用户名: 密码: 验证码:
保护性耕作措施对大豆—冬小麦轮作系统CO_2、N_2O排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变暖是当今重要的环境问题,农田生态系统在全球温室气体收支中占有重要地位,引起了国内外学者的广泛关注。本研究采用田间试验方法,进行不同耕作方式和秸秆管理处理,分别为免耕(NT, no-till with no straw cover),免耕+秸秆(NTS, no-till with straw cover),常规翻耕(T, conventional tillage),常规翻耕+秸秆(TS, conventional tillage with straw cover),开展了两个大豆生长季和一个冬小麦生长季的试验。采用静态箱-气相色谱法测定土壤及土壤-作物系统的CO2和N20排放通量,探讨保护性耕作对农田生态系统CO2和N20排放的影响。为全面的评价保护性耕作的生态效益,以及在保护性耕作大范围推广背景下预测区域农田生态系统温室气体排放趋势提供科学依据。结果表明:
     免耕(NT)、免耕+秸秆(NTS)和翻耕+秸秆(TS)与传统耕作(T)相比,都没有改变土壤-冬小麦系统CO2和N2O排放通量的季节性变化规律。从CO2排放通量来看,NT处理在拔节-孕穗期显著降低了土壤-冬小麦系统的CO2排放通量,降幅达36.45%(p=0.041),NTS.TS则无显著差异(p>0.05)。从N2O排放通量来看,NT.NTS以及TS与常规耕作T相比均无显著差异(p>0.05)。
     免耕(NT)、免耕+秸秆(NTS)和翻耕+秸秆(TS)与传统耕作(T)相比,都没有改变土壤-大豆系统CO2和N20排放通量的季节性变化规律。从CO2排放通量来看,NT处理在鼓粒-成熟期显著降低了土壤-大豆系统的CO2排放通量,降幅达28.82%(p=0.043),NTS则在开花-结荚期显著增加了土壤-大豆系统的CO2排放通量,增幅达28.04%(p=0.045),TS处理与常规耕作T相比无明显差异(p>0.05)。从N20排放通量来看,NT.NTS以及TS与常规耕作T相比均无显著差异(p>0.05)。
     免耕(NT)、免耕+秸秆(NTS)和翻耕+秸秆(TS)与传统耕作(T)相比,都没有改变土壤CO2和N20排放通量的季节性变化规律。从CO2排放通量来看,NT、NTS以及TS均不同程度降低了土壤CO2排放通量,但差异不显著(p>0.05)。在N20排放通量方面,NT显著降低了土壤的N20排放通量,降幅达31.64%(p=0.039),NTS.TS与常规耕作T相比则无显著差异(p>0.05)。
     土壤-冬小麦系统、土壤-大豆系统以及土壤的CO2排放通量有着较明显的日变化规律,保护性耕作各处理免耕(NT)、免耕+秸秆(NTS)和翻耕+秸秆(TS)与传统耕作(T)相比都没有改变这一规律。土壤-冬小麦系统、土壤-大豆系统以及土壤的N20排放呈规律性和随机性排放两种,保护性耕作各处理同样没有改变这一规律。
Global warming is a very important environmental issue today, and farmland ecosystem plays a vital role in the global greenhouse gases budget, which have been consernd by scholars of all contries extensively. Field experiments including two soybean growing season and one winter-wheat growing season were adopted. And the entire experimental field was divided into four equal-area sub-blocks which differ from each other only in tillage systems which are no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), conventional tillage (T) and conventional tillage with straw cover (TS). To investigate the influence of conservation tillage on CO2and N2O emission from farmland ecosystem, and CO2and N2O emission fluxes from soil and soil-crop system were analyzed by static chamber-gas chromatography method. Furthermore, this study will provide the base to evaluate the ecological effect of conservation tillage objectively, as well as to estimate the regional farmland greenhouse gas emission and its' long term tendency in farmland ecosystem under conservation tillage. Results indicated that:
     Every treatment of conservation tillage, NT, NTS, and TS compared with conventional tillage (T), did not change the seasonal pattern of CO2and N2O emission fluxes from soil-winter wheat system. In the respect of CO2emission fluxes, NT significantly declined mean CO2emission fluxes (MCEF) by36.45%(p=0.041) during jointing-booting stage, however, NTS and TS had no significant difference (p>0.05) in MCEF. In the respect of N2O emission fluxes, none of NT, NTS and TS had significant difference (p>0.05) compared with T in mean N2O emission fluxes (MNEF).
