用户名: 密码: 验证码:
多运动模式轮腿移动机器人的运动学分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来仿生机器人的研究一直是非常活跃的一个领域,运动机理在仿生学的研究当中有着至关重要的作用。有些移动机构,将轮式移动机构和腿式移动机构相结合,组合成了轮腿式移动机器人,增强了移动机器人在复杂路况环境下的道路适应性和通过性,本文的研究对象为轮腿式移动机器人,具有六条结构相同的移动腿,可利用变形关节,完成多运动模式下的移动行走功能,进一步增强了移动机器人对非结构环境的适应性和通过性。
     首先对多运动模式轮腿移动机器人的单腿机构进行了运动学分析,利用D-H法则构建了其腿部的运动学模型,并对运动学方程正逆解进行了求解和仿真验证;而D-H法则在某些情况下影响了坐标系构建的多样性,并且带来繁杂的分析步骤,因此本文针对多运动模式轮腿移动机器人的机构特点,提出冗余坐标系的概念,从而为单腿机构坐标系的快速构建提供一种新的解决方案,提高了运动学模型的构建效率。
     利用矢量积法对多运动模式轮腿移动机器人的雅克比矩阵进行求解,对矢量积法所求结果进行数学仿真和三维模型的仿真验证。同时利用微分变换法进行雅克比矩阵的求解,并利用所求结果对矢量积法再次进行验证,以表明矢量积法求解的正确性。
     分析了单腿机构的灵活性,求解了多运动模式轮腿移动机器人单腿机构的工作空间,为多运动模式轮腿移动机器人运动规划、避障提供了良好的解决方法。求解单腿机构灵活性的过程中,引入灵活度、灵活工作空间等概念,利用几何构图法和数值分析法对多运动模式轮腿移动机器人的灵活性进行了分析研究。分析结果证明了单腿机构的平面灵活性,并最终通过利用遍历整个服务球的方法仿真验证了多运动模式轮腿移动机器人单腿机构在笛卡尔坐标系下的空间灵活性。
     利用动力学求解方法对多模式移动机器人进行动力学研究的初步探索。结果表明,第二类拉格朗日方程所求结果较为繁琐,不便于计算和实时控制。
     利用解析几何的坐标变换方法,构建此种多运动模式轮腿移动机器人并联机构的运动学模型;并利用构建并联机构各分支末端点之间的几何关系,求解下平台坐标系原点和坐标系姿态矩阵,进而构建了该机构的运动学正解模型;仿真结果表明,该并联机构运动学模型正确;最后,应用人工鱼群算法对多运动模式轮腿移动机器人并联机构的运动学正解进行求解,并对运动学正解结果进行仿真验证,给出了仿真验证结果。
     构建了多运动模式轮腿移动机器人运动学逆解模型,给出运动学逆解的解析解,利用几何图解法求解出全部奇异解的存在状况,并给出逆解解析解的正确解,分别以位置和姿态为输入,对多运动模式移动机器人运动学逆解进行了数值求解和仿真验证。
     利用多运动模式轮腿移动机器人移动机构的运动学逆解模型,基于逆解结果,对多运动模式轮腿移动机器人移动机构的直线行驶、转弯行驶、原地旋转的步态规划进行解算,为多运动模式轮腿移动机器人的自主步态规划提供了理论基础。
Biomimetic robots’ research has always been a very active field in the last decades.Mechanism of the movement plays an important role in biomimetic robots’ research. Some of theresearchers, combine the feature of wheeled robots and the legged robots, formed the wheel-legrobots, enhancing the robot’s adaptability in different kinds of terrains. The object of thisdissertation is a kind of wheel-leg robot. This robot has six legs with the same mechanism. Thisrobot has differnt kinds of movment model. With the joints’ deformable ability, this kind ofbiomimetic mobile robot can travel by legs or wheels, so this kind of biomimetic mobile robotcan walk in different kinds of ways, so this robot can not only drive very fast but also hasenhanced the adaptability in complex grounds furtherly.
     In this dissertation, we firstly analyze the kinematics of one leg of the multi-motion modewheel-leg robot, establish the kinematic model using D-H rule, solve and simulate the forwardand inverse kinematics of the legged mechanism of the multi-motion mode wheel-leg robot; Thetraditional approach for constructing the kinematic model of serial mechanisms is to solve thecoordinate transformations of the kinematic equations by using D-H rule, however, this approachhas been proved to be less efficient in constructing some complex kinematic mechanisms, andthe analysis processes for coordinate transformations are usually not easy to determine.Therefore, the redundant coordinare system is proposed and established homogeneoustransformation matrices of Y axis to simply the transforming and calculating process.
