用户名: 密码: 验证码:
残采区上行开采基础理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国对煤炭需求增长的无限性与资源的有限性这一矛盾日趋突出,而新生替代能源目前还不能取代煤炭的主体能源地位。因此必须节约煤炭资源,提高资源回收率。现有生产矿区(井)中,很多采空区上方遗弃有大面积的可采煤层。科学合理的回收这部分煤层对于建设节约型社会和促进国民经济可持续发展有着十分重要的意义。
     回收采空区上方遗弃煤层实质上是残采区上行开采。通常煤层开采在顶板岩层中形成的破坏扰动区远大于在底板岩层中形成的破坏扰动区,因此,为减小本煤层开采对临近煤层的扰动,生产实际中几乎全部采用下行开采方式,与此相应人们所开展的理论技术研究也多针对下行开采领域。仅有的上行开采的相关研究,也多集中在以层间距为核心的仅考虑下部煤层开采影响的经验的可行性判定方法、矿压观测分析等方面,而事实上上行开采的核心问题是上、下煤层开采共同影响作用下上部煤层底板的移动变形规律,其移动变形规律又取决于层间岩层结构。因此,进行残采区上行开采层间岩层结构及其上部煤层底板移动变形规律的研究,才能深入奠定残采区上行开采的理论基础,对于进一步促进上行开采技术的发展和高效回收历史弃采煤层,有着重要的理论意义与指导价值。
     本文从残采区上行开采层间岩层结构及其上部煤层底板移动变形规律入手,通过实验研究、理论分析、数值模拟、现场实测以及工业试验相结合的方法,对残采区上行开采的层间岩层结构、可行性判定理论及方法、上部煤层底板移动变形规律和残采区上行开采矿压控制技术进行了系统的研究。主要研究内容及成果如下:
     (1)针对残采区上行开采,分垮落法残采区和刀柱式残采区上行开采两种情况,通过相似模拟实验进行了层间岩层结构的演化规律、围岩应力分布规律和层间岩层移动变形规律的研究。研究发现:残采区上行开采层间岩层存在控制层,其中垮落法残采区上行开采层间岩层破断后由于剪胀效应其破断块体之间排列整齐、相互挤压形成块体梁——半拱结构,其半拱部分位于采空区上方四周,为面面接触的块体挤压结构,其轴线(即力的传递作用线)为一曲线;该结构的块体梁部分即采空区上方中部断裂块体相互挤压形成的虽有裂隙却不失整体性的类梁结构。其上方岩层保持较好的完整性和宏观连续性,呈现典型的梁、板结构。就下沉移动量而言,同一岩层中下沉移动量最大的点位于下部采空区中心附近上方,其两侧点位的下沉量随着偏离中心距离的增大而减小。其破断冒落岩层最终形成典型的“变形盆地”,而上方未冒落岩层的下沉曲线会形成局部盆地的波浪状。层间岩层的下位坚硬岩层易成为层间岩层的控制层。对于刀柱式残采区上行开采,煤柱承担上部岩层载荷出现不均衡性——“强柱弱载”和“强载弱柱”,即承载能力弱的煤柱承受岩梁载荷强,而承载能力强的煤柱承受岩梁载荷弱,岩层破断的原因是弱煤柱先压缩变形剪破坏,而强柱端的岩梁产生拉破坏,岩梁断裂垮冒,最终形成冒落带,上方未断裂的岩层基本没有裂隙的产生,保持原完整连续的状态,其作为层间岩层控制层,呈现典型的梁、板结构。
     (2)在相似模拟实验的基础上,结合岩石力学、块体理论、弹塑性力学和结构力学等理论,分析并获得了下部煤层开采对层间岩层的损伤影响范围,分别建立了垮落法残采区和刀柱式残采区上行开采层间岩层结构的力学模型,并分别进行了详细的力学解析,分析了垮落法残采区上行开采和刀柱式残采区上行开采的机理,同时用数值模拟的方法进行了验证。
     (3)针对残采区上行开采的层间岩层,通过理论推演的方法研究了上部煤层开采的采动及其扩散影响,分析了垮落法残采区和刀柱式残采区上行开采层间岩层的稳定性,进而基于结构的理论分别提出了垮落法残采区和刀柱式残采区上行开采的可行性定量判定方法,并通过现场试用,对该理论及技术的科学合理性与客观适用性进行了验证。
     (4)通过现场实测的方法,对残采区上行开采的矿压显现规律进行了研究。结果表明:残采区上行开采由于受下部煤层开采的损伤影响,上部煤层围岩整体性会有不同程度的弱化,在上部煤层开采前已把上覆岩层的自重及其载荷部分传递给采空区范围以外的煤岩体,起到了卸压的作用,残采区上行开采的矿压显现不剧烈,周期来压步距不大。同时,引入概率积分法,对残采区上行开采上部煤层底板移动变形情况进行了预测分析,与现场实测的结果进行了比较分析对照,研究了残采区上行开采上部煤层底板移动变形规律。
     (5)用数值模拟和理论分析相结合的方法,分析了残采区上行开采上部煤层底板移动变形的力学特性,在此基础上分别建立了垮落法残采区和刀柱式残采区上行开采上煤底板岩层运移的力学模型,通过力学求解,获得了垮落法残采区和刀柱式残采区上行开采上煤底板岩层运移规律的预测模型。
     (6)在上述理论研究、实验研究与现场实测研究的基础上,形成了残采区上行开采的理论与技术,在山西焦煤西山煤电集团白家庄煤矿进行了试验及工业实施,成功解决了白家庄煤矿8号煤层采空区上方6号煤层回收的技术难题,取得了显著的技术经济效益与环境、社会效益。该技术在理论上是科学的、技术上是可行的。为残采区上行开采提供了理论指导与技术支持。
The contradictions have manifested itself between China's infinite demand of coal and the limited resources gradually , and the coal, as the main energy, new alternative energy sources can not be replaced. It is necessary to save coal resources and improve the recovery rate. There is a large area of workable bed on the top of mined-out region in existing production mining. It is significant for building a conservation-minded society and the promotion of sustainable development of the national economy to recover this coal scientifically and rationally.
     Recovery of abandoned coal seam on the top of mined-out area is essentially the ascending mining of coal reserve. Coal mining formed the damage zone in the roof strata is usually much larger than in the floor strata. Therefore, in order to reduce the disturbance on mining the close coal seam, mining taken in descending order is adopted almost in practice. Correspondingly, the theoretical and technical studies are carried out mainly for the descending mining. Researches related on ascending mining are concentrated on the coal seam spacing only considered Experiential and Feasibility Test Methods influenced by the lower part of coal mining and mining pressure observation analysis. In fact the core