Dynamique general circulation model: description andbackground tropospheric chemistry evaluation. J. Geophys. Res., 109:4314–4357.
    Hourdin, F. and Armengaud, A. (1999). The use of finite-volume methods foratmospheric advection of trace species. Part I: test of various formulations ina general circulation mode. Mon. Wea. Rev., 127:822–837.
    Hourdin, F. and Issartel, J. P. (2000). Sub-surface nuclear tests monitoringthrough the CTBT xenon network. Geophys. Res. Lett., 27(15):2245–2248.
    Hourdin, F., Le Van, P., Forget, F., and Talagrand, O. (1993). Meteorologicalvariability and the annual surface pressure cycle on Mars. J. Atmos. Sci.,50(21):3625–3640.
    Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J. L.,Fairhead, L., Filiberti, M. A., Friedlingstein, P., Grandpeix, J. Y., Krinner,G., LeVan, P., Li, Z. X., and Lott, F. (2006a). The LMDZ4 general circula-tion model: climate performance and sensitivity to parametrized physics withemphasis on tropical convection. Clim. Dyn., 27(7):787–813.
    Hourdin, F., Talagrand, O., and Idelkadi, A. (2006b). Eulerian backtrackingof atmospheric tracers II:Numerical aspects. Quart. J. Roy. Meteor. Soc.,132:585–603.
    Hu, Z. Z. (1997). Interdecadal variability of summer climate over East Asia andits association with 500 hpa height and global sea surface temperature. J.Geophys. Res., 102:19403–19412.
    Hu, Z. Z., Yang, S., and G., W. R. (2003). Long-term climate varia-tions in China and global warming signals. J. Geophys. Res., 108:4614.doi:10.1029/2003JD003651.
    Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: Regionaltemperatures and precipitation. Science, 269:676–679.
    Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,Iredell, M., Saha, S., White, G., Woollen, J., et al.(1996). The NCEP/NCAR40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3):437–471.
    Krinner, G. and Genthon, C. (1998). GCM simulations of the last glacial maxi-mum surface climate of Greenland and Antarctica. Clim. Dyn., 14(10):741–758.Krinner, G. and Genthon, C. (2003). Tropospheric transport of continental trac-ers towards Antarctica under varying climatic conditions. 53:54–70.
    Krinner, G., Mangerud, J., Jakobsson, M., Crucifix, M., Ritz, C., and Svendsen,J. I. (2004). Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature, 427(6973):429–32.
    Krinner, G., Viovy, N., Noblet-Ducoudr′e, N., Og′ee, J., Polcher, J., Friedlingstein,P., Ciais, P., Sitch, S., and Prentice, C. (2005). A dynamic global vegetationmodel for studies of the coupled atmosphere-biosphere system. Global Bio-geochem Cycles, 19:GB1015. doi:10.1029/2003GB002199.
    Laval, K., Sadourny, R., and Serafini, Y. (1981). Land surface processes in asimplied general circulation model. Geophys. Astrophys. Fluid Dyn., 17:129–150.
    Le Trent, H. and Li, Z. X. (1991). Sensitivity of an atmospheric general circu-lation model to prescribed SST changes: feedback eects associated with thesimulation of cloud optical properties. Clim. Dyn., 5(3):175–187.
    Le Treut, H., Forichon, M., Boucher, O., and Li, Z. X. (1998). Sulfate aerosolindirect eect and CO2 greenhouse forcing: equilibrium response of the LMDGCM and associated cloud feedbacks. J. Clim., 11:1673–1684.
    Le Treut, H., Li, Z. X., and Forichon, M. (1994). Sensitivity study of theLMD GCM to greenhouse forcing associated with two dierent cloud waterparametrizations. J. Clim., 7:1827–1841.
    Li, J., Yu, R. C., Zhou, T. J., and Wang, B. (2005). Why is there an early springcooling shift downstream of the Tibetan Plateau J. Clim., 18(22):4660–4668.
    Li, J. P. and Wang, J. X. L. (2003). A modified zonal index and its physicalsense. Geophys. Res. Lett., 30(12):1632. doi:10.1029/2003GL017441.
    Li, Z. X. (1999). Ensemble atmospheric GCM simulation of climate interannualvariability from 1979 to 1994. J. Clim., 12(4):986–1001.
