用户名: 密码: 验证码:
厚黄土薄基岩煤层开采岩移及土壤质量变异规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿开采对矿区土地造成的损害由来已久,采用长壁式综放开采的薄基岩厚表土煤层,有其独到的特点,对地面造成的损害较之常规的开采更甚,而对于此类煤田覆岩移动破坏对地面土壤质量影响的研究却鲜见报道。本文在总结已有研究成果的基础之上,结合大型煤炭企业潞安司马矿区的实际情况,通过现场调研与观测、实验室物理模拟、计算机随机模拟、地面现场实测和理论预测、现场取样试验分析、理论分析等大量工作,系统研究了司马矿1101工作面厚表土薄基岩煤层开采的岩层移动规律、地面沉陷特点以及由之引起的土壤质量变异规律,为开采损害的防治和灾后恢复提供理论依据。
     论文的创新点如下:
     (1)对厚表土薄基岩开采沉陷区农田土壤破坏规律与煤矿开采过程岩移规律相互关系进行了综合研究,对两者间的相关性进行了探讨。
     (2)首次分析了开采沉陷预计过程中的相关计算参数的可靠性,对概率积分法预测的参数取值进行了改进,并用随机模拟的原理给出了取值方法的具体实现过程,经实证预测效果良好。
     (3)针对深部岩层移动难于监测的问题,创造性地设计了一种用于监测岩层移动的传感器,设计了监测系统以及提出系统安装测试方法,并推导出了由微应变量测量大变形量的理论表达,为进一步的实验室及工业试验提供了基础。
     取得了以下主要成果与结论:
     (1)对于厚表土浅埋薄基岩,若表土为松散砂土(假设无自承能力),基岩达到一定厚度才能形成自身稳定结构。若基岩上方冲积层有一定厚度的粘土层,由于粘土层有一定的承载能力,基岩承载能力增强。当薄基岩厚度一定,随粘土厚度增加,基岩与粘土组合后能形成稳定结构,承载能力增强,使工作面来压趋于缓和。
     (2)为了实现对深部基岩和表土层的动态移动进行有效观测,创造性地提出了一种新的位移传感器设计方法。导出由微应变量测得大变形量的理论计算与测量方法,研究设计了一种基于该岩层位移传感器的配套监测方法,论证了其可行性。
     (3)通过模拟试验发现,薄基岩、厚表土层条件下煤层1101工作面开采后,开采地表下沉盆地更为陡峭,下沉系数偏大,而水平移动系数偏小。具有区别与一般地质采矿条件下的一些独特现象,如下沉曲线在拐点附近变化较快,表现为曲线较陡,同时,边界处收敛很缓慢,表现为边界范围扩展,水平移动系数偏小。岩层以一定的断裂角断裂且向上传递,采空区上方岩层下沉值大于地表下沉值,而煤壁上方岩层下沉值较小。
     (4)对司马矿区首采工作面进行了地面沉陷监测,得到厚表土薄基岩煤层地面沉陷的规律和特点:地表受采动影响极为敏感,地下开采活动产生的影响很快传递到地表,地表移动的初始期很短,地表快速进入沉降活跃期,移动与变形极为剧烈且集中,采动区地表移动与变形持续时间长,地表裂缝比较发育。煤层开采后,地表移动变形的影响范围变大,采空区边界附近地表下沉盆地陡峭,移动变形显著且分布集中,采空区边界以外地表下沉盆地平缓,即表现为:地表移动变形在拐点内侧下沉值较大,在拐点附近变形发展较为迅速,曲线较陡,而在拐点以外较远区域沉陷变形曲线收敛较慢,但影响范围向外扩展较远。表现在岩移参数上,地表下沉系数较大,达0.94,主要影响角正切tanβ偏大,地表下沉速度偏大,动态变形值大,地表移动剧烈。
     (5)首次应用可靠性理论分析了概率积分法开采沉陷预测过程中参数的可靠性,针对预测中把具有一定分布规律的随机变量仅取固定值的问题,首次提出了采用随机变量来动态确定预测参数,并用随机模拟的方法改进了开采沉陷预计的参数变量,经检验对1101面的预测结果与实测值具有较好的吻合性。
     (6)开采沉陷显著影响了农田表层土壤的物理特性;沉陷区农田的上中部有水土流失加剧,养分流失加剧的趋势,而沉陷区低部则积聚了水土侵蚀下移的土壤养分;在土壤物理特性中,在沉陷形成的两年内,受其影响较大的是土壤容重,其次土壤含水量和孔隙度。开采沉陷显著影响沉陷区农田表层土壤的化学特性,在土壤化学特性中,受开采沉陷影响最大的是土壤速效磷,其次是土壤速效钾,再次是土壤全氮和土壤有机质,而土壤酸碱性受其影响小。土壤肥力质量来看,沉陷农田初步稳定后(沉陷1~3年),还可以提供植物生长所需要的土壤条件;从农事操作来看,则仅仅是加大了农事操作工作量。因此,沉陷区农田应在现存破坏的基础上,进行合理的施肥和地表保水措施,继续发挥沉陷区农田的生产潜力。
     (7)就开采条件和土壤沉陷破坏相关性给出了解释,指出土壤的物理性状变化是由土壤几何变形引起的,水平变形和水平移动引起的土壤拉应力和压应力的变化,导致容重和孔隙度变化;裂缝的发育是导致土壤水份变化的最直接原因,上覆岩层的导水裂隙带的上升高度和发育程度也是土壤水份变化的重要原因。土壤肥力质量的变化是由于土壤宏观形态的改变造成地表径流的不均衡性,导致水土流失,土壤养份随之迁移至盆地底部所致。
     (8)针对司马矿区的特殊情况,给出了几种适宜选择的农田复垦方式和生态规划建议,供复垦工程参考。
Damages to soil caused by mining have long been a problem. The use of fully mechanized long wall caving mining in the coal seam of thin bedrocks and thick surface soil, due to its unique characteristics, causes more severe damages to the soil surface than traditional mining, and yet few reports have been made on the research on the influences of overburden movement destruction on soil quality.
     On the basis of summing up the existing research results and in combination with the actual situations of Sima Coal Mine of Lu’an Mining Group, a large-sized coal mining enterprise in China, this thesis, through on-the-spot investigation and observation, physical simulation in laboratories, computerized random simulation, surfece measurement , theoretical estimation, test and analysis of site samples, theoretical analysis, studies, in a systematic manner, the law of strata movement, features of surface subsidence, and the law of soil quality variation in Coal Seams # 1101 in Sima Coal Mine, which features thick loess and thin bedrock, so as to provide theoretic bases for .the prevention of mining damages and the afterward restoration.