issue of ascending mining is the laws of upper coal floor movement and deformation under influence of upper coal seam mining upon lower coal seam mining depending on the structure between the rock strata. Thus, research on the structure between the rock strata in ascending mining of coal reserve and the laws of upper coal floor movement provide a sound basis for further research in the future and promote the development of ascending mining technology and efficient recovery of the abandoned mining coal seam, which has an important part on the theoretical guidance.
     In this paper, the research is made from the structure between the rock strata in ascending mining of coal reserve and the laws of upper coal floor movement through a combination of methods such as the experimental research. These are researched systemically, concluding the structure between the rock strata in ascending mining、experiential and feasibility test methods、the laws of upper coal floor movement and deformation and the control system technology of mining pressure residual in ascending mining of coal reserve. The main research content and results are as follows:
     (1)on account of the ascending mining of coal reserve,separating two ways of caving mining and pillar supporting mining, making a research on the evolution law of the structure between the rock strata, stress distribution of surrounding rocks and the movement and deformation laws between the rock strata. The study found: the control stratum existed between the rock strata in ascending mining. After failure of interlayer in the ascending mining with the method of coal reserve of caving mining , as a result of dilatancy effect ,broken blocks arranged orderly and strained against another formed beams----semi-arch structure, half part of which semi-arch is at the top of mined-out area with extrusion block structure of the surface-to-surface contact which axis (that is, the role of power transmission lines) is a curve ; the structure of block beam is similar with the structure of beam formed by straining against broken blocks of each other in the central of upper mined-out area despite the cracks but not losing the overall structure. The top of rocks maintain the good integrity and macro-continuity and present a typical beam and plate structure. As far as displacement of sinking is concerned, the point with maximum displacement is located above the middle of the lower gob area. The amount of displacement on both sides decreases with the increase of out-of- center distance. The breaking caving rocks forms a typical“deformed basin”, while curve showing the sinking of upper no- carving rocks will form waviness of partial basin. Lower hard ones of interlayer rocks can easily become the control layer of them. As for ascending mining of remaining coal reserve with pillar support, stump undertakes the load from the upper rock leading to a malconformation---------“strong stump with weak carrying capacity“and“weak stump with strong carrying capacity”,namely stump with weak carrying capacity has more capacity of carrying loads from rock beam, and vice versa. This leads to compressive deformation and shear fracture to the weak stump and tensile failure to the rock beam on the edge of the strong stump, which form a caving zone. The rock with no break on the top can maintain the original state of integrity and continuity and form a typical beam and plate structure.