     Simultaneously, we introduce the definition of Jacobian matrix, vector multiplicationmethod, differential transform method, and solve the Jacobian matrix with the vectormultiplication method, and simulate the final result with mathematical software and3D modelsoftware; we also solve the jacobian matrix with differential transform method, and at last wetest the vector multiplication method with the differential transform method, the analysis resultssupply a better way for the kinematic analysis of the robot studied by us.
     The study of the flexibility can provide a better solution for the locomotion ability, and theavoidance ability of the multi-motion mode robot in this dissertation. By introudcing the definition of flexibility, workspace of flexibility etc, we use geometric composition method andnumerical analysis method to study the flexibility of the legged mechanism of the multi-motionmode robot. Based on analyzing the planar flexibility, we solve the spatial flexibility of thelegged mechanism in this paper, and in the end, we solve the service sphere of the leggedmechanism of the robot to give the flexibility simulation results.
     In this dissertation, we also have studied the dynamics model of the legged mechanism ofthe robot. The final results show that the lagrange's equations of the second kind is complicatedfor solving the dynamics model of the legged mechanism, and is not a convenient method forcalculation and real-time control.
     We continue to construct the parallel mechanism of the multi-motion mode robot using thecoordinate transformation methods. By constructing the geometric model of the end-effectors ofthe parallel mechanism, we solve the position and orientation of the bottom platform, and weconstruct the forward kinematics mode of the parallel mechanism. And we solve the forwardkinematics mode of the parallel mechanism of the multi-motion mode robot using artificial fishswarm algorithm (AFSA). Finally, we simulate the results of the forward kinematics of theparallel mechanism.
     We construct the inverse kinematic model of the multi-motion mode wheel-leg robot tosolve the analytical solution of the inverse kinematics, and solve the singular solution of theinverse kinematics by using geometric method. When the input of the top platform areorientation and position respectively, we can solve and simulate the inverse kinematics mode.
     Based on solution of the inverse kinematics, we can generate the straight walking gait, thetruning gait and the spinning gait to supply enough support fot the automatic gait generationmethod.
引文
[1]马光.仿生机器人的研究进展[J].机器人,2001.23(5):463~465
    [2]杨加伦.动物结构的分类与步行器的构型及性能研究[D].天津:河北工业大学,2006.3.14
    [3] Raibert M H. legged Robots that Balance [M]. The MIT Press,1986, Cambridge,MA
    [4] Koxlitschek D E, BuherM. Analysis of a simplified hopping robot [J].Iternational Journal of RoboticsResearch,1991,10(6):587~605
    [5] lap shin V V.Motion control of a legged machine in the supportlees phase of hopping [J].InternationalJournal of Robotics Research,1991,10(4):327~337
    [6] Li Z,Montgomery R.Dynamics and optimal conrrol of a legged robot in flight phase[A].IEEEConference on Robotics and Automation [C],Cincinnati,OH,May1990:1816~1821[22]
    [7] M’Closkey R T,Burdick JW.Periodic motion of a hopping robot with vertical and forwardmotion[J].International Journal of Robotics Research,1993,12(3):197~218
    [8]杨煌普,耿涛,郭毓.一种新型翻转跳跃运动机器人的运动结构与轨迹规划[J],上海交通大学学报,2003,37(7):1110~1113
    [9] Tatsuko Arai,Hironori Adachi,et.Integrated Arm and Leg Mechanism and Its Kinematic Analysis.IEEEInternational Conference on Robotics andAutomation,1995:994~999
    [10] Noriho Koyachi, Tatsuo Araim Hironori Adachi. Design and control of Hexapod with IntergratedLimg Mechanism:MELMANTIS[C].Proceedings of the1996IEEE/RSJ International Conference onInterlligent Robots and Systems(IROS’96),1996(11):877~882
    [11] Naofumi Senjo,Ryoji Murata,Tatsuo Arai.Control of Walk and Manipulation by a Hexapod withIntegrated Limb Mechanism MELMEATIS-1[C].Proceedings of the2002IEEE internationalConference on Robotics and Automation,2002:3553~3558
    [12]陶晓明.三肢体仿生机器人运动规划策略的研究.[D].哈尔滨:哈尔滨工业大学,2007.7
    [13] R.S.Mosher.Test and Evaluation of a Versatile Walking Truck[J]. Proc.Off-Road Mobility ResearchSymp,1968:359~379
    [14]汪劲松,荣松年,张伯鹏.全方位双三足步行机器人(I)[J],清华大学学报(自然科学版),1994.34(2):02~107.
