用户名: 密码: 验证码:
RNA干扰LRIG1基因对人胶质母细胞瘤GL15细胞系生物学行为的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分LRIG1基因特异性RNA干扰表达载体的构建、鉴定和稳定株的筛选
     目的构建针对LRIG1(leucine-rich repeats and immunoglobulin-like domains 1,LRIG1)基因的特异性RNA干扰质粒,稳定转染人胶质母细胞瘤GL15细胞系,观察其对目的基因LRIG1表达的影响,为探讨LRIG1基因沉默对人脑胶质瘤细胞生物学行为的调控奠定基础。
     方法根据GenBank提供的LRIG1基因序列设计2条RNA干扰序列,命名为LRIG1-shRNA1、LRIG1-shRNA2,并设计1条非特异性序列作为阴性对照,命名为pGenesil2-negative shRNA。合成各自的寡核苷酸链,退火后与pGenesil2质粒载体连接,转化扩增后测序。用不同浓度的G418作用于GL15细胞确定G418对GL15的筛选浓度。将3种重组表达载体转染GL15细胞,G418筛选后挑单克隆并扩增获得稳定株。Western印迹法在蛋白水平上检测LRIG1的表达。
     结果重组pGenesil2-LRIG1-shRNA质粒经限制性酶切及DNA测序分析证明序列插入正确。G418对GL15细胞的筛选浓度为600μg/ml,筛选出稳定转染三种质粒的GL15细胞,转染pGenesil2-LRIG1-shRNA1组细胞LRIG1蛋白表达明显低于转染pGenesil2-negative shRNA组。
     结论成功构建了针对LRIG1基因的特异性shRNA表达载体(pGenesil2-LRIG1-shRNA1),转染细胞后可抑制LRIG1基因表达,为下一步研究其功能奠定基础。
     第二部分RNA干扰LRIG1基因对胶质母细胞GL15细胞系细胞周期、凋亡和增殖的影响
     目的研究RNA干扰LRIG1基因表达后对人胶质母细胞瘤GL15细胞系细胞周期、凋亡和增殖的影响。
     方法在第一部分构LRIG1基因的特异性RNA干扰质粒的基础上,构建针对LRIG1基因的干扰片段(RNAi组)及非特异性的对照片段(negative组)分别转染GL15细胞系,G418(600μg/ml)筛选出稳定株,流式细胞仪检测对照组和实验组细胞的细胞周期变化,Annexin V-FITC/PI双标记流式细胞仪分析细胞凋亡,MTT法检测LRIG1表达下调对胶质瘤细胞增殖的影响。
     结果流式细胞仪分析显示,实验组的G2/M期细胞百分率比对照组明显增加(p<0.01);细胞增殖指数显著增加(p<0.01);实验组GL15细胞在LRIG1基因表达下调后早期凋亡的细胞明显减少(p<0.01);MTT结果显示干扰组细胞增殖率高于对照组(p<0.01)。
     结论GL15细胞经RNA干扰后LRIG1表达明显下调,对GL15细胞生长及抑制细胞凋亡有促进作用。
     第三部分RNA干扰LRIG1基因后对胶质母细胞瘤EGFR表达的影响及分子机制的研究
     目的探讨富含亮氨酸重复序列免疫球蛋白样蛋白1(LRIG1)基因与表皮生长因子受体(EGFR)在人脑胶质瘤细胞中的相互作用及其对肿瘤细胞生长影响的机制。方法用免疫共沉淀法检测人脑胶质瘤细胞系GL15中LRIG1与EGFR的相互作用。Western-blot法检测LRIG1表达的改变及其对EGFR、Akt、MAPK表达的影响。
     结果免疫共沉淀法表明胶质瘤细胞系GL15中LRIG1与EGFR存在相互作用。Western-blot结果显示RANi组LRIG1蛋白水平与阴性对照组相下降了47.9%(p<0.01),同时RANi组细胞EGFR、pAkt、pMAPK蛋白水平与阴性对照组相分别上升了57.1%(p<0.01)、43.6%(p<0.01)、52.3%(p<0.01)。
     结论干扰LRIG1表达可增强EGFR信号通路,导致肿瘤细胞增殖加速。LRIG1水平有望成为判断胶质瘤恶性程度及预后的参考标准之一,并为其治疗提供手段。
PartⅠConstruction of LRIG1 Specific RNAi Expressing Vector andScreening of Stably Transfected Cell Clon
     Objective To construct eukaryotic expression vector encoding RNA interferencesequences specific for LRIG1 gene, to screen the stably transfected cell clone, and toobserve its effect on the expression of LRIG1.
     Methods Designed two shRNAs sequences based on the sequence of LRIG1 mRNA in theGenBank and one scrambled shRNA sequence as negative control. The synthesizedsequences were inserted into shRNA expression vector pGenesil2 and sequenced. TheshRNA vectors were transfected into GL15 by Metafectine. The stably transfected cellclones were obtained after being screened with G418.Western Blotting was performed toexamine the inhibitory effect at the protein level.
     Results The recombinant plasmids containing shRNA were analysized by restrictionenzyme digest analysis and DNA sequencing. The screening concentration of G418 toGL15 cell was 600μg/ml. LRIG1 expression was significantly down-regulated by siRNA as validated by Western Bloting.
     Conclusion RNA interfering (RNAi) mediated by the shRNA expression vector couldsignificantly down-regulate the expression of LRIG1 in glioma cell line GL 15. The stabletransfected cell clone was obtained for further study.
     PartⅡThe effect of Down-regulation of LRIG1 Gene Expression onCell Cycle,Apoptosis and Proliferation inGlioblastoma Cell Line GL15
     Objective To investigate the effect of down-regulation of LRIG1 gene expression on cellcycle, apoptosis and proliferation in glioblastoma cell line GL 15.
     Methods The cell cycle in control and experimental group was detected by flowcytometry. Annexin V-FITC/PI double-labeled flow cytometry analyzed apoptosis. Methylthiazolyl tetrazolium (MTT)detected cell proliferation.