     New points of the thesis are as follows:
     (1) A comprehensive study is carried on the interrelations between the law of soil destruction in mining subsidence area and the law of rock movement in the mining process, and a brief exploration is done between their correlations.
     (2) For the first time, the reliability of the interrelated calculated parameter is analyzed in the mining subsidence prediction process, and the choosing methods are improved. The specific choosing methods are given based on random simulation theory, which have been proved to be good through practice.
     (3) For the problem of deep rock movement being difficult to be monitored, a sensor, monitoring system and system installation and measuring method are creatively designed to monitor rock movement; meanwhile, a theoretical description of measuring large-scale strain via micro strain is deduced,so that foundation is laid for further laboratory and industrial tests.
     The following main results and conclusions have been achieved:
     (1) For the shallowly-buried thin bedrock with thick loess, if the surface sand is loose(without self loading capacity), the bedrock will not form self stable structure until it reaches certain thickness. If the clay layer of certain thickness exists above the upper shock ply of the bedrock, its loading capacity is increased because the clay layer is possessed with certain loading capacity. The combination of bedrock of fixed thickness and increased thickness of clay layer will form stable structure with increased loading capacity and reduced and smooth pressure to the surface.
     (2) A new displacement sensor is innovatively designed to effectively monitor the dynamic movement of the deep bedrock and surface soil. Theoretical calculating and measuring methods are deduced to measure large-scale strain via micro strain; a monitoring method is studied based o the sensor of movement in that layer, and its feasibility is expounded on.
     (3) Simulated tests have discovered a steeper surface subsidence basin, a larger subsidence coefficient, yet a smaller horizontal movement coefficient after the Coal Seam 1101 is mined under the condition of thin rock and thin loess. Some unique features are observed, which are different from the features under the normal geological conditions: subsidence curves changes rapidly around the拐点with a steep curve; meanwhile, the convergence takes place in a very slow manner at he boundaries, which is shown in extended boundaries and smaller horizontal movement coefficient. The rock layers cracks with certain angles and is spread upward. The upper rock layer subsidence value is bigger than the surface value with a relatively small rock layer subsidence value above the coal wall.