    [15]汪劲松,张伯鹏.全方位双三足步行机器人(III)[J].清华大学学报(自然科学版),1994.34(5):62~71.
    [16] Mustafa Suphi Erden, Kemal Leblebicio lu. Free gait generation with reinforcement learning for asix-legged robot[J]. Robotics and Autonomous System,2008(56):199~212
    [17]蒋新松.机器人学导论.辽宁:辽宁科学技术出版社.1993:30
    [18]陈东良,孟庆鑫,王立权.仿生机器蟹变结构力觉传感器的设计及数据处理[D].哈尔滨:哈尔滨工程大学,2006.2(27):118~122.
    [19]袁鹏.仿生机器蟹步行机理分析及控制系统研究[D].哈尔滨:哈尔滨工程大学.2003.12
    [20]袁鹏,孟庆鑫,王立权等.两栖仿生机器蟹单足运动控制系统[J].制造业自动化.2003.25(7):38~40
    [21]赵荣岗,吕恬生,徐子力等.溜冰机器人基本特性研究[J].2004.23(6):687~689
    [22]马利娥.仿袋鼠机器人跳跃运动机理的研究[D].西安:西北工业大学,2005.2
    [23]戚开诚.仿人形机器人机构设计[D].天津:河北工业大学,2004.3
    [24]王宾瑞.三肢体仿生机器人运动仿真及控制系统研究[D].哈尔滨:哈尔滨工业大学,2006.6
    [25]孙翊.模块化多足步行机器人机械系统研究[D].武汉:华中科技大学,2006.4.25
    [26] H.J.Weidemann, F.Pfeiffer, J.Eltze. A Design Concept for Legged Robots Derived From the WalkingStick Insect[C], Proc.of the1993IEEE/RSJ Int.Conf.on Intelligent Robots and Systems, Yokohama,Japan.1993.7:545~552
    [27] Z.Huang, T.S.Zhao. The Specific Resistance of Seacrab's Walking-legged System Model[C],Procs.Of IEEE/RSJ Int.Conf.on Intelligent Robots and Systems IROS’95,1995:1735~1739
    [28]陈学东,郭鸿勋,渡边桂吾.四足机器人爬行步态的正运动学分析[J].机械工程学报2002,2(2):8~12
    [29] InnoeeniiC.Direct kinematies in analytical form of the6-4fully-Parallel mechanism.trans.ofASME[J],Mechanical Design,1995.117(1):89~95
    [30] NanuaP,waldron KJ,Murthy V.Direet kinematic solutlon of a stewart Platform.IEEE Trans.onRobotics and Auto-mation,1990,6(4):438~443
    [31]运红丽.3支链6自由度并联结构力/力矩反馈装置的关键技术研究[D].秦皇岛:燕山大学,2005.3
    [32]王新杰.多足步行机器人运动及力规划研究[D].武汉:华中科技大学,2005.10.20
    [33]王沫楠,孙立宁.仿生机器蟹步行足腿结构设计及运动学、动力学分析[J].机械设计与研究,2005.215():41~44
    [34]罗红魏.两栖仿生机器蟹关键技术研究[D].哈尔滨:哈尔滨工程大学,2007.3
    [35] Kucuk,Serdar.Link Mass Optimization of Serial Robot Manipulators Using GeneticAlgorithm[J].Lecture Notes in Computer Science,2006,(3):138~144
    [36]孙增圻.机器人系统仿真及应用[J].系统仿真学报,1995.7(3):23~29.
    [37]周芳芳,樊晓平,叶榛.D-H参数表生成三维机器人模型仿真系统[J].系统仿真学报.200618(4):947~950
    [38]殷际英,何广平.关节型机器人[M].北京:化学工业出版社,2003:20~52
    [39]张铁,谢存禧.机器人学[M].广州:华南理工大学出版社,2001.5:85~92
    [40] Paul R P.Robot ManiPulators: Mathematics, Programing and Control[M].Massaehusettes: TheMIT Press,1981:30~152
    [41]熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社,1993.10:107
    [42]丁学恭.机器人控制研究第一版[M].杭州:浙江大学出版社,2006.19
    [43]梁大云.轮式与六杆机构复合移动机器人机械系统研究[D].北京:北京交通大学,2008.6
    [44]曹洋.非完整足球机器人运动控制策略的研究与实现:[D].沈阳:东北大学,
    [45]张晓丽.移动机械手系统运动学分析及动力学初探[D].天津:河北工业大学,2006.12
    [46] R.B. McGhee.Some Finite State Aspects of Legged Locomotion[J]. Math.Biosci.,1968,2:67~84.