     Results Flow cytometry analysis showed that the G2 / M phase cell percentage inexperimental group was higher than control group significantly. Cell proliferation indexincreased significantly (p<0.01); In shRNAi group, GL15 cells in early apoptotic decreasedsignificantly after down regulation of LRIG1 (p<0.01) The role of LRIG1 onanti-apoptotic is remarkably (p<0.01); results of MTT showed that cell proliferation ratein interfered group was higher than control (p<0.01 ) .
     Conclusion The expression of LRIG1 is down regulated significantly in GL15 cell afterRNA interference, which enhances cell growth.
     PartⅢThe Effect of RNA interference of Gene LRIG1 on EGFRExpression in Glioblastoma Cell Line(GL15) andthe Molecular Mechanisms
     Objective To explore the interaction between the leucine-rich repeat Ig-like protein 1(LRIG1) and epidermal growth factor receptor (EGFR) in human glioma cells and theeffect of LRIG1 on the tumor cell growth.
     Method The interaction of LRIG1 and EGFR in human glioma cell line GL15 wasconfirmed by co-immunoprecipitation. Western-blot was used to analysis the level ofEGFR、pAkt、pMAPK protein after silencing LRIG1.
     Results Immune co-precipitation method showed that the GL15 glioma cell lines inexistence LRIG1 interaction with EGFR. The LRIG1 protein level inpGenesil2-LRIG1-shRNA (siRNA) transfected cells was significantly silenced by47.9%and the EGFR,Akt,MAPK protein level in it rised by 57.1%,43.6 %,52.3 %.
     Conclusion Knowdown of LRIG1 could enhance the functions of EGFR signalingpathway and promote tumor proliferation. LRIG1 protein level could be one index to adjustmalignant degree and prognose of glioma, and provides a new treatment for glioma
引文
1. Louis DN.The 2007 WHO classification of tumour of the centralnerous system.Acta Neuropat hol (Berl),2007;114:97-109.
    2. Me Lendon RE,Halperin EC. Is the Ion-term survival of patients with intracranial glioblastoma multiforme overstated ? Cancer,2003; 98:1745 - 1748.
    3.雷霆.脑肿瘤学.第一版.北京:中国医药科技出版社,2005:513.
    4. Mischel PS,Cloughesy TF.Targeted molecular therapy of GBM.Brain Pathol, 2003,13: 52-61.
    5. MeLendon RE , Halperin EC. Is the long-term survival of patientswith int racranial glioblastoma multiforme overstated ? Cancer,2003; 98:1745 - 1748.
    6. Brands AA,Franceschi E,Tosoni A,et al. Epidermal growth factor recptor inhibitors in neuro-oncology:hopes and disappointments. Clin Cancer Res,2008;14:957-960.
    7. Fresno Vara JA,Casado E, de Castrol J,et al.PI3K/Akt signaling pathway and cancer.Cancer Treat Rev,2004;30:193-204.
    8.陈菊祥,卢亦成,胡国汉等.胶质母细胞瘤基因表达谱及相关基因的聚类研究.中华神经外科疾病研究杂志,2004;3:222-225.
    9. Louis DN, Gusella JF.A tiger behind many doors: multiple genetic pathways to malignant glioma. Trends Genet, 1995;11:412-415.
    10. Suzuki Y,Sato N,Tohyama M,et al. cDNA cloning of a novel membrane glycoprotein that is expressed specifically in glial cells in the mouse brain. LIG-1,a protein with leucine-rich repeats and immunoglobulin-like domains. J Biol Chem,1996, 271:22522-22527.
    11. Filmus J, Pollak MN, Cailleau R, et al. MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and its growth inhibited by EGF. Biochem Biophys Res Comn, 1985,128: 898-905.
    12. Besson A,Yong VW.Mitogenic signaling and the relation to cell cycle regulation in astrocytomas.J Neurooncol,2001 ;51:245-264.
    13. Herbst R S.Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys,2004;59:21-26.
    14. Arteaga CL.Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist,2002;7:31-39.
    15.王明国,王中和.表皮生长因子受体.国外医学(分子生物学分册),2002,24:82-85.
    16. Tomas C,Ely G, James CD,et al. Glioblastoma-related gene mutations and over-expression of functional epidermal growth factor receptors in SKMG-3 glioma cells. Acta Neuropathol, 2001; 101 : 605-615.
    17. Wong AJ, Ruppert JM, Bingner SH, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Nalt Acad Sci USA, 1992; 87:2060-2065.
    18. EL-Obeid A, Bongeam-Rudloff E, Sorby M, et al. Cell scattering and migration induced by autocrine transforming growth factor a in gioma cells in vitro. Cancer Res, 1997;57:5598-5604
    19. Barker FG, Simmons ML,Chang SM,et al. EGFR overex-p ression and radiation response in glioblastoma multiform. Int J Radiat Oncol Biol Phys, 2001; 51 : 410-418.
    20.董伦,浦佩玉,王虎等.星形细胞肿瘤表皮生长因子受体与p53基因的异常表达.中华病理学杂志,2006;35:232-236.
    21.刘家刚,刘艳辉,蔡敬等.EGFR、PTEN在常见恶性脑肿瘤中的表达及意义.四川大学学报,2006;37:868-871.
    22.吴健虹,谢秋玲,陈小佳等.表皮生长因子受体EGFR及其信号传导.生命科学,2006;18:116-122.
    23.叶榕.表皮生长因子受体及其临床应用.医学新知杂志,2008;18:164-166.
    24. Baker NE,Yu SY.The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye.Cell,2001; 104:699-708.
    25. Nilsson J,Vallbo C,Guo D,et al.Cloning,characterization,and expression of human LIG1. Biochem Biophys Res Commun,2001,284:1151 -1161.
    26.郭东生,易伟,薛德麟,雷霆.LRIG1基因功能域载体的构建及亚细胞定位.华中医学杂志,2006;3:191-194.
    27.严泽军,叶章群,杨为民,郭东升.LRIG1和EGFR在膀胱移行细胞癌中的表达及临床意义.临床泌尿外科杂志,22:216-218.
    28. Nilsson J,Starefeldt A, Henriksson R,et al. LRIG1 protein in human cells and tissues.Cell Tissue Res, 2003,312:65 - 71.