     (4) Through monitoring the surface subsidence of the primary mining phase of Sima Coal Mine, the laws and characteristics of the surface subsidence of coal seam of thick loess and thin bedrock is discovered:Surface is very sensitive to mining influence in that the influence of underground mining activities are soon spread to the surface, and, due to a short initial surface movement period, surface in a very short time enters the subsidence-active period with severe and centralized movement and deformation, long-lasting surface moving and deforming span of the mining area, and relatively developed surface cracks. When the seam is mined, the influencing area of the surface movement and deformation is expended, the surface subsidence basins become steep surrounding mined boundaries with obvious and centralzedly-distrubited movement and deformation, and the surface subsidence basins become smooth outside mined boundaries, which is reflected in the following: the subsidence value is relatively large in the internal side of the inflection of the surface movement and deformation; in the area surrounding the inflection, the curve develops more rapidly, thus a steep cure, while in the areas further away from the inflection, the subsidence deforming curves convergence slowly but with further extending area. Reflected in the rock movement index, the surface subsidence index is relatively large, reaching 0.94, with a large tangent B, subsidence speeds, and dynamic deforming values, resulting in severe surface movement.
     (5)Reliability of the parameter in the calculating process of mining subsidence is analyzed for the first time by adopting the Theory of Reliability, and the dynamic determination of expected parameter by random variable is for the first time put forward in connection with only fixed value being chosen for random variables with certain distribution laws. In addition, the estimated parameter variables for mining subsidence is improved by adopting random simulation method, which has been proved to be in relatively good in accordance with the real value of Seam 1101.
     (6)Mining subsidence has significantly influenced the physical features of the surface soil; Water and nutrition losses become severe in the upper and middle parts of the farmlands in the subsidence area, while soil nutrition is centralized in the low subsidence area; Regarding physical properties of the soil, within two years after the formation of subsidence, soil bulk density is affected the most, followed by water contained in the soil and its porosity. Regarding the chemical features of the soil, soil available p is most affected, followed by available potassium, and total soil nitrogen and organic matter, with acidity and basicity least being affected. As far as the soil fertility is concerned, after the stabilization of subsidence(1-3 years), necessary soil conditions are able to be provided for the growth of plants; with regard to farming operation, only operational load is added Therefore, for the farmlands in the subsidence area, proper fertilizing and water protecting measures should be taken despite the existing destruction, so as to continuously bring into play the potential productivity of the farmland.
     (7)Interrelation between the mining conditions and soil subsidence destruction is interpreted, and the law is pointed that physical changes in the soil is resulted from its geometrical deformation in that horizontal deformation and movement may result in the change in the tensile stress and compressive stress of soil, which, in turn, results in the change in volume weight and extent of porosity. Development of cracks constitutes the most direct reason for the change of water in the soil, besides which, rising height and developing level of the water flowing fractured zone in the upper rocks are also important. The change in the soil fertilizing quality due to the imbalance of surface runoff, resulted from soil macro formation change, brings about water losses, thus leading to the movement of nutrition to the basin bottom.
     (8)In consideration of the specific conditions of Sima Coal Mine, several suitable reclaiming modes and ecological designing suggestions are raised for project references.
引文
[1]杨逾,刘文生,冯国才,中国可持续发展观的灾害学分析[J].辽宁工程技术大学学报(社会科学版), 2005, 7 (2):140-142.