    [47] S. Hirose, A Study Robotics Research of Design and Control of a Quadruped Walking Vehicle, TheInt. J. Of1984,3(2):113~133
    [48]徐向荣,秦锋,毕文吕等.一种机器人动力学分析与控制方法[J].机械科学与技术,1998.17(5):763~767
    [49]戈新生,刘松,张涌.机器人动力学分析的完全笛卡尔坐标方法[J].机械设计,2001,10(10):13~17
    [50]陈敏华.机器人动力学模型新方法[J].机床与液压,2003.1:134~137
    [51] Zhang, C. D. and Song, S. M.An efficient method for inverse dynamics of manipulators based on thevirtual work principle[J]. Journal of Robotic Systems,1993.10(5):605~627
    [52]赖锡煌,殷纪英,高勇.多关节机器人运动学和动力学分析[J].机器人技术,2005.6:34~35
    [53]杨峰.JJR-1型机器人运动学分析及其控制系统的研究[D].兰州:兰州理工大学,2006.4.28
    [54]陈平. MOTOMAN-UPJ型机器人运动学研究[D].江苏:江苏大学,2006.6.19
    [55] A. Tavasoli, M. Eghtesad, H. Jafarian. Two-time scale control and observer design for trajectorytracking of two cooperating robot manipulators moving a flexible beam [J]. Robotics andAutonomous Systems,2009(57):212~221
    [56] E.J. Van Henten, E.J. Schenk, L.G. van Willigenburg. Collision-free inverse kinematics of theredundant seven-linkmanipulator used in a cucumber picking robot [J]. biosystems engineering,2010(106):112~124
    [57] M.Herman Jamaluddin,M.Azmi Said,MarizanSulai-man,ect..Vision Guided Manipulator forOptimal Dynamic Performance[C].Student Conference on Research and De-velopment, Shah Alam,Selangor, MALAYSIA.2006:27~28,147~151
    [58]马香锋.机器人机构学[M].北京:北京工业出版社,1991:9
    [59] J. A. Snyman, L J du Plessis. An Optimization Approach to the Determination of the Boundaries ofManipulator Workspace[J]. ASME Journal of Mechanical.2000(122):447~4561.
    [60]袁泉.喷浆机器人的工作空间分析[J].机械科学与技术,2001,20(1):62~631
    [61] Wang Yunfeng,Chirikjian,Gregory S. Articulated manipulators.Fr oceedings2002(2):1525-1530.Adiffusion-based algo rithm for workspacegeneration of highly IEEE International Conference onRobotics and Automation
    [62]曹毅,王树新,李群智.基于随机概率的机器人工作空间及其解析表达[J].组合机床与自动化加工技术,2005,2:1~3
    [63]欧宜贵,李志林,洪世煌.计算机模拟在数学建模中的应用[D].海南大学学报自然科学版,2004,22(1):89-95
    [64]唐粲,栾胜,等.一种新型医疗机器人运动学及灵活性分析[J].北京航空航天大学学报,2005,7:750~751
    [65]曹毅.显微外科手术机器人工作空间分析与综合:[D].天津:天津大学,2004,12
    [66]马香峰,余达太著.工业机器人的操作机设计.北京:冶金工业出版社,1999:56-58
    [67]李康.介入式手术机器人机械结构设计及运动学仿真:[D].哈尔滨:哈尔滨工业大学,2006,6
    [68]夏发平.工业机器人运动学建模与仿真研究:[D].武汉:华中科技大学,2007,5
    [69] T. Yashikawa. Manipulator of Robotic Mechanism. Int. J of Robotics Res,1985,439~445
    [70]欧阳富,刘彦华,孙东民.关于重新建立空间机构自由度计算公式的探索[J].机械工程学报,2003,1(39):60~64
    [72]天津大学等六所大学主编.机械原理(上册)[M].北京:人民教育出版社,1979
    [73]黄真.空间机构学[M].北京:机械工业出版社,1991(6):97~108
    [74][苏]柯热夫尼柯夫C.H.机构参考手册[M].北京:机械工业出版社,1988
    [75]李学荣.四连杆机构综合概论(第一册).北京:机械工业出版社,1985
    [76] E.A. Al-Gallaf. multi-fingered robot hand optimal task force distribution Neural inverse kinematicsapproach[J]. Robotics and Autonomous Systems54(2006)34~51
    [77] Li Chen, Shugen Ma, Yuechao Wang, Bin Li, Dengping Duan. Design and modelling of a snakerobot in traveling wave locomotion [J]. Mechanism and Machine Theory42(2007):1632–1642
    [78] P.K. Jamwal, S.Q. Xie, Y.H. Tsoi, K.C. Aw. Forward kinematics modelling of a parallel anklerehabilitation robot using modified fuzzy inference [J]. Mechanism and Machine Theory45(2010)1537–1554