    29. Thomasson M,Hedman H,Guo D,et al.LRIG1 andepidermal growth factor receptor in renal cell carcinoma:a quantitative RT-PCR and immunohistochemical analysis. Br J Cancer ,2003 ;89:1285 - 1289.
    30.杨为民,严泽军,叶章群等.抑癌基因LRIG1对膀胱癌细胞BIU87生物学特性的影响.中华实验外科杂志,2005;22:1543-1545.
    31.闫尧,马军,唐芙爱等.应用RT-PCR分析食管癌组织中lrig1基因的表达.第四军医大学学报,2007;28:1380-1382.
    32. Tanemura A,Nagasawa T, Inui S,et al.lrig-1 provides a novel prognostic pedictor in squamous cell carcinoma of the skin: immunohist ochemical analysis for 38 cases. Der matol Surg, 2005;31:423 - 430.
    33. Guo DS,Holmlund C,Henriksson R,et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues, and a homolog in Ascidiacea. Genomics, 2004; 84; 157 - 165.
    34. YI Wei, YE Fei, GUO Dongsheng, XUE Delin, LEI Ting.Expression and Significance of LRIG1 Gene in Human Astrocytomas. The Chinese-German Journal of Clinical Oncology, 2005, 4:225-228.
    35.叶飞,郭东升,易伟,牛洪泉,舒凯,万锋,卢运萍,雷霆。过度表达LRIG1基因逆转人胶质瘤侵袭性的机制。中华实验外科杂志,2005,22:200-202.
    1. Guo D, Holmlund C, Henriksson R ,et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics,2004,84:157-165.
    2. Gur G, Rubin C,Katz M,et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. Embo J,2004;23:3270-3281.
    3. Hedman H, Nilsson J, Guo D, Henriksson R. Is LRIG1 a tumour suppressor gene atchromosome 3pl4.3? Acta Oncol, 2002; 41: 352-354.
    4. Thomasson M,Hedman H, Guo D,et al.LRIG1 and epidermal growth factor receptor in renal cell carcinoma:a quantitative RT-PCR and immunohistochemical analysis.Br J Cancer,2003;89:1285-1289.
    5. Tanemura A,Nagasawa T,Inui S,et al.LRIG-1 provides a novel prognostic predictor in squamous cell carcinoma of the skin:immunohistochemical analysis for 38 cases.Dermatol Surg,2005;31:423-430.
    6. Nilsson J,Vallbo C,Guo D,et al.Cloning,characterization,and expression of human LIG1.Biochem Biophys Res Commun,2001 ;284:1151 -1161.
    7. Yuan B,LateK R,Hossbach M,et al.siRNA Selection Servenan automated siRNA oligonucleotide prediction server.Nucleic Acids Res,2004,32(Web Server issue):W130-134.
    8. Louis DN.The 2007 WHO classification of tumour of the centralnerous system . Acta Neuropat hol (Berl) 2007 ,114:97-109
    9. 雷霆.脑肿瘤学.第一版.北京:中国医药科技出版社,2005:513.
    10. Mischel PS,Cloughesy TF.Targeted molecular therapy of GBM.Brain Pathol, 2003, 13: 52-61.
    11. von Deimling A, von Ammon K, Schoenfeld D, et al. Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol, 1993; 3:19-26.
    12. Andersson U,Guo D,Malmer B,etal.Epidermal growth factor receptor family(EGFR,ErbB2-4) in glioma and meningioma.Acta Neuropathol(Berl),2004;108:135-142.
    13. Musacchio M, Perrimon N. The Drosophila kekkon genes: novel members of both the leucine-rich repeat and immunoglobulin superfamilies expressed in the CNS. Dev Biol, 1996;178: 63-76.
    14. SuzukiY, Sato N, Tohyama M, Wanaka A, Takagi T. cDNA cloning of a novel membrane glycoprotein that is expressed specifically in gfial cells in the mouse brain. Lrig-1, a protein with leucine-rich repeats and immunoglobufin-fike domains. J Biol Chem, 1996;271: 22522-22527.
    15. Knuutila S,Aalto Y,Autio K,et al.DNA copy number losses in human neoplasms.Am J Pathol;2000,157:683-694.
    16.郭东生,易伟,薛德麟,雷霆.LRIG1基因功能域载体的构建及亚细胞定位。华中医学杂志,2006;3:191-194.
    17.易伟,叶飞,郭东升,薛德麟,雷霆.LRIG1基因在人星形细胞瘤中的表达下调与意义.中华实验外科杂志,2005;22:759.
    18.叶飞,高庆蕾,徐同江,雷霆.LRIG1对胶质瘤细胞中表皮生长因子受体的抑制作用及其机制。华中科技大学学报(医学版),2009;38:49-51.
    19.叶飞,郭东生,牛洪泉,陶胜中,欧一博,卢运萍,雷霆.LRIG1 cDNA诱导人胶质瘤细胞系H4凋亡的分子机制.癌症,2004;23(10):1149-1154.
    20.叶飞,郭东升,易伟,牛洪泉,舒凯,万锋,卢运萍,雷霆.过度表达LRIG1基因逆转人胶质瘤侵袭性的机制.中华实验外科杂志,2005;22:200-202.
    21. Hedman H, Henriksson R. LRIG inhibitors of growth factor signalling -double-edged swords in human cancer? Eur J Cancer,2007;43(4):676-682.
    22. Mccaffrey AP, Nakai H, Pandey K, et al . Inhibition of hepatitisB virus in mice by RNA interference. Nature Biotechnol, 2003;21 : 639- 644.
    23.蔡明俊,雷霆,郭东生.RNA干扰技术在胶质瘤治疗中的应用.中国临床神经外科杂志,2007;12:319-321.
    24. Hammond SM, Bernstein E, Beach D, et al. An RNA-directednuclease mediates post-transcriptional gene silencing in drosophila cells. Nature ,2000;404:293-296.
    25. Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods,2002;26:199-213.
    26. Elbashir SM, Harborth J, Lendecke W, et al. Duplexes of 21-nucleotide RNAs mediate RNAinterference in cultured mammalian cells.Nature,2001 ;411:494-498.