    [2]隋鹏程著,中国矿山灾害,湖南人民出版社,1989.9
    [3]李增琪.计算矿山压力和岩层移动的三维层体模型[J].煤炭学报.1994,19(2):109~121
    [4]中国矿业学院等编写,煤矿岩层与地表移动[M].北京:煤炭工业出版社.1981,35~42
    [5]邓喀中,马伟民,何国清,开采沉陷中的层面效应研究[J].煤炭学报.1995,20(4):380~384
    [6]于广明.分形及损伤力学在开采沉陷中的应用研究。[D]北京:中国矿业大学.1997
    [7]颜荣贵著,地基开采沉陷及其地表建筑[M].北京:冶金工业出版社,1995,239~243
    [8]麻凤海,范学理,王泳嘉.岩层移动动态过程的离散单元分析[J].煤炭学报。1996,21(4):388~392
    [9]麻风海,王泳嘉,范学理.连续介质流变理论及其在岩层下沉动态过程中的应用[J].中国有色金属学报.,1996,6(4):7~12
    [10]姜德义,任松,刘新荣,蒋再文.某建筑物下煤层开采可行性分析[J].矿山压力与顶板管理,2000,3(3)
    [11]任松,姜德义,刘新荣,刘保县.岩盐溶腔井组间矿柱稳定性突变理论分析[J].中国矿业,2004,13(1)
    [12]张玉卓,煤矿地表沉陷的预测与控制—世纪之交的回顾与展望[C].煤炭学会第五届青年科技学术研讨会论文集,煤炭工业出版社,1998.11
    [13]前苏联C.F.阿威尔辛著,煤矿地下开采的岩层移动[M].煤炭工业出版社,1959.12
    [14]赴波兰考察团,波兰采空区地面建筑[M].科学技术文献出版社,1979
    [15]波IM.鲍莱茨基M.胡戴克著,于振海,刘天泉译,矿山岩体力学[M].煤炭工业出版社,1985.7.
    [16] Salamon,M.D.G,Elastic analysis of disPlaeements and stresses induced by the mining of seam or roof dePosis[J].J.S.Afr,Inst.Metall.1963,Vol.63
    [17] MD.G沙拉蒙,地下工程的岩石力学[M].冶金工业出版社,1982
    [18] Klatesch,H,Mining Subsidence Engineering SPringerVerlag[M].Berlin,1983
    [19] Brauner,Subsideneeduetoundergroundmining[M].BureauofMines,USA,1973
    [20]刘宝深、廖国华,煤矿地表移动的基本规律[M].中国工业出版社,1965
    [21]北京开采所,煤矿地表移动与覆岩破坏规律及其应用[M].煤炭工业出版社,1981
    [22]何国清、马伟民、王金庄,威布尔型影响函数在地表移动的计算中的应用[J].中国矿业学院学报,1982.1
    [23]周国拴、崔继宪等,建筑物下采煤[M].煤炭工业出版社,1983
    [24]何万龙,山区地表移动规律及变形预计[J].山西矿业学院学报,1985.2
    [25]白矛、刘天泉,条带法开采中条带尺寸的研究[J].煤炭学报,1983.1
    [26]李增琪,使用富氏积分变换计算开挖引起的地表移动[J].煤炭学报,1983.2
    [27]张玉卓、仲惟林等,岩层移动的错位理论解与边界元法计算[J].煤炭学报,1987.2
    [28]张玉卓、仲惟林等,断层影响下地表移动的统计和数值模拟研究[J].煤炭学报,1987.1
    [29]谢和平、陈至达,非线性大变形有限元分析及在岩层移动中应用[J].中国矿业大学学报,1988.2
    [30]刘文生,条带法开采采留宽度合理尺寸研究[D].阜新矿业学院硕士论文,1988
    [31]杨硕等,水平移动曲面的力学预测法[J].煤炭学报,1995.2.