    [79] Mao Jun, Li Jian-gang, Li Wei-kang, Hao Zhi-yong. Kinematics analysis and simulation of profilingmemory cutting for tunnel robot in complex environment[J]. Procedia Earth and Planetary Science1(2009)1411–1417
    [80] Stefan Staicu. Recursive modelling in dynamics of Agile Wrist spherical parallel robot[J]. Roboticsand Computer-Integrated Manufacturing25(2009)409–416
    [81]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:283~284
    [82]黄真,李秦川.少自由度并联机器人机构的型综合原理[J].中国科学(E辑),2003,9:813~819Hang Zhen, Li Qinchuan. Type synthesis principle of minor-mobility parallel manipulators[M],Beijing:SCIENCE IN CHINA (Series E),2003,9:813~819
    [83] Michele Lacagnina, Giovanni Muscato, Rosario Sinatra. Kinematics, dynamics and control of ahybrid robot Wheeleg[J]. Robotics and Autonomous Systems,2003,45:161~180
    [84] Li Chen, Shugen Ma, Yuechao Wang, et al. Design and modelling of a snake robot in traveling wavelocomotion [J]. Mechanism and Machine Theory,2007,42:1632–1642
    [85] Christophe Grand, Faiz Benamar, Frédéric Plumet. Motion kinematics analysis of wheeled-leggedrover over3D surface with posture adaptation[J]. Mechanism and Machine Theory,2010,45:477~495
    [86]谢国瑞.线性代数及应用[M],(2版)北京:高等教育出版社,1999.p75~p77
    [87]宋孟军张明路.一种新型多运动模式轮腿移动机器人腿部机构灵活性分析[J].机械设计与研究,2010(6):37~40
    [88] M.Li, T.Huang, D.G.Chetwynd, S.J.Hu.Forward position analysis of the3-DOF module of theTriVariant: A5-DOF reconfigurable hybrid robot,Journal of Mechanical Design, Transactions Of theASME128(2006):319~322.
    [89]黄昔光,廖启征,魏世民,等.一般6-6型平台并联机构位置正解代数消元法[J].机械工程学报,2009,45(1):56~61
    [90]赵杰,朱延河,蔡鹤皋. Delta型并联机器人运动学正解几何解法[J].哈尔滨工业大学学报,2003,35(1):25~27
    [91] Tae-Young Lee, Jae-Kyung Shim.Forward kinematics of the general6–6Stewart platform usingalgebraic elimination Original Research Article[J]. Mechanism and Machine Theory,2001,36(9):1073~1085
    [92] Mehdi Tale Masouleh, Clément Gosselin, Manfred Husty etc. Forward kinematic problem of5-RPURparallel mechanisms (3T2R) with identical limb structures [J]. Mechanism and Machine Theory,2011,13(3):1~15
    [93]张世辉,孔令富,原福永,等.基于自构形快速BP网络的并联机器人位置正解方法研究[J].机器人,2004,26(4):314~319
    [94] Pratik J.Parikh and Sarah S.Y.Lam.A hybrid strategy to solve the forward kinematics problem inparallel manipulators[J]. IEEE Transactions on Robotics.2005,21(1):18~25
    [95] Prashant Kumar Jamwal, Shengquan Xie, Kean C. Aw. Kinematic design optimization of a parallelankle rehabilitation robot using modified genetic algorithm[J]. Robotics and Autonomous Systems,2009,57(10):1018~1027
    [96]贺利乐,刘宏昭,王朋,等.基于改进遗传算法的六自由度并联机器人位置正解研究[J].应用科学学报,2005,23(5):522~525
    [97] I. Montalvo, J. Izauierdo, R. Pérez, M. Tung. Particle Swarm Optimization applied to the design ofwater supply systems. Computers and Mathematics with Applications,2008,56(3):769~776
    [98]车林仙,何兵,易建,等.对称结构Stewart机构位置正解的改进粒子群算法[J].农业机械学报,2008,39(10):158~163
    [99]李晓磊,路飞,田国会,等.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67.