     Every treatment of conservation tillage, NT, NTS, and TS compared with conventional tillage (T), did not change the seasonal pattern of CO2and N2O emission fluxes from soil-soybean system. In the respect of CO2emission fluxes, NT significantly declined MCEF by28.82%(p=0.043) during pod filling-maturity stage, NTS significantly raised MCEF by28.04%(p=0.045) during flowering-pod setting stage. There was no significant difference (p>0.05) between T and TS in MCEF. In the respect of N2O emission fluxes, none of NT, NTS and TS had significant difference (p>0.05) compared with T in MNEF.
     Every treatment of conservation tillage, NT, NTS, and TS compared with conventional tillage (T), did not change the seasonal pattern of CO2and N2O emission fluxes from soil. In the respect of CO2emission fluxes, none of NT, NTS and TS had significant difference (p>0.05) compared with T in MCEF. In the respect of N2O emission fluxes, NT significantly declined MCEF by31.64%(p=0.039), however, NTS and TS had no significant difference (p>0.05) in MCEF.
     An obvious diurnal variation of CO2emission fluxes was observed in soil-winter wheat system, soil-soybean system and soil, which did not changed by every treatment of conservation tillage, NT, NTS, and TS. And N2O emission fluxes showed regular or random diurnal variation from soil-winter wheat system, soil soybean system and soil.
引文
[1]Annalea Lohila, Mika Aurela, Kristiina Regina, et al. Soil and total ecosystem respiration in agricultural fields:effect of soil and crop type [J]. Plant and Soil, 2003,251(2):303-317.
    [2]Baumhardt R L, Jones O R. Residue management and tillage effects on soil-water storage and grain yield of dry-land wheat and sorghum for a clay loam in Texas. Soil & Tillage Research,2002,68:71-82.
    [3]Blevins R L, Thomas G W, Smith M S, Frye W W, Comelius P L. Changes in soil properties after 10 years continuous non-tilled and conventionally tilled corn [J]. Soil and Tillage Research,1983,3:135-146.
    [4]Boone R D, Nadelhoer K J, Canary J D, et al. Roots exert a strong influence on the temperature sensitivity of soil respiration [J]. Nature,1998,396:570-572.
    [5]Bouwman A F. The role of soil and land use in the greenhouse effect [M]//Bouwman A F. In soils and the greenhouse effect. Chichester:Wiley,1990: 61.
    [6]Bremner J M, Blackmer A M. Nitrous oxide:Emission from soils during nitrification of fertilizer nitrogen [J]. Science,1978,199:295-296.
    [7]Bruce R R. Tillage and crop rotation effect on characteristics of sands surface soil [J]. Soil Sci. Soc. Am J.1990,54(6):1744-1747.
    [8]Buman R A, Alesii B A, Hatfield J L, et al. Profit, yield, and soil quality y effects of tillage systems in corn-soybean rotations [J]. Journal of Soil and Water Conservation,2004,59(6):260-270.
    [9]Chang C, Janzen H H, Cho C M, Nakonechny E M. Nitrous oxide emission through plants [J]. Soil Science Society of America Journal,1998,62(1):35-38.
    [10]Chang C, Lind wall C W. Effect of long-term minimum tillage practices on some physical properties of a Chernozem clay loam [J]. Can. J. Soil Sci,1989,69: 443-449.
    [11]Chatskikh D, Olesen J E. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley [J]. Soil Till. Res.,2007,97 (1):5-18.
    [12]Chen G X, Xu H, Zhang Y, Zhang X J, Li Y Y, Shi R J, Yu KW, Zhang X D. Plant:a potential source of the atmospheric N2O [J]. Quaternary Sciences,2003, 23(5):504-511.
    [13]Choudhary M A, Akramkhanov A, Saggar S. Nitrous oxide emissions from a New Zealand cropped soil:Tillage effects, spatial and seasonal variability [J]. Agriculture, Ecosystems and Environment,2002,93(1/3):33-43.
    [14]Conrad R, SeilerW, Bunse G. Factors influencing the loss of fertilizer nitrogen into the atmosphere as N2O [J]. Journal of Geophysical Research,1983,88(c11): 6709-6718.
    [15]Cornish P S, Lymbery J R. Reduced early growth of direct drilled wheat in southern New South Wales:causes and consequences [J]. Aust, Exp. Agric,1987, 27:869-880.