    27. Brummelkamp TR,Bernards R,Agami R. A system for stable expression of short interfering RNAs in mammalian cells.Science,2002,296:550-553.
    28. Stutz MA,Shattuck DL, Laederich MB,et al.LRIG1 negatively regulates the oncogenic EGF receptor mutant EGFRvⅢ. Oncogene,2008; 27:5741-5752.
    1. Musacchio M,Perrimon N. The Drosophila kekkon genes: novel members of both the leucine- rich repeat and immunoglobulin superfamilies expressed in the CNS. Dev Biol, 1996; 178: 63- 76.
    2. Suzuki Y, Sato N,Tohyama M,et al.cDNA cloning of anovel membrane glycoprotein that is expressed specificallyin glial cells in the mouse brain. LIG- 1, a protein withleucine- rich repeats and immunoglobulin- like domains. J Biol Chem, 1996, 271 : 22522-22527.
    3. Nilsson J,Vallbo C,Guo D, et al.Cloning,characterization,and expression of human LIG1. Biochem Biophys Res Commun,2001,29 : 1155-1161.
    4.郭东生,易伟,薛德麟,雷霆.LRIG1基因功能域载体的构建及亚细胞定位.华中医学杂志,2006;3:191-194.
    5. Yi W, Ye F, Guo D, et al. Expression and Significanceof LRIG1 Gene in Human Ast rocytomas. Chinese-German J Clin Oncol, 2005;4: 225-228.
    6.叶飞,郭东生,牛洪泉,陶胜中,欧一博,卢运萍,雷霆.LRIG1 cDNA诱导人胶质瘤细胞系H4凋亡的分子机制.癌症,2004;23:1149-1154.
    7.易伟 叶飞 郭东升 薛德麟 雷霆.LRIG1基因在人星形细胞瘤中的表达下调与意义.中华实验外科杂志,2005,6:759.
    8. Kobe B, Kajaya AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol, 2001 ; 11 : 725-732.
    9. Torn KU.Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol, 2004; 234: 1-46.
    10. Enkhbayar P, Kamiya M, Osaki M, Matsumoto T, Matsushima N. Structural principles of leucine-rich repeat (LRR) proteins. Proteins, 2004: 54: 394-403.
    11. Legouis R, Jaulin-Bastard F, Schott S, Navarro C, Borg JP, Labouesse M. Basolateraltargeting by leucine-rich repeat domains in epithelial cells. EMBO Rep, 2003; 4: 1096-1102.
    12. Shpak ED, Lakeman MB. Torii KU. Dominant-negative receptor uncovers redundancy in the Arabidop sis ERECTA Leucineorich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell, 2003; 15: 1095-1110.
    13. Ikegami A, Honma K, Sharma A, et al. Multiple functions of the leucine-rich repeat protein LrrA of Treponema denticola. Infect Immun, 2004; 72: 4619-4627
    14. Wang W, Yang Y. Li L. Slii Y. Synleurin. a novel leucine-rich repeat protein that increases the intensiy of pleiotropic cytokine responses. Biocbem Biopbys Res Commun, 2003; 305: 981-988.
    15. Meng G, Grabiec A, Vallon M, et al. Cellular recognition of tri-/di-palmitoylated peptides is independent from a domain encompassing the N-terminal seven leucine-rich repeat (LRR)/LRR-Iike motifs of TLR2. J Biol Cbem, 2003; 278: 39822-39829.
    16. Hwang CF, Williamson VM. Leucine-rich repeat-mediated intramolecular interactions innematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J, 2003; 34: 585-593.
    17. Kedzierski L. Montgomery J. Bullen D. Curbs J. Gardiner E. Jimenez-Ruiz A. Handman E. Aleucine-rich repeat motif of Leisbmania parasite surface antigen 2 binds to macrophagesthrough the complement receptor 3. J Immunol, 2004;172: 4902-4906.
    18. Ibragbimov-Beskrovnaya O, Bukanov NO, Donobue LC, et al.Strong bomopliilic interactions of the Ig-like domains of polycystin-1, protein product of an autosomal dominant pob·cystic kidney disease gene. PKD1. HumGenet,2000;9:1641-1649
    19. Hedman H, Nilsson J, Guo D, et al.Is LRIG1 a tumour suppressor gene at chromosome 3p14.3?Acta Oncol, 2002; 1: 352-354.
    20.严泽军,叶章群,杨为民,郭东升.LRIG1和EGFR在膀胱移行细胞癌中的表达及临床意义.临床泌尿外科杂志,2007:22:216-218.
    21. Nilsson J, Starefeldt A, Henriksson R, et al. LRIG1 protein in human cells and tissues. Cell Tissue Res, 2003; 312: 65-71.
    22. Thomasson M, Hedman H, Guo D, et al. LRIG1 andepidermal growth factor receptor in renal cell carcinoma: a quantitative RT-PCR and immunohistochemical analysis. Br J Cancer, 2003; 89: 1285-1289.
    23.杨为民,严泽军,叶章群等.抑癌基因LRIG1对膀胱癌细胞BIU87生物学特性的影响.中华实验外科杂志,2005;22:1543-1545.
    24.闫尧,马军,唐芙爱等.应用RT-PCR分析食管癌组织中lrig1基因的表达.第四军医大学学报,2007;28:1380-1382.
    25. Tanemura A, Nagasawa T. Inui S, et al. rig-1 provides a novel prognostic pedictor in squamous cell carcinoma of the skin: immunohist ochemical analysis for 38 cases. Der matol Surg, 2005; 31: 423-430.
    26. Guo DS, Holmlund C, Henriksson R, et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues, and a homolog in Ascidiacea. Genomics, 2004; 84: 157-165.
    27. Esteban F, de Vega DS, Garcia R, et al. DNA content by flow cytometry in gastric carcinoma: pathology, ploidy and prognosis. Hepatogastroenterology. 1999, 46: 2041.
    28.叶飞,高庆蕾,徐同江,雷霆.LRIG1对胶质瘤细胞中表皮生长因子受体的抑制作用及其机制.华中科技大学学报(医学版),2009;38:49-51.