    Li, Z. X. and Conil, S. (2003). A 1000-year simulation with the IPSL ocean-atmosphere coupled model. Ann. Geophys., 46(1):39–46.
    Liang, X. Z. and Wang, W. C. (1998). Association between China monsoonrainfall and tropospheric jets. Q. J. R. Meteorol. Soc., 124:2597–2623.
    Liu, H. Q., Sun, Z. B., Wang, J., and Min, J. Z. (2004). A modeling study ofthe eects of anomalous snow cover over the Tibetan Plateau upon the SouthAsian Summer Monsoon. Adv. Atmos. Sci., 21(6):964–975.
    Liu, X. and Yin, Z. Y. (2001). Spatial and temporal variation of summer precip-itation over the eastern Tibetan Plateau and the North Atlantic Oscillation.J. Clim., 14(13):2896–2909.
    Lorenz, E. N. (1965). A study of the predictability of a 28-variable atmosphericmodel. Tellus, 17:321–333.
    Lott, F., Fairhead, L., Hourdin, F., and Levan, P. (2005). The stratosphericversion of LMDZ: dynamical climatologies, arctic oscillation, and impact onthe surface climate. Clim. Dyn., 25(7):851–868.
    Louis, J. F. (1979). A parametric model of vertical eddy uxes in the atmosphere.Boundary Layer Meteorol., 17(2):187–202.
    Mann, H. B. (1945). Nonparametric tests against trend. Econometrica,13(3):245–259.
    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C. (1997).A pacific interdecadal climate oscillation with impacts on salmon production.Bull. Amer. Meteor. Soc., 78(6):1069–1079.
    Marti, O., Braconnot, P., Bellier, J., Benshila, R., Bony, S., Brockmann,P., Cadule, P., Caubel, A., Denvil, S., Dufresne, J. L., et al.(2005).The new IPSL climate system model: IPSL-CM4. Institut Pierre SimonLaplace, Paris, 86pp (Available at http://www.dods.ipsl.jussieu.fr/omamce/IPSLCM4/DocIPSLCM4/).
    Men′endez, C. G., Saulo, A. C., and Li, Z. X. (2001). Simulation of South Amer-ican wintertime climate with a nesting system. Clim. Dyn., 17(2):219–231.
    Menon, S., Hansen, J., Nazarenko, L., and Luo, Y. (2002). Climate eects ofblack carbon aerosols in China and India. Science, 297:2250–2253.
    Morcrette, J. J., Smith, L., and Fouquart, Y. (1986). Pressure and temperaturedependence of the absorption in longwave radiation parametrizations. Contrib.Atmos. Phys., 59(4):455–469.
    Myneni, R. B., Homan, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y.,Wang, Y., Song, X., Zhang, Y., Smith, G. R.,等(2002). Global products ofvegetation leaf area and fraction absorbed PAR from year one of MODIS data.Remote Sens. Environ., 83(1):214–231.
    Nan, S.L. and Li, J.P. (2003). The relationship between the summer precipitationin the Yangtze River valley and the boreal spring Southern Hemisphere annularmode. Geophys. Res. Lett., 30(24):2266.
    Nitta, T. and Yamada, S. (1989). Recent warming of tropical sea surface temper-ature and its relationship to the Northern Hemisphere circulation. J. Meteor.Soc. Japan, 67:375–383.
    Ogi, M., Tachibana, Y., and Yamazaki, K. (2003). Impact of the wintertimeNorth Atlantic Oscillation (NAO) on the summertime atmospheric circulation.Geophys. Res. Lett., 30(13):1704. doi:10.1029/2003GL017280.
    Ogi, M., Tachibana, Y., and Yamazaki, K. (2004). The connectivity of the winterNorth Atlantic Oscillation (NAO) and the summer Okhotsk High. J. Meteorol.Soc. Jpn., 82(3):905–913.
    Ose, T. (1996). The comparison of the simulated response to the regional snowmass anomalies over Tibet, eastern Europe, and Siberia. J. Meteor. Soc. Japan,74(6):845–866.
    Qian, B. and Saunders, M. A. (2003). Summer UK temperature and its links topreceding Eurasian snow cover, North Atlantic SSTs, and the NAO. J. Clim.,16(24):4108–4120.