     (2) Based on analog simulation experiment, with a combination of rock mechanics, block theory, elastic-plastic mechanics and structural mechanics, sphere of influence on the interlayer rock by exploitation of the lower coal seam is analyzed and acquired; mechanical models of interlayer rock structure through ascending mining with caving and pillar supporting are respectively established and analyzed; mechanisms of ascending mining with caving and pillar supporting mining are analyzed and verified by numerical simulation.
     (3) On account of interlayer of coal reserve in ascending mining, through theoretical deduction ,research on the impact of the upper layer mining and the diffusion, analysis on the stability of interlayer rock in ascending mining with caving mining and pillar supporting mining .Then based on the structural theory, quantitative and feasible determination method is put forward about coal reserve of caving and pillar supporting mining, and through on-site trial , the scientific rationality and the objective application of the theory are proved.
     (4) Through on-site measurement, regularity of strata behavior by ascending mining of remaining coal reserve is explored. The results indicate that the process of ascending mining is influenced by exploitation of the lower coal seam, which causes the result that integrity of upper coal seal’s wall rock weakens in different degrees. Before exploitation of the upper coal seam, self weight and load of overlying rock have been passed on to the rock mass outside the gob area functioning as pressure relief. Strata behavior by ascending mining of remaining coal reserve is not dramatic and periodic weighting length is short.Meanwhile, with the method of probability-integral, mobilization and deformation conditions of coal floor by ascending mining of remaining coal reserve is predicted and analyzed; comparision and contrast between the results from analysis and those from on-site measurement have been made; regularity of coal floor’s mobilization and deformation by ascending mining of remaining coal reserve is explored.
     (5) Using combination with numerical simulation and theoretical analysis methods, analysis of the mechanical properties of the upper coal seam floor movement and deformation in ascending mining of coal reserve. On the basis, building the mechanical model of upper bottom plate rock layer migration in ascending mining concluding caving and pillar supporting mining. Through the mechanical solution method to obtain the forecast model.
     (6)Based theory, laboratory research and field measured studies, forming theory and technology of ascending mining in coal,carrying out tests and industrial implementation in the company of coal-fired electricity in Shanxi Coking Coal Xishan Coal Mine Group Baijiazhuang,sovling the technical problems about goaf recovery of the 6th coal seam under the 8th coal seam, achieved significant economic and environmental, social benefits. The technology in theory is a scientific and technically feasible. Residues up to the exploitation of mining area to the paper provide a theoretical guidance and technical support for ascending mining in coal reserve.
引文
[1]申宝宏.我国煤炭开采技术发展现状及展望,中国煤炭工业可持续发展的新型工业化之路——高效、安全、洁净、结构化[R].中国煤炭学会岩石力学与支护专业委员会,北京:煤炭工业出版社,2004,9,55-58.
    [2]韩可琦,王玉浚.中国能源消费的发展趋势与前景展望[J].中国矿业大学学报,2004,33(1),1-5.
    [3]朱银昌,陈庆禄,张铁岗.复杂难采煤层的开采[M].北京:世界图书出版社,1998:340-359.
    [4]汪理全,李中颃.煤层(群)上行开采技术[M].北京:煤炭工业出版社,1995:1-16.
    [5]杜计平,汪理全.煤矿特殊开采方法[M].徐州:中国矿业大学出版社,2003:1-15.
    [6]Т·Ф·葛尔巴节夫,А·П·札柏.库兹巴斯煤层群上行顺序开采法[M].北京:煤炭工业出版社,1958:1-20.
    [7]刘天泉.用垮落法上行开采的可能性[J].煤炭学报,1981,1~20.
    [8]孙广京,王元龙.采用上行开采改善煤层复合顶板的控制[J].煤炭科学技术,2004,32(5):15~18.