    29.叶飞,郭东升,易伟,牛洪泉,舒凯,万锋,卢运萍,雷霆.过度表达LRIG1基因逆转人胶质瘤侵袭性的机制.中华实验外科杂志,2005;22:200-202.
    1.雷霆.脑肿瘤学.第一版.北京:中国医药科技出版社,2005:513.
    2. McLendon RE, Halperin EC. Is the long-term survival of patientswith int racranial glioblastoma multiforme overstated?. Cancer, 2003; 98: 1745-1748.
    3. Brands AA, Franceschi E, Tosoni A, et al. Epidermal growth factor recptor inhibitors in neuro-oncology:hopes and disappointments. Clin Cancer Res, 2008, 14: 957-960.
    4. Fresno Vara JA, Casado E, de Castrol J, et al. PI3K/Akt signaling pathway and cancer. Cancer Treat Rev, 2004, 30: 193-204.
    5.陈菊祥,卢亦成,胡国汉等.胶质母细胞瘤基因表达谱及相关基因的聚类研究.中华神经外科疾病研究杂志,2004;3:222-225.
    6. Louis DN, Gusella JF. A tiger behind many doors: multiple genetic pathways to malignant glioma. Trends Genet, 1995,11 (10): 412-415.
    7. von Deimling A, von Ammon K, Schoenfeld D, et al. Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol, 1993; 3: 19-26.
    8. Besson A, Yong VW. Mitogenic signaling and the relation to cell cycle regulation in astrocytomas. J Neurooncol, 2001; 51: 245-264.
    9. Suzuki Y, Sato N, Tohyama M, et al. cDNA cloning of a novel membrane glycoprotein that is expressed specifically in glial cells in the mouse brain. LIG-1, a protein with leucine-rich repeats and immunoglobulin-like domains. J Biol Chem, 1996, 271:22522-22527.
    10. Nilsson J, Vallbo C, Guo D, et al. Cloning, characterization, and expression of human LIG1. Biochem Biophys Res Commun, 2001, 284: 1151-1161.
    11.郭东生,易伟,薛德麟,雷霆.LRIG1基因功能域载体的构建及亚细胞定位.华中医学杂志,2006,3:191-194.
    12. YI Wei, YE Fei, GUO Dongsheng, XUE Delin, LEI Ting.Expression and Significance of LRIG1 Gene in Human Astrocytomas. The Chinese-German Journal of Clinical Oncology, 2005, 4: 225-228.
    13.易伟 叶飞 郭东升 薛德麟 雷霆.LRIG1基因在人星形细胞瘤中的表达下调与意义.中华实验外科杂志,2005;6:759..
    14.叶飞,郭东升,牛洪泉等.LRIG1 cDNA诱导人胶质瘤细胞系H4凋亡的分子机制.癌症,2004;23:1149-1154.
    15.叶飞,郭东升,易伟,牛洪泉,舒凯,万锋,卢运萍,雷霆.过度表达LRIG1基因逆转人胶质瘤侵袭性的机制.中华实验外科杂志,2005,22:200-202.
    16.胡杰.胶质母细胞瘤分子遗传学研究进展.国外医学神经病学神经外科学分册,2000;27:312-315.
    17. O'Rourk DM, Nute EJ, Davis JG, et al, Inhibition of a naturally occurring EGFR oncoprotein by the p185neu ectodomain: implications for subdomain contributions to receptor assembly. Oncogene, 1998; 16:1197-1207.
    18.. Filmus J, Pollak MN, Cailleau R, et al. MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and its growth inhibited by EGF. Biochem Biophys Res Comn, 1985; 128: 898-905.
    19.. Kamata N, Chia K. Growth-inhibitory effects of epidermal growth factor and overexpression of its receptors on human squamous cell carcinomas in culture. Cancer Res, 1986; 46:1648-1653.
    20.. Herbst R S.Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys,2004;59:21-26.
    21. Carpenter G. EGF receptor transactivation mediated by the proteolytic productionof EGF-like agonists. Sci STKE, 2000; 15: PE1.
    22. Arteaga C L.Epidermal growth factor receptor dependence in human tumors: more than just expression?. Oncologist,2002;7:31-39.
    23.王明国,王中和。表皮生长因子受体.国外医学(分子生物学分册),2002;24:82-85.
    24. Tomas C, Ely G, James CD, et al. Glioblastoma-related gene mutations and over-expression of functional epidermal growth factor receptors in SKMG-3 glioma cells. Acta Neuropathol, 2001; 101: 605-615.
    25. Wong AJ, Ruppert JM, Bingner SH, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Nalt Acad Sci USA, 1992; 87:2060-2065.
    26. EL-Obeid A, Bongeam-Rudloff E, Sorby M, et al. Cell scattering and migration induced by autocrine transforming growth factor a in gioma cells in vitro. Cancer Res, 1997, 57: 5598-5604.
    27. Barker FG, Simmons ML, Chang SM, et al. EGFR overex-p ression and radiation response in glioblastoma multiform. Int J Radiat Oncol Biol Phys, 2001; 51: 410-418.
    28.董伦,浦佩玉,王虎等星形细胞肿瘤表皮生长因子受体与p53基因的异常表达.中华病理学杂志,2006;35:232-236.
    29.刘家刚,刘艳辉,蔡敬等.EGFR、PTEN在常见恶性脑肿瘤中的表达及意义.四川大学学报,2006;37:868-871.
    30. Goike HM, Asplund AC, Pettersson EH, et al. Acquired rearrangement of an amplified epidermal growth factor receptor (EGFR) in a human glioblastoma xenograft. J Neuropathol Exp Neurol, 1999;58: 697-701.
    31..吴健虹,谢秋玲,陈小佳等.表皮生长因子受体EGFR及其信号传导.生命科学,2006;18:116-122.
    32.叶榕.表皮生长因子受体及其临床应用.医学新知杂志,2008;18:164-166.
    33. Baker NE, Yu SY. The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell, 2001; 104: 699-708.
    34. Andersson U, Guo D, Malmer B,et al.Epidermal growth factor receptor family(EGFR,ErbB2-4)in glioma and meningioma.Acta Neuropathol(Berl),2004, 108:135-142.
