用户名: 密码: 验证码:
稀土发光材料多光子近红外量子剪裁研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自近红外量子剪裁于Tb3+/Yb3+共掺体系中首次报道以来,其作为下转换一个紫外-蓝光光子为两个~1000nm近红外光子的高效荧光发光过程被广泛研究,尤其是受到其作为提高c-Si太阳能电池效率的光谱下转换层应用的驱动,诸多稀土离子RE3+(RE=Tb,Pr, Tm, Er, Nd, Ce, Ho, Dy)和RE2+(RE=Eu, Yb)、过渡金属离子(Bi3+, Mn2+)和离子基团(VO43-, MoO42-, WO42-)等作为施主离子(Ds)和Yb3+受主离子共掺体系(Ds/Yb3+)的能量传递被认为源于协作或共振近红外量子剪裁,其量子效率大于1。尽管如此,以上诸多新型Ds/Yb3+近红外量子剪裁,尤其是宽带近红外量子剪裁的报道主要是基于激发光谱、发射光谱和Ds荧光衰减曲线与Yb3+浓度的变化关系,其缺少严格而确切的证据,在某些层面上,这些现象恰恰可能是经由电荷迁移态(CTS)或多声子辅助的1Ds→1Yb3+一次共振能量传递而不是1Ds→2Yb3+双光子量子剪裁发射。相应地,随着Ds/Yb3+近红外发射的系统和深入研究,人们对同一荧光转换现象的能量传递机理认知各不相同,如Ce3+/Yb3+宽带近红外发光和能量传递机理分别报道为1Ce3+→2Yb3+协作量子剪裁和经由Ce4+-Yb2+CTS的1Ce3+→1Yb3+荧光下转移,Pr3+/Yb3+近红外量子剪裁发光主要来自于经由Pr3+:1G4稳定中间态的两步共振能量传递而不是最初所认为的1Pr3+→2Yb3+协作能量传递,Tm3+/Yb3+共掺体系~1000nm协作量子剪裁发光在高声子能量基质中将不能有效发生而将以声子辅助的Yb3+~1000nm单光子和Tm3+~1800nm单光子发射为主导。因此,在进一步研究中,极有必要对相关争议进行严格论证,也极有必要摒除Yb3+受主离子的影响而只对RE3+施主离子进行近红外发光和能量传递研究。
     1957年,Dexter在理论上讨论了获得量子效率大于1的可能过程,即:(1)对于具有简单三能级结构的单个激活剂,若其相邻两个能级间的能量差足够大而对应可见光子发射,该激活剂最高激发态能级吸收一个真空紫外(VUV)光子后,能量从其最高激发态到中间能态,以及从中间能态到基态的辐射跃迁几率就足够大,最终相继发射两个可见光子,量子效率大于1;(2)对于离子对共掺体系,若一个敏化剂离子吸收VUV光子获得足够高的能量,这些能量可同时激发与其相邻的两个激活剂离子,每个激活剂获得敏化剂能量的一半而分别产生可见发射,量子效率大于1。单个激活剂的可见级联发射于VUV激发的YF3:Pr3+中率先报道,离子对的可见量子剪裁于VUV激发的Gd3+/Eu3+中实现和发展。原则上,一个高能入射光子可以被转化为两个较低能量的光子发射。相应地,近红外量子剪裁率先于RE3+/Yb3+(RE=Tb, Tm, Pr)中通过协作能量传递而实现,进一步基于共振能量传递的Pr3+/Yb3+和Er3+/Yb3+新型近红外量子剪裁被报道,拓展和推进了Dexter量子剪裁理论的适用范围和发展。由于共振能量传递速率是协作能量传递速率的1000倍,因此,设计和得到RE3+/Yb3+新型高效共振近红外量子剪裁成为研究的热点。尽管如此,紫外光子的能量是Yb3+~1000nm近红外光子能量的两倍或三倍多,那么,RE3+/Yb3+共掺体系的三光子近红外量子剪裁是否存在?其能量传递机理是怎样的?另一方面,由Dexter量子剪裁理论可以预测,RE3+单掺体系的双光子级联近红外发射也必然存在,那么其能量传递机理是怎样的?同时,紫外-蓝光高能光子能量是某些近红外光子能量的数倍,那么三光子或多光子级联近红外发射是否有效存在?其能量传递机理又是怎样的?如果存在,应该怎样优化这种三光子或多光子近红外量子剪裁?