    [9]侯文高.17层煤蹬空开采实践及其经济效益[J].河北煤炭,2000,2:38~39.
    [10]韩万林.平顶山四矿上行开采的观测与研究[J].煤炭学报,1998,23(3):267~270.
    [11]尚志伟,孙喜庆,刘延飞.反程序开采方式的探讨[J].煤炭技术,2002,21(11):27~29.
    [12]程新明.复杂地质条件下上行开采的研究与实践[J].煤炭科学技术,2004,32(1):44~46.
    [13]田昌栋.倾斜近距离煤层工作面上行开采的时间应用[J].山东煤炭科技,2002专刊:62~65.
    [14]黄庆享.近距煤层上行开采底板稳定性分析[J].西安矿业学院学报,1996,16(4):291~294.
    [15]谢海峰.柳海矿井上行开采可行性探讨[J].山东煤炭科技,1996,2:38~41.
    [16]滕永海.浅谈用上行条带开采减小地表的移动变形[J].矿山测量,1994,2:26~28.
    [17]张敬军,王天喜.永夏矿区三2煤开发技术研究[J].矿山压力与顶板管理,2004,3:59~61.
    [18]魏守信,周平,郭玉琴等.上行开采法在西峪煤矿的研究与试用[J].山西煤炭,1994,4:28~29.
    [19]曲华,张殿振.深井难采煤层上行开采的数值模拟[J].矿山压力与顶板管理,2003,4:56~58.
    [20]孙中辉,王怀新,刘端举.深井倾斜近距离煤层上行开采技术探讨[J].矿山压力与顶板管理,2002,3:70~74.
    [21]张传成,梁冰,白国良.伊吗煤矿1-2煤层上行开采可行性分析[J].煤矿开采,2005,10(4):27~28.
    [22]姜领发.深井倾斜近距离煤层上行开采可行性研究[D].泰安:山东科技大学,2002.
    [23]王文彬.平顶山七矿上行开采技术研究[D].徐州:中国矿业大学,1997.
    [24] Gibson,B.St.C. Effects of ground subsidence from longwall coal mining on pole type overhead power lines[J]. Journal of Electrical and Electronics Engineering, Australia,1995,15(2):177~182;
    [25] Morley,Lloyd A;Trutt,Frederick C;Homce,Gerald T. Analysis of overhead-line contact fatalities[C]. Conference Record - 1983 Mining Industry Technical Conference, Papers Presented at the Third Conference.1983,21~42.
    [26] Yan, Ronggui;Chen, Shaoyun.Study on a large-scale overhead cableway on the heavily destructed and cracked surface over a coal[J]. Mining and Metallurgical Engineering,1993,13(2):12~15;
    [27] Sassos,MichaelP.Trolley assist,ComputerDispatching. new Technologies Offer Potential for Significant Reduction in Mining Costs. Engineering and Mining Journal[J].1984,185(6):74~80;
    [28] Surface Subsidence, Overburden Behavior, and Structural Damagesdue to longwall mining - two case studies[C].Second International Conference on Stability in Underground Mining. Publication Year: 1984
    [29] MIHIR CHOUDHURY ,Pre-fracturing of roof rocks: a possible future strategy for successful longwall mining in India,Journal of Mines, Metals & Fuels; 0022-2755; 2002, vol.50, no.6;
    [30] Influence of Subjacent Gob on Longwall Development Mining in the Upper Kittanning Coalbed of South-Central Pennsylvania,美国政府报告
    [31] Jiang Fuxing,Zhang Xingmin,Yang Shuhua, Xun Luo. Discussion on overlying strata spatial structures of longwall in coal mine[J].Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, v 25, n 5, May, 2006, p 979-984
    [32]史红,姜福兴.采场上覆岩层结构理论及其新进展[J].山东科技大学学报(自然科学版),2005,24(1),21-25
    [33]翟英达.采场上覆岩层中的面接触块体结构及其稳定性力学机理[M].北京:煤炭工业出版社,2006.
    [34]钱鸣高,石平五.矿山压力与岩层控制[M].徐州,中国矿业大学出版社,2003.
    [35] Chien(Qian) Minggao. A study of the behavior of overlying strata in longwallmining and its application to strata control, Proceedings of the Symposium on Strata Mechanics, Elsevier Scientific Publishing Company, 1982, 13-17.