    [16]Cox W J, Zobel R W, van Es H M, et al. Tillage effects on some soil physical and corn physiological characteristics [J]. Agron. J,1990,82:812-860.
    [17]Del Grosso S J, Parton W J, Mosier A R, Ojima D S, Kulmala A E, Phongpan S. Generalmodel for N2O and N2 gas emissions from soils due to denitriflcation [J]. Global Biogeochemical Cycle,2000,14 (4):1045-1060.
    [18]Delwiche C C. Denitrification, nitrification and atmospheric N2O [M]. Chichester:John Wiley and Sons,1981:151-170.
    [19]Dilustro J I, Collies B, Duncan L, et al. Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests [J]. Forest Ecology and Management,2005,204:85-95.
    [20]Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature [J]. Soil Biology & Biochemistry,2001,33:155-165.
    [21]Franzluebbers A J. Water infiltration and soil structure related to organic matter and its stratification with depth [J]. Soil & Tillage Research,2002,66:197-205.
    [22]Fuentes P Juan, Flury Markus, Huggins R David, et al. Soil water and nitrogen dynamics in dry-land cropping systems of Washington State, USA. [J]. Soil & Tillage Research,2003,71:33-47.
    [23]Gajri P R, Arora V K, Chaudhary M R. Maize growth response to deep tillage, straw mulching and farmyard manure in coarse textured soils of NW India [J]. Soil Use Manage,1994,10:15-20.
    [24]Hammel J E. Long-term tillage and crop rotation effects on winter wheat production in northern Idaho [J]. Agron. J,1995,87:16-22.
    [25]Heenan D P, Mghie W J, Thomson F M et al. Decline in soil organic and total nitrogen in relation to tillage, stubble management, and nitrogen [J]. Australian Journal of Experimental Agriculture,1995,35:877-884.
    [26]IPCC. Climate Change 2007. (http://www.ipcc.ch/)
    [27]IPCC. Special Report on Emissions Scenarios, Working Group III, Intergovernmental Panel on Climate Change [R]. Cambridge:Cambridge University Press,2000.
    [28]Ivan A J, Kim P. Large seasonal changes in Q10 of soil respiration in a beech forest [J]. Global Change Biology,2003,9:911-918.
    [29]Jacinthe P A, Dick W A. Soil management and nitrous oxide emissions from cultivated fields in southern Ohio [J]. Soil Tillage Res.1997,41:221-235.
    [30]Kaharabata S K, Drury C F, Priesack E, Desjardins R L, McKenney D J, Tan C S, Reynolds D. Comparing measured and Expert-N predicted N2O emissions from conventional and no till corn treatments [J]. Nutr. Cycl. Agroecosys.2003,66: 107-118.
    [31]Koponen H T, Flojt L, Martikainen P J. Nitrous oxide emissions from agricultural soils at low temperatures:a laboratory microcosm study [J]. Soil Biology & Biochemistry,2004,36(5):757-766.
    [32]Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science,2004,304(11):1623-1627.
    [33]Lampurlanes J, Cantero-Martinez C. Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions [J]. Soil & Tillage Research,2006,84:13-26.
    [34]Lemke R L, Izaurralde R C, Nyborg M, Solberg E D. Tillage and N-source influence soil-emitted nitrous oxide in the Alberta parkland region [J]. Can. J. Soil Sci.1999,79:15-24.
    [35]Lennart M, Jan P. Impacts of rotations and crop residue treatments on soil organic matter content in two Swedish long-term experiments [J]. Archives of Agronomy and Soil Science,2006,52(5):485-494.
    [36]Lennart M, Jan P. Impacts of rotations and crop residue treatments on soil organic matter content in two Swedish long -term experiments [J]. Arch Agron Soil Sci,2006,52(5):485-494.
    [37]Li J, Zhao B Q, Li X Y, et al. Effects of long-term combined application of organic and mineral fertilizers on microbial biomass, soil enzyme activities and soil fertility [J]. Agricultural Sciences in China,2008,7(3):336-343.
    [38]Li J, Zhao BQ, Li XY, et al. Effects of long-term combined application of organic and mineral fertilizers on microbial biomass, soil enzyme activities and soil fertility [J]. Agr Sci China,2008,7(3):336-343.
    [39]Liu X Z, Wan S Q, Su B, et al. Response of soil CO2 efflux to water manipulation in a tall grass prairie ecosystem [J]. Plant and Soil,2002, 240:213-223.