    Qian, Y. F., Zheng, Y. Q., Zhang, Y., and Miao, M. Q. (2003). Responses ofChina’s summer monsoon climate to snow anomaly over the Tibetan Plateau.Inter. J. Clim., 23(6):593–613.
    Quaas, J., Boucher, O., and Br′eon, F. M. (2004). Aerosol indirect eects inPOLDER satellite data and the Laboratoire de M′et′eorologie Dynamique-Zoom (LMDZ) general circulation model. J. Geophys. Res., 109:D08205.doi:10.1029/2003JD004317.
    Sadourny, R. (1975a). Compressible model ows on the sphere. J. Atmos. Sci.,32(11):2103–2110.
    Sadourny, R. (1975b). The dynamics of finite-dierence models of the shallow-water equations. J. Atmos. Sci., 32(4):680–689.
    Sadourny, R. and Laval, K. (1984). January and July performance of the LMDgeneral circulation model, pages 173–197. New perspectives in climate model-ing. Amsterdam.
    Smith, S. D. (1988). Coecients for sea surface wind stress, heat ux, andwind profiles as a function of wind speed and temperature. J. Geophys. Res.,93:15467–15472.
    Taylor, K. E. (2001). Summarizing multiple aspects of model performance in asingle diagram. J. Geophys. Res., 106(D7):7183–7192.
    Thompson, D. W. J. and Wallace, J. M. (1998). The Arctic Oscillation signaturein the wintertime geopotential height and temperature fields. Geophys. Res.Lett., 25(9):1297–1300.
    Thompson, D. W. J. and Wallace, J. M. (2000). Annular modes in the extratrop-ical circulation. Part I: Month-to-month variability. J. Clim., 13(5):1000–1016.Thompson, D. W. J. and Wallace, J. M. (2001). Regional climate impacts of theNorthern Hemisphere Annular Mode. Science, 293:85–89.
    Thompson, D. W. J., Wallace, J. M., and Hegerl, G. C. (2000). Annular modesin the extratropical circulation. Part II: Trends. J. Clim., 13(5):1018–1036.Trenberth, K. E. (1990). Recent observed interdecadal changes in the NorthernHemisphere. Bull. Amer. Meteor. Soc., 71:988–993.
    Trenberth, K. E. and Hurrell, J. W. (1994). Decadal atmosphere-ocean variationsin the Pacific. Clim. Dyn., 9(6):303–319.
    Uppala, S. M., Kallberg, P. W., Simmons, A. J., andrae, U., Da Costa Bechtold,V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A.,etal. (2005). The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 31:2961–3012.10.1256/qj.04.176.
    van Leer, B. (1977). Towards the ultimate conservative dierence scheme: IV. Anew approach to numerical convection. J. Comput. Phys., 23(3):276–298.
    Vernekar, A. D., Zhou, J., and Shukla, J. (1995). The eect of Eurasian snowcover on the Indian Monsoon. J. Clim., 8(2):248–266.
    Walker, G. T. and Bliss, E. W. (1932). World weather V. Mem. Roy. Meteor.Soc, 4:53–83.
    Wallace, J. M. (2000). North Atlantic Oscillation/Annular Mode: Twoparadigms-one phenomenon. Quart. J. Roy. Meteor. Soc, 126(564):791–805.Wang, B. (1995). Interdecadal changes in El Nino onset in the last four decades.J. Clim., 8(2):267–285.
    Wang, B. and LinHo (2002). Rainy seasons of the Asian-Pacific summer monsoon.J. Clim., 15:386–398.
    Wang, H., Xue, F., and Zhou, G. Q. (2002). The spring monsoon in SouthChina and its relationship to large-scale circulation features. Adv. Atmos.Sci., 19(4):651–664.
    Wang, H. J. (2001). The weakening of the Asian monsoon circulation after theend of 1970’s. Adv. Atmos. Sci, 18(3):376–386.
    Wu, B. Y. and Wang, J. (2002). Possible impacts of winter Arctic Oscillation onSiberian High, the East Asian winter monsoon and sea-ice extent. Adv. Atmos.Sci., 19(2):297–320.
    Wu, G. X., Zhu, B. Z., and Gao, D. Y. (1996). The impact of the Tibetan Plateauon local and regional climate. From Atmospheric Circulation to Global Change.Beijing, iap, cas edition.
    Wu, R. G. and P.Kirtman, B. (2007). Observed relationship of spring and summerEast Asian rainfall with winter and spring Eurasian snow. J. Clim., 20:1285–1304.