    [36]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理, 1995,3-4,3-12.
    [37]宋振骐.采场上覆岩层运动的基本规律[J].山东矿院学报,1979,1,22-41.
    [38]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1992.
    [39]贾喜荣.坚硬顶板垮落机理及其工作面几何参数的确定[C].第三届采场矿压理论与实践讨论会论文集,1986.
    [40]钱鸣高,赵国景.老顶断裂前后的矿山压力变化[J].中国矿院学报,1986,4,21-24.
    [41]朱德仁.长壁工作面老顶的断裂规律及应用[D].徐州:中国矿业大学,1987.
    [42] QianMinggao, HeFulian. The behavior of the main roof in longwall mining, Weighting Span,Fracture and Disturbance[J]. Jou of Mine, Metals & Fuels, June-July, l989, 240-246.
    [43]姜福兴.薄板力学解在坚硬顶板采场的适用范围[J].西安矿业学院学报,1991,11 (2),40-50.
    [44]钱鸣高.砌体梁的“S-R"稳定及其应用[J].矿山压力与顶板管理,1994,3,6-10.
    [45]钱鸣高,何富连,王作棠等.再论采场矿山压力理论[J].中国矿业大学学报,1994, 3,1-12.
    [46]缪协兴,钱鸣高.采矿工程存在的力学问题[J].力学与实践,1995,5,70-71.
    [47]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报, 1995,14(2),97-106.
    [48]缪协兴.采场老顶初次来压时的稳定性分析[J].中国矿业大学学报,1989,18(3), 88-92.
    [49]侯忠杰.老顶断裂岩块回转端角接触面尺寸[J].矿山压力与顶板管理,1999,3-4, 29-31.
    [50]侯忠杰.采场老顶断裂岩块失稳类型判断曲线讨论[J].矿山压力与顶板管理, 2002,2,1-3.
    [51]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J].煤炭学报, 1999,6,581-585.
    [52]黄庆享.浅埋煤层长壁开采顶板控制研究[D].徐州:中国矿业大学,1998.
    [53]黄庆享,石平五,钱鸣高.老顶岩块端角摩擦系数和挤压系数实验研究[J].岩土力学,2000,1,60-63.
    [54]钟新谷.长壁工作面顶板变形失稳的突变模式[J].湘潭矿业学院学报,1994,2,1-6.
    [55]钟新谷.采场坚硬顶板的弹性稳定性分析[J].煤,1996,4,15-17.
    [56]钟新谷.顶板岩梁结构的稳定性与支护系统刚度[J].煤炭学报,1995 ,6,601-606.
    [57]闫少宏,贾光胜,刘贤龙.放顶煤开采上覆岩层结构向高位转移机理分析[J].矿山压力与顶板管理,1996,3,3-5.
    [58] JiangFuxing, JiangGuoan. Theory and technology for hard roof control of longwall face in chinese collieries[J]. Journal of Coal Science & Engineering, 1998, 4(2), 1-6.
    [59]姜福兴,宋振骐,宋扬.老顶的基本结构形式[J].岩石力学与工程学报,1993,3, 366-379.
    [60]姜福兴.岩层质量指数及其应用[J].岩石力学与工程学报,1994,3,270-278.
    [61]钱鸣高,缪协兴,许家林.岩层控制中关键层的理论研究[J].煤炭学报,1996,3, 225-230.
    [62]钱鸣高,缪协兴.采场矿山压力理论研究的新进展[J].矿山压力与顶板管理,1996, 2,17-20.
    [63] Qian M.G., He F.L., Miu X.X. The system of strata control around longwall face in Chine, Proceedings[C]. '96 International Symposium on Mining Science and Technology, 15-18.
    [64]钱鸣高,何富连,缪协兴.采场围岩控制的回顾与发展[J].煤炭科学技术,1996,1, 1-3.
    [65]许家林.岩层移动控制的关键层理论及其应用[D].徐州:中国矿业大学,1999.
    [66]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,1,39-42.
    [67]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998, 2,135-230.
    [68]许家林,钱鸣高.覆岩关键层位置的判断方法[J].中国矿业大学学报,2000,5, 463-467.
    [69]于学馥.信息时代岩土力学与采矿计算初步北京:科学出版社,1991.
    [70] S,S,彭.煤矿地层控制[M].北京:煤炭工业出版社,1984.