    35. Gur G, Rubin C, Katz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation.EMBO J, 2004, 23: 3270-81.
    36..杨为民,严泽军,叶章群,等.抑癌基因LRIG1对膀胱癌细胞BIU87生物学特性的影响.中华实验外科,2005,12:1543-1545.
    37. Nilsson J, Starefeldt A, Henriksson R,et al. LRIG1 protein in human cells and tissues Cell Tissue Res, 2003, 312: 65-71.
    38. LAEDERICH M B, FUNESDURAN M, YEN L, et al. The leucinerich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem, 2004, 279: 47050-47056.
    39.叶飞,高庆蕾,徐同江,雷霆.LRIG1对胶质瘤细胞中表皮生长因子受体的抑制作用及其机制.华中科技大学学报(医学版),2009;38:49-51.
    40. Goldoni S, Iozzo RA, Kay P, et al.A soluble ectodomain of LRIG1 inhibits cancercell growth by attenuating basal and ligand-dependent EGFR activity. Oncogene, 2006,doi: 10.1038/sj.one. 1209803.
    41. Bill HM, Knudsen B, Moores SL, et al. Epidermal growth factor receptor dependent regulation of integrin mediated signaling and cell cycle entry in epithelial cells. Mol Cell Biol, 2004, 24:8586-599.
    42. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/ MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta, 2007, 1773: 1263-1284.
    43. Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycleprogression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003; 17: 590-603.
    44. Katso R, Okkenhaug K, Ahrnadi K, et al. Cellular function of phosphoinositide3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol, 2001; 17: 615-675.
    45.刘红朝,谢蕊繁,蔡明俊,陈如东,郭东生,雷霆.LRIG1基因抑制胶质瘤细胞 生长的机制.中华实验外科杂志,2009;26:615-617.
    46. Stutz MA, Shattuck DL, Laederich MB et al.LRIG1 negatively regulates the oncogenic EGF receptor mutant EGFRvⅢ. Oncogene. 2008; 27: 5741-5752.
    47. Me Lendon RE, Wikstrand CJ, Matthews MR, et al. Glioma-associated antigen expression in oligodend toglial neoplasms Tenascin and epidemal growth factor receptor J, Histochem Cytochem, 200; 48: 1103-1110.
    48. Eley GD, Reiter JL, Pandita A, et al. A chromosomal region 7p11.2 transcriptmap:its development and application to the study of EGFR amplicons in glioblastoma, Neuro-oncol, 2002; 4: 86-94.
    49.熊宗强,雷霆,曹颖光.脑肿瘤中以EGFR为靶点治疗的进展.中国临床神经外科杂志,2006;11:570-572.
    1. Louis DN. The 2007 WHO classification of tumour of the centralnerous system. Acta Neuropat hol (Berl),2007; 114: 97-109.
    2. McLendon RE, Halperin EC. Is the Ion-term survival of patientswith intracranial glioblastoma multiforme overstated? Cancer, 2003; 98: 1745-1748.
    3.雷霆.脑肿瘤学.第一版.北京:中国医药科技出版社,2005:513.
    4. Mischel PS, Cloughesy TF. Targeted molecular therapy of GBM.Brain Pathol, 2003, 13: 52-61.
    5. Chiocca EA. Gene therapy:a p fimer for neur osurgeons. Neurosurgery, 2003, 53: 364-373.
    6.吕胜青,刘运生,杨辉.基因治疗在神经外科疾病的研究应用及其前景.中华神经外科疾病研究杂志,2005;4:563-565.
    7.黄强.再谈胶质瘤的基因治疗.中华神经外科疾病研究杂志,2004;3:1-4.
    8.于音,赵刚.多基因联合在胶质瘤治疗中的应用进展.山东医药,2007;47(33):115-116
    9o Germano IM, Fable J, Gultekin SH, et al. Adenovirus/herpes simplex thymidine kinase/ganciclovir complex: Preliminary results of a phase Ⅰ trial in patients with recurrent malignant gliomas. J Neurooncol, 2003; 65: 279-289.
    10. Chambers R, Gillespie GY, Soroceanu L, et al. Comparison of genetically engineered herpes simplex virus for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Nau Acad Sci USA, 1995; 92: 1411-1415.
    11. Deisboeck TS, Wakimoto H, Nestler U, et al. Developmentof a novel non-human primate model for preclinical genevector safety studies. Determining the effects of intracerebral HSV-1 inoculation in the common marmoset: A comparative study. Gene Ther, 2003; 10: 1225-1233.
    12. Aghi M, Kramm CM, Breakefield XO. Folylpolyglutamylsynthetase gene transfer and gliomas antifolate sensitivityin culture and in vivo. J Natl Cancer lnst, 1999; 91: 1233-1241.
    13. Okada T, Caplen NJ, Ramsey WJ, et al. In situ generation of pseudotyped retroviral progeny by adenovirus-mediated transduction of tumorcells enhances the killing effect of HSV-tk suicide gene therapy in vitroand in vivo. J Gene Med, 2004; 6: 288-299.
    14. Moriuchi S, Glorioso JC, Maruno M, et al. Combination gene therapy for glioblastoma involving herpes simplex virus vector-mediated codelivery of mutant I kappa Balpha and HSV thymidine kinase. Cancer Gene Ther, 2005; 12: 487-96.
    15.黄强,浦佩玉,夏之柏等.P53基因优化恶性胶质瘤HSV-TK/GCV治疗的体外研究.中国临床神经外科杂志,2003:8:44-46.
    16. Shand N, Weber F, Mariani L, etal. A phasel-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex virus thymidine Kinase gene followed ganciclovir.GLI328 European-Canadian Study. Hum Gene Ther, 1999; 10: 2325-2335.
    17. Kurozumi K, Tamiya T, Ono Y, et al. Apoptosis induction with 5- fluorocytosine P cytosine deaminase gene therapy for human malignant gliomacells mediated by adenovirus. J Neurooncol, 2004, 66: 117-127.