    [40]Mielnick P C, Duagas W A. Soil CO2 flux in a tall grass prairie [J]. Soil Bio Biochem,2000,32:221-228.
    [41]MU Zhijian, Sonoko D. KIMURA, Yo TOMA, Ryusuke HATANO. Nitrous oxide fluxes from upland soils in central Hokkaido, Japan [J]. Journal of Environmental Sciences,2008,20:1312-1322.
    [42]Ojeniyi S O. Effects of zero-tillage and disk plowing on soil water, soil temperature and growth and yield of maize (Zea mays L.) [J]. Soil Tillage Res. 1986,7:173-182.
    [43]Oussible M, Crookston R K, Larson W E. Subsurface compaction reduces the root and shoot growth and grain yield of wheat [J]. Agron. J,1992,84:34-38.
    [44]Parkin T B, Kaspar T C. Nitrous oxide emissions from corn-soybean systems in the Midwest [J]. Environ. Qual.2006,35:1496-1506.
    [45]Parton W J, MosierA R, Ojima D S, Valentine D W, Schimel D S, Weier K, Kulmala A E. Generalized model for N2 and N2O production from nitrification and denitrification [J]. Global Biogeochemical Cycles,1996,10(3):401-412.
    [46]Paul E A, Clark F E. Soil microbiology and biochemistry [M]. New York: Academic Press Inc,1989:91-130.
    [47]Reich P B, Walters M B, Ellsworth D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span:a test across biomes and functional groups [J]. Oecologia,1998,114:471-482.
    [48]Reicosky D C, Reeves D W, Prior S A, et al. Effects of residue management and controlled traffic on carbon dioxide and water loss [J]. Soil & Tillage Research, 1999,52(3/4):153-165.
    [49]Robertson G P, Paul E A, Harwood R R. Greenhouse gases in intensive agriculture:Contributions of individual gases to the radiative forcing of the atmosphere [J]. Science 2000,289:1922-1925.
    [50]Rochette P, Angers D A, Belanger G, Chantigny M H, Prevost D, Levesque G Emissions of N2O from Alfalfa and Soybean Crop s in Eastern Canada [J]. Soil Science Society of America Journal,2004,68(2):493-506.
    [51]Ryan M G. Effects of climate change on plant respiration [J]. Ecol Appl,1991, 1(2):157-167.
    [52]Silvola J, Alm J, Ahlholm U, et al. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions [J]. Journal of Ecology,1996,84(2): 219-228.
    [53]Silvola J, Alm J, Ahlholm U, et al. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions [J]. Journal of Ecology,1996,84(2): 219-228.
    [54]Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems [J]. Botanical Review,1997,43(4):449-528.
    [55]Smart D R, Bloom A J. Wheat leaves emit nitrous oxide during nitrate assimilation [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(14):7875-7878.
    [56]Staley T E著,郎印海译,耕作方式对土壤微生物量影响的研究[J].水土保持科技情报,2001,(1):12-13.
    [57]Swan J B, Schneider E C, Moncrief J F, et al. Estimating corn growth. Yield and grain moisture from air growing degree days and residue cover [J]. Agron. J, 1987,79:53-60.
    [58]Tate R L. Soil organic matter:Biological and ecological effects [M]. New York: John Willey and Sons,1987:238-259.
    [59]Teepe R, Brumme R, Beese F. Nitrous oxide emissions from soil during freezing and thawing periods [J]. Soil Bio & Biochem,2001,33:1269-1275.
    [60]Tjoelker M G, Oleksyn J, Reich P B. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10 [J]. Global Change Biolo, 2001,7(2):223-230.
    [61]Unger P W. Tillage effects on surface soil physical conditions and sorghum emergence [J]. Soil Sci. Am J.1984,48:1423-1432.
    [62]Wang Y S, Wang Y H. Quick measurement of CH4, CO2, and N2O emission from a short-time ecosystem [J]. Advance of Atmospheric Science,2003,20(5): 842-844.
    [63]Yan X, Shi S, Du L, Xing G Pathways of N2O emission from rice paddy soil [J]. Soil Biology and Biochemistry,2000,32(3):437-440.
    [64]Zou J W, Huang Y, Sun W J, Zheng X H, Wang Y S. Contribution of plants to N2O emissions in soil-winter wheat ecosystem:pot and field experiments [J]. Plant and Soil,2005,269(122):205-211.