    [71]康立勋.大同综采工作面端面漏冒及其控制[D].徐州:中国矿业大学,1994.
    [72]靳钟铭,徐林生.煤矿坚硬顶板控制[M].北京:煤炭工业出版社,1994.
    [73]刘天泉.矿山岩体采动影响与控制工程学及其应用[J].煤炭学报,1995,20(1),1-5.
    [74] Peng SS. Coal mine ground control, John Wiley & Sons, Inc, New York, 1978.
    [75] Arutyunyan N, Metlov V V . Some problems in the theory of creep in bodies with variable boundaries[J]. Mechanics of Solids, 1982, 17(5), 92-103.
    [76]徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报, 1995,20(5),485-491.
    [77]谭云亮,王泳嘉,朱浮生.矿山岩层运动非线性动力学反演预测方法[J].岩土工程学报,1998,4,16-19.
    [78]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15(2),46-55.
    [79] B.斯列萨列夫.水体下安全采煤的条件[R].国外矿山防治水技术的发展和实践,冶金矿山设计院,1983.
    [80] [波]M.鲍莱茨基,M.胡戴克著.于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社,1985.
    [81] [苏]Й.Α.多尔恰尼诺夫.赵义译.构造应力与井巷工程稳定性[M].北京:煤炭工业出版社,1984.
    [82] B.H.G.布雷斯,E.T.布朗.冯树仁等译,地下采矿岩石力学[M].北京:煤炭工业出版社,1990.
    [83]刘天泉等.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [84]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [85]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15(2),46-55.
    [86]高延法,李白英.受奥灰承压水威胁煤层采场底板变形破坏规律研究[J].煤炭学报,1992,17(1),25-27.
    [87]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院院报,1999,18(4),11-18.
    [88]张玉卓.岩层与地表移动计算原理及程序[M].北京:煤炭工业出版社,1993,137-138.
    [89]曹胜根,刘文斌,袁文波等.房式采煤工作面的底板岩层应力分析[J].湘潭矿业学院学报,1998,13(3),14-19.
    [90]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993.
    [91]王作宇.底板零位破坏带最大深度的分析计算[J].煤炭科学技术,1992,2,1-8.
    [92]王作宇,刘鸿泉,王培彝等.承压水上采煤学科理论与实践[J].煤炭学报,1994,19(1),40-48.
    [93]杨硕.采动损害空间变形力学预测[M].北京:煤炭工业出版社,1994.
    [94]李增琪.计算矿山压力和岩层移动的三维层体模型[J].煤炭学报,1994, 19 (2): 109-121.
    [95]何国清,杨伦,凌赓娣等编.矿山升采沉陷学[M].徐州:中国矿业大学出版社,1991, 87- 114.
    [96]李增琦.用富氏积分变换计算开挖引起的地表移动之二[J].煤炭学报.1985, 10(1):100-106.
    [97]何满潮,赵经彻.建筑物下开采理论与实践[M].徐州:中国矿业大学出版社.1995.
    [98]于广明.分形及损伤力学在开采沉陷中的应用研究[D].北京:中国矿业大学.1997.
    [99] [波]克诺特,李特维尼申等.矿区地面采动损害保护[M].上西里西亚出版社.1980.
    [100]麻风海,范学理,王泳嘉.岩层移动动态过程的离散单元分析[J].煤炭学报.1996, 21 (4): 388-392.
    [101]麻风海,王泳嘉,范学理.连续介质流变理论及其在岩层下沉动态过程中的应用[J].中国有色金属学报.1996, 6 (4): 7-12.
    [102]崔希民,陈至达.开采位移场的有限变形分析[J].中国矿业大学学报.1995, 24 (4): 1-5.
    [103]崔希民,陈至达.非线性几何场论在开采沉陷预测中的应用[J].岩土力学.1997, 18 (4): 15-29.
    [104]李德海.近水平层状岩层移动规律的探讨[J].矿山压力与顶板管理,1996(2) 39-42.
    [105]汤建泉,何满潮,马庆云等.开采覆岩运动和破坏规律的实验研究[J].中国煤炭, 1996 (2): 14-17.
    [106]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [107]汤建泉.开采覆岩运动和破坏规律的实验研究[D].北京:中国矿业大学,1995.
    [108]刘锦华,吕祖珩.块体理论在工程岩体稳定分析中的应用[M].北京:水利电力出版社,1988.