    [32]王泳嘉,离散元法及其在岩石力学中的应用[J].金属矿山,1992.3
    [33]吴立新王金庄,著建(构)筑物下压煤条带开采理论与实践[M].中国矿业大学出版社,1994
    [34]麻凤海,岩层移动的时空过程[D].东北大学博士学位论文,1996
    [35]唐春安等,岩层移动过程的数值模拟新方法[J].阜新矿业学院学报,1997.3
    [36]戴华阳,基于倾角变化的开采沉陷模型及其GIS可视化应用研究[D].中国矿业大学北京研究生部博士学位论文,2000
    [37]郭增长,极不充分开采地表移动预计方法及建筑物深部压煤开采技术的研究[D].中国矿业大学北京研究生部博士学位论文,2000
    [38]于广明.分形及损伤力学在矿山开采沉陷中的应用研究[J].岩石力学与工程学报,1999,18(2):241-243
    [39]于广明,谢和平.分形及损伤力学在开采沉陷中的应用研究[J].矿业世界,1998,53(2)
    [40]于广明,杨伦,等.非线性科学在矿山开采沉陷中的应用[J].阜新矿业学院学报,1997,16(4):385-388
    [41]于广明,杨伦,等.非线性科学在矿山开采沉陷中的应用(续)[J].阜新矿业学院学报,1997,16(5):525-529矿业学院学报,1997,16(5):525-529
    [42]何满潮,王旭春.开采沉陷工程岩体本构关系研究[J].工程地质学报,1997,5(4):312-316
    [43]邓喀中,马伟明.开采沉陷中的岩体节理效应[J].岩石力学与工程学报,1996,15(4):345-352
    [44] Kawamoto T. et al. Deformation and Fracturing Behavior of Discontinuous Rock Mass andDamage Mechanics Theory[J].Int. J. Num. And Analy. Meth. Geo. 1988, 12:1-30
    [45]施群德,赵剑锋,等.矿山开采沉陷中的裂隙分形分布问题研究进展与展望[J].工程地质学报,2000,8(3):341-344
    [46] H Xie.Fractals in Rock Mechanics[M].A.A.Belkema Publisher,Rotterdam,1993
    [47] Mandelbrot B.B. The Fractal Geometry of Nature [M].W.H. Freeman and Company,1983,25-50
    [48] Takayuki Hiram. Fractal Dimension of Fault Systems in Japan: Fractal Structure in Rock Fractal Fracture Geometry at Various Scales [M], PAGEOPH,1989,V.B1.No. 2:157-170
    [49]钱鸣高,缪协兴.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230
    [50]许家林,钱鸣高.岩层控制关键层理论的应用研究与实践[J].中国矿业,2001,10(6):54-56
    [51]刘文生,范学理.覆岩离层产生机理及离层充填控制地表沉陷技术的工程实施[J].煤矿开采,2002,7(3):53-55
    [52]徐乃中,张玉卓.岩离层注浆减缓地表沉陷的动态力学模型.西安科技学院学报[J].2000,20(增):35-38
    [53]黄乐亭.开采沉陷力学的研究与发展[J].煤炭科学技术,2003,31(2):54-56
    [54]李永树,王金庄,陈勇.开采沉陷地区地表水平移动机理[J].煤,1996,5(1):27-29
    [55]崔希明,杨硕.开采沉陷的流变模型探讨[J].中国矿业,1996,5(24):52-55
    [56]靖洪文,许国安.地下工程破裂岩体位移规律数值分析[J].岩石力学与工程学报,2003,22(8):1281-1286
    [57] Shi G H, Goodman R E. Discontinuous Deformation analysis[A]. In, Proc. 25th U.S. Symp.Rock Mech.[C].[s.l.]:[s.n.],1984,269-277
    [58]李云鹏,王芝银.开采沉陷三维损伤有限元分析[J].岩土力学,2003,24(2):183-187
    [59]吴侃,靳建明,戴仔强,蒋金豹.开采沉陷在土体中传递的实验研究[J].煤炭学报,2002,27(6):601-603
    [60]戴仔强,顾丽霞,吴侃,等.开采沉陷在土体中传递的计算机模拟[J].矿山测量,2003,(1):41-43山测量,2003,(1):41-43
    [61]柴华彬,邹友峰,段振伟.开采沉陷相似现象群的分类方法[J].焦作工学院学报(自然科学版),2003,22(2):84-87
    [62] B.H.G.Brady, E.T.Brawd. Rock Mechanic for Underground mining[J]. Geprge Allen & Unwin.,London, 1985