    Wu, T. W. and Qian, Z. A. (2003). The relation between the Tibetan winter snowand the Asian summer monsoon and rainfall: An observational investigation.J. Clim., 16(12):2038–2051.
    Xu, Q. (2001). Abrupt change of the mid-summer climate in central eastChina by the inuence of atmospheric pollution. Atmospheric Environment,35(30):5029–5040.
    Xu, X.D., Shi, X.H., Xie, L., and Wang, Y.F. (2007). Consistency of interdecadalvariation in the summer monsoon over eastern China and heterogeneity inspringtime surface air temperatures. J. Meteor. Soc. Japan, 85:311–323.
    Yang, F. and Lau, K. M. (2004). Trend and variability of China precipitationin spring and summer: linkage to sea-surface temperatures. Int. J. Climatol.,24(13):1625–1644.
    Yang, S., Lau, K. M., Yoo, S. H., Kinter, J. L., Miyakoda, K., and Ho, C. H.(2004). Upstream subtropical signals preceding the Asian Summer Monsooncirculation. Journal of Climate, 17(21):4213–4229.
    Yin, M. T. (1949). A synoptic-aerologic study of the onset of the summer mon-soon over India and Burma. 6(6):393–400.
    Yu, R. C., Li, W., Zhang, X. H., Yu, Y. Q., Liu, H. L., and Zhou, T. J. (2000). Cli-matic features related to eastern China summer rainfalls in the NCAR CCM3.Adv. Atmos. Sci., 17:503–518.
    Yu, R. C., Wang, B., and Zhou, T. J. (2004a). Climate eects of the deep conti-nental stratus clouds generated by the Tibetan Plateau. J. Clim., 17(13):2702–2713.
    Yu, R. C., Wang, B., and Zhou, T. J. (2004b). Tropospheric cooling and summermonsoon weakening trend over East Asia. Geophys. Res. Lett., 31:L12204.doi:10.1029/2004GL019814.
    Yu, R. C. and Zhou, T. J. (2004). Impacts of winter-NAO on March coolingtrends over subtropical Eurasia continent in the recent half century. Geophys.Res. Lett., 31:L22212. doi:10.1029/2004GL019814.
    Yu, R. C. and Zhou, T. J. (2007). Seasonality and three-dimensional structure ofinterdecadal change in the East Asian monsoon. Journal of Climate. in press.Zhai, P., Zhang, X., Wan, H., and Pan, X. (2005). Trends in total precipitationand frequency of daily precipitation extremes over China. J. Clim., 18(7):1096–1108.
    Zhang, Y., Kuang, X., Guo, W., and Zhou, T. (2006). Seasonal evolution ofthe upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett.,33:L11708. doi:10.1029/2006GL026377.
    Zhang, Y., Li, T., and Wang, B. (2004). Decadal change of the spring snow depthover the Tibetan Plateau: the associated circulation and inuence on the EastAsian summer monsoon. J. Clim., 17(14):2780–2793.
    Zhou, T. J. and Li, Z. X. (2002). Simulation of the East Asian summer monsoonusing a variable resolution atmospheric GCM. Clim. Dyn., 19(2):167–180.
    Zhou, T. J. and Yu, R. C. (2005). Atmospheric water vapor transport associatedwith typical anomalous summer rainfall patterns in China. J. Geophys. Res.,110(D08104):8104–8104.
    Zhou, T. J. and Yu, R. C. (2006). Twentieth-century surface air temperatureover China and the Globe simulated by coupled climate models. J. Clim.,19(22):5843–5858.
    Zhou, T. J., Yu, R. C., and Wang, B. (2007). Ocean forcing to changes inglobal monsoon precipitation over the recent half century. Journal of Climate.submitted.
    Zhou, T. J., Zhang, X. H., Yu, Y. Q., Yu, R. C., and Wang, S. W. (2000). TheNorth Atlantic Oscillation simulated by version 2 and 4 of IAP/LASG GOALSmodel. Adv. Atmos. Sci., 17(4):601–616.
    Zhu, J. H. and Wang, S. W. (2002). 80 yr oscillation of summer rainfall overNorth China and East Asian summer monsoon. Geophys. Res. Lett., 29(14).doi:10.1029/2001GL013997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700