    [109] Goodman R E, Shi G H. Block theory and its application to rock engineering, Englewood, USA, Prentice-Hall Inc,1985.
    [110]冯国瑞.采场覆岩面接触块体结构研究[D].太原:太原理工大学,2002.
    [111]顾铁凤,黄景.裂隙岩体巷道顶板失稳的块体力学分析与支护强度设计[J].湖南科技大学学报(自然科学版),2005,20(4),21-25
    [112]柳崇伟,裂隙岩体巷道稳定性的相关规律研究[D].太原:太原理工大学,2001.
    [113]王益槐,胡世骏,纪多辙.工程力学[M].北京:煤炭工业出版社,1996.
    [114]杨菲康,李家宝.结构力学[M].北京:高等教育出版社,1996.
    [115]吴家龙.弹性力学[M].新一版,上海:同济大学出版社,1996,201-206.
    [116]冯国瑞,王鲜霞,康立勋.采场上覆岩层面接触块体结构的力学机理分析[J].煤炭学报,2008,33(1);33~37.
    [117]冯国瑞,王鲜霞.采场上覆层岩面接触块体结构的解析解[J].太原理工大学学报,2006,37(6);680~683.
    [118] Feng guo-rui,Wang xian-xia,Kang li-xun. Method for Identification of Key Contact Face in Fact-contacted Block Structure[C]. Proc. Of International Conference on Geological Engineering, Publisher:Springer,2007,10.
    [119]王鲜霞,冯国瑞.矢量分析计算法在采场覆岩面接触块体结构中的应用研究[J].山西煤炭,2006,26(2): 13~16.
    [120]李世平,吴震业,贺永年等,岩石力学简明教程[M].北京:煤炭工业出版社,1996, 137-141.
    [121]贾喜荣.矿山岩层力学[M].北京:煤炭工业出版社,1997.
    [122] Britton, Scott G.Mining multiple Seams[J]. Coal Mining & Processing, 1980, 17(12), 64-66, 68, 70.
    [123] Su, Wen H., Peng, Syd S., Hsiung, S. M.Interactions in multiple-seam mining[R]. Soc of Mining Engineers, 1986, 31-44
    [124] Dunham, R K, Stace, R L .Interaction problems in multiseam mining[C]. 19th US Symposium on Rock Mechanics, Stateline, Nevada, 1978, 174–179.
    [125] Khare, Saurabh, Rao, Y.V., Murthy, Ch.S.N., etc. Multiple seam mining: a critical review Journal of mines[J]. Metals and Fuels, 2006, 54(12), 327-329
    [126] Kripakov, Nicholas P., Beckett, Les A., Donato, Douglas A. Loading on underground mining structures influenced by multiple seam interaction[R]. Soc of Mining Engineers of AIME, 1986, 225-236
    [127] Peng, S.S., Hsiung, S.M. Problems and solutions for multiple seam mining[J]. Colliery Guardian, 236(10), 1988, 371-372
    [128] Pixler, R, Mining Multiple-seam steeply dipping coal in the Nanna Basin, Society of Mining Engineers of AIME, 1986, 9
    [129] Chekan, Gregory J., Matetic, Rudy J., Galek, James A. Multiple seam mining problems in the eastern united states information circular - United States,Bureau of Mines, 1986, 27-43
    [130] Chekan, Gregory J., Matetic, Rudy J., Dwyer, David L., Effects of abandoned multiple seam workings on a longwall in Virginia, Report of Investigations - United States, Bureau of Mines, 9247, 1989, 19
    [131] Hladysz, Z. Analysis of risk in multiple seam mining, Preprint– Society of Mining Engineers of AIME, 1985, 12.
    [132] Chekan, Gregory J., Matetic, Rudy J., Galek, James A. Strata interaction in multiple seam mining-two studies in Pennsylvania[R]. Report of Investigations-United States, Bureau of Mines, 1986, 20.
    [133] Hill RW. Multiseam mining in South African Collieries, In, Peng SS. Proceedings of the 14th International Conference on Ground Control in Mining[R]. Morgantown, WV, West Virginia University, 1995, 305–311.
    [134] Zipf RK Jr. Failure mechanics of multiple-seam mining interactions, In, Peng SS, Mark C, Tadolini SC,Finfinger GL, Khair AW, Heasley KA, eds, Proceedings of the 24th International Conference on Ground Control in Mining, Morgantown, WV, West Virginia University, 2005, 93–106.