    [63]高大钊,等.岩土工程的回顾与前瞻[M].人民交通出版社出版,2001
    [64]苏美德,赵忠明,李德海,李东升.灰色系统理论模型在矿山开采沉陷中的应用[J].西部探矿工程,2003,(4):82-83
    [65]麻凤海,杨帆.采矿地表沉陷的神经网络预测[J].中国地质灾害与防治学报,2001,12(3):84-87
    [66]麻凤海,王泳嘉,范学理.利用神经网络预测开采引起地表沉陷[J].阜新矿业学院学报(自然科学版),1995,14(3):46-49
    [67]王坚,岳广余.自适应GM(1,1)模型进行地表沉降预报[J].北京测绘,2003,(1):40-42
    [68]张东明,尹光志,代高飞.地表下沉的分形特征及其预测[J].成都理工大学学报(自然科学版),2003,30(1):92-95
    [69]董春胜,等.改进的BP神经网络预测地表沉陷[J].辽宁工程技术大学学报(自然科学版),2001,20(5):722-723
    [70]高明中,余忠林.煤矿开采沉陷预测的数值模拟[J].安徽理工大学学报(自然科学版),2003,23(1):11-17
    [71]唐又弛,曹再学,朱建军.有限元法在开采沉陷中的应用[J].辽宁工程技术大学学报,2003,22(2):176-178
    [72]袁灯平,马金荣,董正筑.利用ANSYS进行开采沉陷模拟分析[J].济南大学学报(自然科学版),2001,15(4):336-338
    [73]余学义.采动区地表剩余变形对高等级公路影响预计分析[J].西安公路交通大学学报,2001,21(4):9-12
    [74]余学义,施文刚.地表剩余沉陷的预计方法[J].西安矿业学院学报,1996,16(1):1-4
    [75]吴侃,靳建明.时序分析在开采沉陷动态参数预计中的应用[J].中国矿业大学学报,2000,29(4):413-415
    [76]邹友峰.地表下沉系数计算方法研究[J].岩土工程学报,1997,19(3):109-112
    [77]吴侃,靳建明,戴仔强.概率积分法预计下沉量的改进[J].辽宁工程技术大学学报,2003,22(1):19-22
    [78]崔希民,陈至达.非线性几何场论在开采沉陷预测中的应用[J].岩土力学。1997,18(4):15~29
    [79]汤建泉,何满潮,马庆云等.开采覆岩运动和破坏规律的实验研究[J].中国煤炭,1996(2):14~17
    [80]刘天泉.我国“三下”采煤技术的现状及发展趋势[J].煤炭科学技术,1984.10:24-28
    [81]刘天泉,范维唐.采用综合减沉是实施矿区可持续发展战略的重要举措[J].煤炭企业管理,1998.8
    [82]徐永忻,王悦汉.短壁开采技术[J].中国矿业学院出版社,1987.10
    [83]王建学.开采沉陷塑性损伤结构理论与冒矸空隙注浆充填技术的研究[D].博士论文,煤炭科学研究总院,2001
    [84]张恩庆,王贵海,等.荣坊村庄下多工作面全柱式采煤[J].煤炭科学技术,1989.4:10-14
    [85]赵德深,范学理,洪加明.离层注浆技术的应用与效果[J].东北煤炭技术,1995(5):9-12
    [86]隋惠权,王忠林.覆岩离层注浆控制地表沉降技术的理论与实践[J].岩土工程学报,2001,23(4):510-512
    [87]徐乃忠,张玉卓.覆岩离层注桨减缓地表沉陷的动态力学模型[J].西安科技学院学报,2000,20(增):35-38
    [88]刘文生.覆岩离层注浆充填保护地面高压线路试验研究[J].煤炭学报,2001,26(3):236-239
    [89]姜德义,蒋再文,刘新荣,等.覆岩离层注浆控制沉降技术及计算模型[J].重庆大学学报(自然科学版)2000,23(3):54-56
    [90]孙泰森,师学义等.五阳矿区采煤塌陷地复垦土壤的质量变化研究[J].水土保持学报.2003,17(4):35-37
    [91]魏江生,贺晓等.干旱半干旱地区采煤塌陷对沙质土壤水分特性的影响[J].干旱区资源与环境.2006,20(5):84-88
    [92]胡振琪,S.K.Chong.深耕对复垦土壤物理特性改良的研究[J].土壤通报.1999,30(6):248-250
    [93]高国雄,高保山,周心澄等.国外工矿区土地复垦动态研究[J].水土保持研究.2001.3 8(1):98-102
    [94]陆志波,陆雍森. Surfer 8.0在环境评价和规划中的应用[J].同济大学学报:自然科学版,2005 ,33(2) :191 195
    [95]山西潞安集团司马煤业有限公,中国矿业大学《薄基岩厚表土综放采场覆岩运动规律及支护与水防治技术研究》报告
    [96] [美]S.S.彭.高博彦.韩持译.煤矿地层控制[M].北京:煤炭工业出版社,1984
    [97]李铁汉等.岩体力学[M].北京:地质出版社.1982
    [98] [德]H.克拉茨著采动损害及防护[M].马伟民,王金庄,王绍林译北京:煤炭工业出版社,1984
    [99] Barry N.Whittaker,David J.Reddish. Subsidence—occurrence,prediction and control [M]. New York:Elsevier science publishing company inc. ,1989