    18.谢轩贵,游潮.脂质体介导CD基因转染SHG-44胶质瘤细胞凋亡的实验研究.临床神经外科杂志,2008;5:1-5.
    19. Ichikawa T, Tamiya T, Adachi Y, etal, In vivo efficacy and toxicity of 5-fluorocytosine/cytosine deaminase gene therapy for malignant gliomas mediated by adenovirus.Cancer Gene Ther, 2000;7: 74-82.
    20. Jounaidi Y, Waxman DJ. Frequent, moderate-dose cyclophosphamide administration improves the efficacy of cytochrome P-450/cytochrome P-450 reductase-based cancer gene therapy. Cancer Res, 2001; 61: 4437-4444.
    21. Mearadji A, Breeman W, Hofland L, et al. Somatosatatin receptor gene therapy combined with targeted therapy with radiolabeled octreotide: a new treatment for liver metastases. Ann Surg, 2002; 236: 722-728.
    22. Ammerpohl O, Thormeyer D, Khan Z, et al. HDACi phenylbutyrate increases bystander killing of HSV-tk transfected glioma cells. Biochem Biophys Res Commun, 2004; 324: 8-14.
    23. Hamel W, Zirkel D, Mehdorn HM; etal . (E)-5-(2-Bromovinyl)-2'-deoxyuridine potentiates ganciclovir-mediated cytotoxicity on herpes simplex virus-thymidine kinase-expressing cells. Cancer Gene Ther, 2001; 8: 388-396.
    24.姚舒洋.多形性脑胶质母细胞瘤化学及基因治疗的研究进展.现代生物医学进展,2007;7(3):445-448.
    25. Yamasaki T. Absence of antitumor natural killer cell2 mediated defense in the brain. Surg Neurol, 2004; 61: 227-228.
    26. Prins RM, Graf MR, Merchant RE. Cytotoxic T cells infiltrating a glioma exp ress an aberrant phenotype that is ass ociated with decreased function and apoptosis. Cancer I mmunol I mmunother, 2001; 50: 285-292.
    27. Liu G, Yu JS, Zeng G, et al. A I M2 2: a novel tumor antigen is expressed and p resented by human gli oma cells. J I mmunother, 2004; 27: 220-226.
    28. Liu G, Khong HT, Wheeler CJ, et al. Molecular and functi onal analysis of tyrosinase-related protein (TRP) -2 as a cytotoxic Tlymphocyte target in patients with malignant gli oma. J Immunother, 2003; 26: 301-312.
    29. Liu G, Ying H, Zeng G, et al. HER- 2, gp100, and MAGE-1 are exp ressed in human glioblastoma and recognized by cytotoxic Tcells. Cancer Res, 2004;, 64: 4980-4986.
    30. Yu JS, Wei MX, Chiocca EA, et al. Treatment of glioma by engineered interleukin 4-secreting cells. Cancer Res. 1993;53:3125-3128.
    31. Tseng SH, Hwang LH, Lin SM. Induction of antitumor immunity by intracerebrally implanted rat C6 glioma cells genetically engineered to secrete cytokines. J Immunother. 1997; 20: 334-342.
    32. Liu Y, Ehtesham M, Samoto K, et al. In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther. 2002;9:9-15.
    33. Kuan CT, Wikstrand CJ, Bigner DD. EGFRvⅢ as a promising target for antibody-based brain tumor therapy. Brain Tumor Pathol, 2000, 17: 1-78.
    34. Fakhrai H, Dorigo O, Shawler DL, et al. Eradication of established intracranial rat gliomas by transforming growth factor beta anti-sense gene therapy. Proc Natl Acad Sci U S A, 1996; 93: 2909-2914.
    35. Yamanaka R, Tanaka R, Yoshida S, et al. Suppression of TGF-betal in human gliomas by retroviral gene transfection enhances susceptibility to LAK cells. J Neurooncol, 1999,43:27-34.
    36. Nair SK, Synder D, Rous BT, et al. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer, 1997; 70: 706-715.
    37. Siesjo P, Visse E, Sjogren HO. Cure of established, intracerebral rat gliomas induced by therapeutic immunizationIFN- tumor cells and purified APC or adjuvant IFN-gamma treatment. J Immunother Emphasis Tumor Immunol. 1996;19:334-345.
    38. Liau LM, Black KL, Prins RM, et al. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J Neurosurg, 1999; 90: 1115-1124.
    39.赵丽波,李才,周维国.树突状细胞负载的肿瘤抗原肽疫苗抗脑胶质瘤作用的实验研究.中国实验诊断学,2009;13:21-23.
    40. Akasaki Y, Kikuchi T, Homma S, et al. Antitumor effect of immunizations with fusions of dendritic and glioma cells in a mouse brain tumor model. J Immunother, 2001; 24: 106-113.
    41. Yu JS, Wheeler CJ, Zeltzer PM, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res, 2001; 61: 842-847.
    42. Liau LM, Black KL, Martin N, et al. Treatment of a glioblastoma patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class Ⅰ-matched tumor peptides: case report. Neurosurg Focus, 2000; 9: 1-5.
    43. Breckpot K, Emeagi PU, Thielemans K. Lentiviral vectors for anti-tumor immunotherapy. Curr Gene Ther. 2008; 8: 438-448.
    44.董震,牛洪泉,董芳永,厉春林,雷霆,薛德麟.脑胶质瘤患者自体免疫治疗前后T细胞亚群的变化.肿瘤防治研究,2005;32:782-784.
    45. Dmitry G, Mayer F, John S, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res, 2000; 6: 1755-1766.
    46.朱新梅,乔健,吕传真.C6胶质瘤荷瘤大鼠免疫状态的初步研究.现代免疫,2004;24(6):462-465.
    47. Fontana A, Hengartener H, de Tribolet N, et al. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2 mediated effects. J Immunol, 1984, 132: 1837-1844.
    48. Jennifer R, Gamble AV, Mathew AV, et al. Endothelial cell adhesiveness for human T lymphocytes is inhibited by TGFβ. J Immunol, 1991, 146: 1149-1154.