    [65]陈素英,张喜英,刘孟雨.玉米秸秆覆盖麦田下的土壤温度和土壤水分动态规律[J].中国农业气象,2002,4:34-37.
    [66]戴万宏,王益权,黄耀,等.农田生态系统土壤CO2释放研究[J].西北农林科技大学学报(自然科学版),2004,32(12):1-7.
    [67]邓力群,陈铭达,刘兆普,沈其荣,王洪军,王建华.地面覆盖对盐渍土水热盐运动及作物生长的影响.土壤通报,2003,34(2):93-97.
    [68]丁昆仑,Hann M J.耕作措施对土壤特性及作物产量的影响[J].农业工程学报,2000,16(3):28-32.
    [69]范丙全,刘巧玲.保护性耕作与秸秆还田对土壤微生物及其溶磷特性的影响[J].中国生态农业学报,2005,13(3):130-132.
    [70]封克,殷士学.影响氧化亚氮形成与排放的土壤因素[J].土壤学进展,1995,23(6):35-42.
    [71]高焕文.保护性耕作技术与机具[M].北京:化学工业出版社,2004:25-28.
    [72]高辉远,邹琦,程炳嵩.大豆叶片光合速率和呼吸速率对温度的响应[J].中国油料作物学报,1992,3:60-61.
    [73]高亚军,李生秀.早地秸秆覆盖条件下作物减产的原因及作用机制分析[J].农业工程学报,2005,21(7):15-19.
    [74]龚静,王翔,黄安芬,沈茜.马铃薯免耕栽培与传统栽培对比试验[J].贵州农业科学,2005,(1):77.
    [75]胡立峰,李洪文,高焕文.保护性耕作对温室效应的影响[J].农业工程学报,2009,25(5):308-312.
    [76]胡正华,李岑子,陈书涛,等.臭氧浓度升高对土壤-冬小麦系统COz排放的影响[J].环境科学,2011,32(1):46-50.
    [77]胡正华,杨燕萍,李涵茂,等.UV-B增强与秸秆施用对土壤-大豆系统呼吸速率和N2O排放的影响[J].中国环境科学,2010,30(4):539-543.
    [78]黄国勤,黄小洋,张兆飞,刘隆旺,章秀福,高旺盛.免耕对水稻根系活力和产量性状的影响[J].中国农学通报,2005,27(5):170-173.
    [79]黄耀.地气系统碳氮交换—从实验到模型[M].2003,北京:气象出版社.
    [80]贾树龙,孟春香,任图生,杨云马.耕作及残茬管理对作物产量及土壤性状的影响[J].河北农业科学,2004,12(4):37-42.
    [81]蒋静艳,黄耀,宗良纲.环境因素和作物生长对稻田CH4和N2O排放的影响[J].农业环境科学学报,2003,22(6):711-714.
    [82]金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000(1):11-17.
    [83]劳秀荣,吴子一,高燕春.长期秸秆还田改土培肥效应的研究[J].农业工程学报,2002,18(2):49-52.
    [84]李立科.小麦留茬少耕秸秆全程覆盖新技术[J].陕西农业科学,1999,(4):40-41.
    [85]李琳,李素娟,张海林,陈阜.保护性耕作下土壤碳库管理指数的研究[J].水土保持学报,2006,20(3):106-109.
    [86]李琳,张海林,陈阜.不同耕作措施下冬小麦生长季农田二氧化碳排放通量及其与土壤温度的关系[J].应用生态学报,2007,18(12):2765-2770.
    [87]刘博,黄高宝,高亚琴,等.免耕对旱地春小麦成熟期C02和N20排放日变化的影响[J].甘肃农业大学学报,2010,45(1):82-87.
    [88]刘世平,庄恒阳,陆建飞,等.免耕法对土壤结构影响的研究[J].土壤学报,1998,35(1):33-37.
    [89]刘跃平,刘太平,刘文平,李新梅.玉米整秸秆覆盖的集水增产作用[J].中国水土保持,2003(4):32-33.
    [90]刘允芬.农业生态系统碳循环研究[J].自然资源学报,1995,11(1):1--8.
    [91]刘振钰,王翠萍,路海燕,雷利峰,武运生.旱地玉米整秸秆不同覆盖形式的增产效应[J].山西农业科学,2000,28(3):20-22.
    [92]罗珠珠,黄高宝,Li guangdi,等.保护性耕作对旱作农田耕层土壤肥力及酶活性的影响[J].植物营养与肥料学学报,2009,15(5):1085-1092.