    [100]麻风海,王泳嘉,范学理.连续介质流变理论及其在岩层下沉动态过程中的应用[J].中国有色金属学报,1996,6(4):7~12
    [101] [波]克诺特,李特维尼申等.矿区地面采动损害保护[M].上西里西亚出版社.1980
    [102] Saxena,N.C. and Singh,B.Prediction of Subsidence of movements in coal mining areas in India coalfields[C].Proceeding of the Conference Frederiction,Canada,1988
    [103]石平五,侯忠杰.神府浅埋煤层顶板破断运动规律[J].西安矿业学院学报,1996,16(3):204–207
    [104]黄庆享.浅埋煤层长壁开采顶板控制研究[博士学位论文][D].徐州:中国矿业大学,1998
    [105]张俊云,侯忠杰,田瑞云,等.浅埋采场矿压及覆岩破断规律[J].矿山压力与顶板管理,1998,(3):9–11
    [106]黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002,21(8):1 174–1 177
    [107]黄庆享,钱鸣高,石平五.浅埋煤层采场基本顶周期来压的结构析[J].煤炭学报,1999,24(12):581–585
    [108]高召宁,石平五,姚令侃.中小煤矿在浅埋薄基岩下开采灾害防治研究[J].采矿与安全工程学报,2006,23(2):210–214
    [109]黄庆享,张沛.厚砂土层下顶板关键块上的动态载荷传递规律[J].岩石力学与工程学报,2004,23(24):4 179–4 182
    [110]方新秋;黄汉富;金桃;柏建彪.等.厚表土薄基岩煤层开采覆岩运动规律[J].岩石力学与工程学报,2008,(s1)
    [111]钱鸣高,何富连,王作棠,等.再论采场矿山压力理论[J].中国矿业大学学报,1994,23(3):1–9.
    [112]钱鸣高.20年来采场围岩控制理论与实践的回顾[J].中国矿业大学学报,2000,29(1):1–4.
    [113]方新秋,郑世书,柏建彪.薄基岩厚表土层采场覆岩运动规律及支护与水防治技术研究[R].徐州:中国矿业大学,2006.
    [114]陈希哲.土力学地基基础[M].北京:清华大学出版社,1997.
    [115]刘鸿文.材料力学(第四版)[M].高等教育出版社,2004.1
    [116] F.P.Glushikhin, G.N. Kuznetsov etc.Modeling in eo-mechanics.ELSEVEAR Science publishers B.V. 1990
    [117]任德惠.用相似材料模拟研究工作压力[J].矿山压力,1984
    [118]左启勋.模型实验的理论与方法[M].水利电力出版社,1984
    [119]陈锐.脆性材料结构模型试验[M].水利电力出版社,1984
    [120]富马加利.静力学模型与地质力学模型[M].水利电力出版社,1979
    [121]姜德义.开采层底板应力分布[D].重庆大学硕士学位论文,1985
    [122]陶连金,王泳嘉,张倬元,姜德义.大倾角煤层开采矿山压力显现及其控制[M].四川科学技术出版社,1998
    [123]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社.1997.3
    [124]钱鸣高,朱卫兵。覆岩主关键层对地表下沉动态的影响研究[J],岩石力学与工程学报,2005,24(5):787-791
    [125] R. G. Darmody. Coal mine subsidence: The effect of m irrigation on crop yields[A ]. Proceedings of subsidence workshop due to underground mining [C]. Kentucky, 22-25, Jun.1993: 182-187.
    [126] R. G. Darmody. Modeling agricultural impacts of long wall mine subsidence: A GIS app roach [ J ]. IJSM , R&E, 1995(9) : 63-68
    [127]王荫槐.土壤肥料学[M].北京:农业出版社,1992.40-310
    [128]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998
    [129]陈龙乾,邓喀中,赵志海等.开采沉陷对耕地土壤化学特性影响的空间变化规律[J].煤炭学报.1999,24(6):586-590
    [130]郭义强煤矿区土地复垦规划模式研究[D]硕士学位论文河北农业大学2005年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700