    [135] Haycocks Chris, Wu Wei, Zhou Yingxin. Integrated design for stabilityin multiple seam mining, information circular - United States, Bureau of Mines, 1986, 44-56.
    [136] Su, Wen H., Hsiung, S.M., Peng S.S. Optimum mining plan for multiple seam mining Proceedings-Symposium on Rock Mechanics, 1984, 591-602
    [137] Newman, D., Zipf, R. K. Analysis of highwall mining stability - the effect of multiple seams and prior auger mining on design, In, Peng SS, The 24th International Conference on Ground Control in Mining, ORGANTOWN W V, 2005, 208-217.
    [138] Heasley, K.A.,Akinkugbe, O.Simple program for estimating multiple-seam interactions[J]. Mining Engineering, 2005, 57(4), 61-66.
    [139] Listak, Jeffrey M., Chekan, Gregory J. Multiple-seam longwall gate road pillar design using,modeling techniques[J]. New Technol Mine Health Saf, 1992, 249-261.
    [140] Chanda, E.C.K. Evaluation of success probability in multiple seam room-and-pillar mining[J]. Mining Science & Technology, 1989, 9(1), 57-73.
    [141] Chekan, Gregory J., Listak, Jeffrey M. Design practices for multiple-seam longwall mines, Information Circular - United States, Bureau of Mines, 1993, 1-35.
    [142] H. Yavuz, An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[C]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2 ),193-205.
    [143] K. B. Singh, T. N. Singh. Ground movements over longwall workings in the Kamptee coalfield, India[J]. Engineering Geology, 1998, 50(1-2), 125-139.
    [144]煤炭科学研究院北京开采所编著.煤矿地表移动与覆岩破坏规律及其应用.北京:煤炭工业出版社,1982.
    [145]吴立新,王金庄.煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997, 3 (3): 29-35.
    [146]李红涛.厚煤层放顶煤条件下上行开采机理与应用研究[D].徐州:中国矿业大学, 2008.
    [147]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].北京:煤炭工业出版社,2000.
    [148]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社, 2009.
    [149]王金安,谢和平,M,A,Kwasniewski.建筑物下厚煤层特殊开采的三维数值分析[J].岩石力学与工程学报,1998,18(1),12-16.
    [150]大同煤矿集团有限责任公司,中国矿业大学(北京).“两硬”浅埋深煤层开采覆岩活动规律及地表塌陷灾害分析与防范对策研究[R].2006.
    [151]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [152]张百胜.极近距离煤层开采围岩控制理论及技术研究[D].太原:太原理工大学, 2008.
    [153]杨双锁.回采巷道围岩控制理论及锚固结构结构支护原理[M].北京:煤炭工业出版社,2004.
    [154]陆士良.巷道与上部煤柱边缘间水平距离X的选择[J].中国矿业大学学报,1993,22(2),1-7.
    [155]史元伟,郭潘强,康立军等.矿井多煤层开采围岩应力分析与设计优化[M].北京:煤炭工业出版社,1995.
    [156]周汉荣,赵明华.土力学地基与基础[M].北京:中国建筑工业出版社,1997.
    [157]何万龙,康建荣.山区地表移动与变形规律的研究[J].煤炭学报.1992, 17 (4): 1-15.
    [158]吴立新,王金庄,赵士胜等.托板控制下的开采沉陷的阶段性和板裂性[J].矿山测量.1994 (4): 29-32.
    [159] Feng guo-rui,Wang xian-xia,Kang li-xun..A Probe into“Mining Technique in the Condition of Floor Failure”for Coal Seam above Longwall Goafs[J]. Journal of Coal Science &Engineering,2008,14(1):19-23.
    [160]冯国瑞,康立勋,杨双锁,胡海峰.长壁采空区上覆煤层“蹬空开采”的初步研究[C].第九界全国岩石力学与工程学术大会论文集,科学出版社,2006,09:644~648.
    [161]李永树,王金庄,邢安仕.任意分布形式煤层开采地表移动预计方法[J].煤炭学报.1995, 20 (6): 619-624.
    [162]钱鸣高,缪协兴,采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,2,97-106
    [163]黄海新.岩层与地表移动的计算机仿真[D].阜新:辽宁工程技术大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700