    [93]牛新胜,牛灵安,张宏彦,等.玉米秸秆覆盖免耕对土壤呼吸的影响[J].生态环境,2008,17(1):256-260.
    [94]逢焕成.秸秆覆盖对土壤环境及冬小麦产量状况的影响[J].土壤通报,1999,30(4):174-175.
    [95]逢蕾,黄高宝.不同耕作方式对旱地土壤有机碳转化的影响[J].水土保持学报,2006,20(3):110-113.
    [96]秦红灵,李春阳,高旺盛,等.北方农牧交错带干旱区保护性耕作对土壤水分的影响研究[J].干旱地区农业研究,2005,23(6):22-25,31.
    [97]隋淑霞,宇文剑飞,周景奎.保护性耕作对农作物生育及产量的影响分析[J].农村牧区机械化,2002,(4):61-64.
    [98]孙文娟,黄耀,陈书涛,等.稻麦作物呼吸作用与植株氮含量、生物量和温度的定量关系[J].生态学报,2005,25(5):1152-1158.
    [99]陶诗顺.麦后免耕直播杂交水稻的生育特性及产量研究[J].西南科技大学学报,2003,18(3):61-64.
    [100]万运帆,李玉娥,高清竹,等.田间管理对华北平原冬小麦产量土壤碳及温室气体排放的影响[J].农业环境科学学报,2009,28(12):2495-2500.
    [101]王芸,李增嘉,韩宾,等.保护性耕作对土壤微生物量及活性的影响[J].生态学报.2007,27(8):3384-3390.
    [102]王笳,王树楼,丁玉川,等.旱地玉米免耕整秸秆覆盖土壤养分、结构和生物研究[J].山西农业科学,1994,22(3):17-19.
    [103]王秀,赵四申,贾素梅,等.麦茬高度对免耕夏玉米田土壤水分和土壤温度的影响[J].河北农业科学,2001,5(3):10-15.
    [104]王芸,韩宾,史忠强,邵国庆,江晓东,宁堂原,焦念元,李增嘉.保护性耕作对土壤微生物特性及酶活性的影响[J].水土保持学报,2006,20(4):120-122,142.
    [105]谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(4):47-52.
    [106]熊楚国,曾家玉.黔油17号免耕高产栽培示范效果[J].栽培与耕作,2005,(2):38.
    [107]杨江山,张恩和,黄高宝,等.保护性耕作对麦药轮作土壤酶活性和微生物数量的影响[J].生态学报.2010,30(3):0824-0829.
    [108]杨景成,韩兴国,黄建辉,等.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-1390.
    [109]杨平,杜玉华.国外土壤二氧化碳释放问题的研究动态[J].中国农业气象,1996,17(1):48-50.
    [110]杨平,杜玉华.国外土壤二氧化碳释放问题的研究动态[J].中国农业气象,1996,17(1):48-50.
    [111]杨招弟,蔡立群,张仁陟,李爱宗.不同耕作方式对旱地土壤酶活性的影响[J].土壤通报,2008,39(3):514-517.
    [112]袁家福.麦田秸秆覆盖效应及增产作用[J].生态农业研究,1996,4(3):61-65.
    [113]张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展[J].地球科学进展,2005,20(7):778-785.
    [114]张桂荣,吴明生,郗恩沛,朱海涛.保护性耕作技术试验研究初探[J].农村牧区机械化,2002,(4):68.
    [115]张国盛,Chan K Y, Li G D, Heenan D P.长期保护性耕作方式对农田表层土壤性质的影响[J].生态学报,2008,28(6):2722-2728.
    [116]张海林,陈阜,秦耀东,朱文珊.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报,2002,18(2):36-40.
    [117]张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境,2003,12(4):500-504.
    [118]张星杰,刘景辉,李立军.保护性耕作方式下土壤养分、微生物及酶活性研究[J].土壤通报,2009,40(3):542-546.
    [119]郑循华,王明星,王跃思,等.华东稻麦轮作系统的N20排放研究[J].应用生态学报,1997,8(5):495-499.
    [120]郑循华,王明星,王跃思,等.温度对农田N20产生与排放的影响[J].环境科学,1997,18(5):1-5.
    [121]朱自玺,赵国强,邓天宏,方文松,付祥军.秸秆覆盖麦田水分动态及水分利用效率研究[J].生态农业研究,2000,8(1):34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700