    [100] RAVINDA K, AHUJ A, OZLEM E, et al.A survey of very large-scale neighborhood searchtechniques. Discrete Applied Mathematics[J],2002,123(1~3):75-102.
    [101]张秋亮.鱼群算法在配电网规划中的应用研究[D].河北:华北电力大学(保定),2008.1
    [102]高玉芳,张展羽.混沌人工鱼群算法及其在灌区优化配水中的应用[J].农业工程学报,2007,23(6):7~11
    [103]刘彦君.鱼群算法及在无线传感器网络覆盖优化中的应用[D].山东:山东大学,2009,4
    [104]张赫,徐玉如,万磊,等.水下退化图像处理方法[J].天津大学学报,2010,43(9):827~833
    [105] Li Chen, Shugen Ma, Yuechao Wang, Bin Li, Dengping Duan. Design and modelling of a snakerobot in traveling wave locomotion [J]. Mechanism and Machine Theory42(2007):1632~1642
    [106]黄昔光,廖启征,李端玲,等.基于四元数的台体型5SPS-1CCS并联机器人位置正解分析[J].机械工程学报,2007,43(5):8~13.
    [107] Taesin Ha, Chong-Ho Choi.An effective trajectory generation method for bipedal walking[J].Robotics and Autonomous Systems,2007,55,10:795-810
    [108]曲云霞.二自由度解耦球面并联机构运动学行为研究[D].天津:河北工业大学,2008.10
    [109]槐创锋,方跃法.5连杆双足机器人建模和控制系统仿真[J].系统仿真学报,2008,20(20):5682~5690
    [110]孟偲,王田苗,丑武胜,等.仿壁虎机器人的步态设计与路径规划[J].机械工程学报,2010,46(9)32~37
    [111] J.M.Porta, E. Celaya.Reactive free-gait generation to follow arbitrary trajectories with a hexapodrobot[J]. Robotics and Autonomous Systems,2004,47:187~201
    [112] SahinYildirim. Design of a proposed neural network control system for trajectory controlling ofwalking robots. Simulation Modelling Practice and Theory2008,16:368~378
    [113] G.C.Nandi, A.J.Ijspeert, P.Chakraborty,et al. Development of Adaptive Modular Active Leg(AMAL)using bipedal robotics technology [J]. Robotics and Autonomous Systems,2009,57:603~616
    [114] Richard J. Bachmann, Frank J. Boria, Ravi Vaidyanathan, etal. A biologically inspired micro-vehiclecapable of aerial and terrestrial locomotion[J]. Mechanism and Machine Theory,2009,44:513~526
    [115]徐子力,吕恬生,徐振华,等.双足溜冰机器人样机研制[J].中国机械工程,2007,18,16:1921~1929
    [116]黄麟,韩宝玲,罗庆生.仿生六足机器人步态规划策略实验研究[J].华中科技大学学报,2007,35(12):72~75
    [117]黄博,赵建文,孙立宁.基于静平衡的四足机器人直行与楼梯爬越步态[J].机器人,2010,32(2):226~232
    [118] Thanhtam Ho, Sunghac Choi, Sangyoon Lee. Development of a Biomimetic Quadruped Robot[J].Journal of Bionic Engineering,2007,4:193~199
    [119]殷晨波,周庆敏,徐海涵,等.拟人机器人抗干扰行走稳定性分析[J].控制与决策,2006,21(6):619~624
    [120]彭胜军,税海涛,杨庆,等.双足步行机器人转弯步态规划及其实现[J].信息与控制,2010,39(6):783~788
    [121]李建,陈卫东,王丽军,等.未知不平整地面上的双足步行稳定控制[J].电子学报,2010,38(11):2669~2674
    [122] Jong Hyeon Park. Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motionsof biped robots[J]. Fuzzy Sets and Systems.2003,134:189~203
    [123]绳涛,程思微,王剑,等.欠驱动双足机器人动态步态规划方法研究[J].计算机工程与应用,2009,45(6):1~4
    [124] Jimmy Or. A hybrid CPG-ZMP control system for stable walking of a simulated flexible Spinehumanoid robot[J]. NeuralNetworks,2010,23:452~460
    [125]孙敏,范守文.基于能耗指标的拟人机器人步态优化与分析[J].机械设计与研究,2007,23(2):53~59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700