    49.黄强,浦佩玉,李捷.人脑胶质瘤免疫抑制因子TGFβ2及TGFβ1的基因表达.中国神经免疫学和神经病学杂志,2001;8:48-51.
    50. Piotr J,Ulrich B,Jorg S,etal.The effect of TGF β 2-specific phosphothioate-antisense oligodeoxynuleotides in reversing cellular immunosuppression in malignantglioma. J Neurosurg, 1993;78:944-951.
    51. Chua JH, Armugam A, Jeyaseelan K. MicroRNAs: Biogenesis, function and applications. Curr Opin Mol Ther. 2009; 11: 189-99.
    52.蔡明俊,雷霆,郭东生.RNA干扰技术在胶质瘤治疗中的应用.中国临床神经外科杂志.2007;12:319-321.
    53. Novina CD, Sharp PA. The RNAi revolution. Nature, 2004; 430: 161-164.
    54. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature, 2002, 418: 435-438.
    55.韩杨云,曾义,游潮.RNA干扰与胶质瘤的基因治疗.西部医学,2008;20:1101-1103.
    56.程光,章翔,鲍炜等.RNA干扰基因敲除MAGE-1在恶性胶质瘤U87细胞中的初步研究.医学研究生学报,2006;19(4):292-297.
    57.赵澎,张亚卓,孙梅珍.MDR1小干扰RNA调节人脑多形性胶质母细胞瘤细胞系BT325的药物敏感性.癌症,2005;24:1436-1441.
    58.杨翔云,赖小刚,张勇,等.siRNA干扰ClC22表达对人胶质瘤U287细胞增殖的抑制作用.癌症,2006;25:805-810.
    59. Zhang Y, Zhang YF, Bryant J, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in int racranial brain cancer. Clin Cancer Res, 2004; 10: 3667-3677.
    60. Brocklyn JRV, Jackson CA, Pearl DK, et al. Sphingosinekinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol, 2005; 64: 695-705.
    61. Fan QW, Weiss WA. RNA interference against a glioma 2derived allele of EGFR induces blockade at G2M. Oncogene, 2005; 24: 829-837.
    62. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg, 1972; 175: 409.
    63. Tuettenberg J, Friedel C, Vajkocay P. Angiogenesis in malignant glioma-a target for antitumor therapy? Crit Rev Oncol Hematol, 2006; 59: 181-193.
    64.朱浩,岳志健,周晓平.胶质瘤的抗血管生成治疗现状.中国微侵袭神经外 科杂志,2008,13:281-283.
    65. Desjardins A, Reardon DA, Herndon JE 2nd etal. Bevacizumab plus irinotecan in recurrent WHO grade 3 malignant gliomas. J Neurosurg, 2008;109:835-841.
    66. Goldbrunner RH, Bendszus M, Wood J, et al. PTK787/ZK222584, an inhibitor of vascular endothelialgrowth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery, 2004, 55: 426-432.
    67. PavlakiM, Zucker S.Matrix metall op r oteinase inhibit ors (MMPIs):The beginning of phase lor the termination of phase Ⅲclinical trials. Cancer Metastasis Rev, 2003;22: 177-183.
    68. O' ReillyMS,Boehm T,Shing Y, et al . Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell ,1997,88 : 277-285.
    69. 沈晓娣,关祥.溶瘤病毒的研究进展.上海交通大学学报(医学版)2006;26:544-547.
    70. Forsyth P, Rold(?)n G, George D et al.A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas.Mol Ther,2008;16:627-632.
    71. Mckay . Stem cells in central nervous system .Science,1997;276:66-71.
    72. Weissman IL.Translating stem and progenitor cell biology to the clinic:barriers and opportunities.Sience,2000;287:1442-1452.
    73. Zhao D, Najbauer J, Garcia E etal. Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res. 2008;6:1819-1829.
    74. Tang Y, Shah K, Messerli S M, et al . In vivo tracking of neural progenitor cellmigrati on to gli oblastomas. Hum Gene Ther, 2003, 14 : 1247 - 1254.
    75. Rubio F,Kokaia Z,Arco a, et al. BDNF gene transfer to the mammalian brain using CNS-derived neural precursors. Gene Therapy,1999;6:1851-1866.
    76. Benedetti S, Piola B, Polio B, et al . Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med, 2000; 6: 447-450.
    77. Ehtesham M, Kabos P, Kabosova A, et al . The use of interleukin 12- secreting neural stem cells for the treatment of intracranial glioma. Cancer Res,2002;62: 5657-5663.
    78. Yang SY, Liu H, Zhang JN. Gene therapy of rat malignant gliomas using neural stem cells expressing IL- 12. DNACell Biol, 2004;23: 381-389.
    79. Wang ZH, Zagzag D, Zeng B, et al. In vivo and in vitro glioma cell killing induced by an adenovirus exp ressing both cyt osine deaminase and thymidine kinase and its ass ociation with interferon-alpha. J Neur opathol Exp Neurol, 1999;58: 847 - 858.
    80. Rogulski KR, Wing MS, Paielli DL, et al . Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cyt otoxicity and radiosensitizati on. Hum Gene Ther, 2000; 11 : 67 - 76.
    81. Tseng SH, Hsieh CL, Lin S M, et al . Regression of orthotopic braintumors by cytokine-assisted tumor vaccines primed in the brain. Cancer Gene Ther, 1999; 6: 302-312.
    82. Benedetti S, Dimeco F, Polio B, et al . Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant glioma and perspectives for the combined transducti on of the interleukin- 4 gene. Hum Gene Ther, 1997;8: 1345 - 1353.
    83. Wang LH, Ju DW, Sun Y, et al . The potent antitumor effects of combined p16 gene and G M-CSF gene therapy through efficient induction of antitumor immunity. J Cancer Res Clin Oncol, 2001; 127: 101 - 108.
    84. Kim JH, Kolozsvary A, Rogulski K, et al. Selective radiosensitization of 9Lglioma in the brain transduced with double suicide fusi on gene. Cancer J Sci Am, 1998;4: 364 - 369.
    85. Prados MD, Chang SM, Butowski N,et al. Phase Ⅱ study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol. 2009;27:579-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700