     本论文以拓展和推进Dexter量子剪裁理论发展为主线,鉴于DS/Yb3+共掺近红外量子剪裁体系中所存在的争议与问题,基于不同RE3+掺杂基质材料和稳态-瞬态荧光光谱测试技术,尤其是时间分辨发射光谱,对上述科研难题进行系统的探索和研究。本论文取得的成果主要有:
     (1)分别基于1Ce3+→2Yb3+协作能量传递和经由Ce4+-Yb2+CTS的1Ce3+→1Yb3+一次共振能量传递机理,利用Monte-Carlo模拟对YAG:Ce3+,Yb3+中Yb3+浓度相关的Ce3+:5d→4f实测荧光衰减曲线进行比较分析,结果说明Yb3+近红外发光为1Ce3+→1Yb3+荧光下转移而不是1Ce3+→2Yb3+量子剪裁。
     (2)蓝光激发下,Pr3+和Dy3+单掺体系可分别有效产生波长位于~1000nm的双光子级联近红外发射:①Pr3+离子3Pj蓝光激发态的能量可经由1G4中间态相继产生第一步3P1,0→1G4(~915nm)和第二步1G4→3H4(~990nm)近红外发射,其量子效率约为104%;②Dy3+离子4F9/2蓝光激发态的能量可经由6H7/2,6F9/2或6H5/2中间态相继产生第一步4F9/2→6F9/2,6H7/2(~834nm)或4F9/2→6H5/2(~1000nm)和第二步6F9/2,6H7/2(6H5/2)→6H15/2(~1000nm)的近红外发射,根据Judd-Ofelt理论和实测荧光寿命分析,其量子效率分别被计算为111%和107%。另一方面,在GdVO4:Dy3+中,宽带紫外吸收的[VO4]3-可以强烈敏化Dy3+,进而实现250-500nm的有效光谱下转换。
     (3)当Ho3+:5F4,5S2受到激发时,能量可经由5I6中间态相继跃迁辐射1015nm(5F4,5S2→5I6)和1190nm (5I6→5I8)两个近红外光子,其量子效率约为112%。另外,通过宽带紫外激发的[VO4]3-高效敏化Ho3+,YVO4:Ho3+不但实现了250-560nm内的全光谱下转换,其近红外发射强度还可有效提高近10倍。另一方面,在一个紫外光子(~287nm)激发下,Ho3+单掺β-NaYF4可分别发射850、1015和1180nm三个近红外光子。通过稳态激发和发射光谱、荧光衰减曲线和动态时间分辨可见和近红外发射光谱的比较分析,Ho3+三光子级联近红外量子剪裁发光和能量传递机理被报道,即:Ho3+离子3D3紫外激发态的能量可分别经由5F4,5S2和5I6中间态相继辐射跃迁至5I8基态能级,其量子效率约为124%。进一步,Yb3+共掺加入时,Ho3+离子3D3→3K8,5F2~850nm和5F4,5S2→5I6~1015nm将成为共振能量传递通道,使Yb3+~1000nm和Ho3+~1180nm发光强度提高数倍,最终把Ho3+的紫外吸收能几乎全部转化为近红外发射,极大优化了Ho3+的三光子级联近红外发光。通过实验和理论计算,10mol.%Yb3+共掺β-NaYF4:1%Ho3+的最佳量子效率约为224%。
     (4)通过稳态荧光光谱、动态荧光衰减曲线和时间分辨近红外发射光谱测试分析,实验发现一个470nm蓝光光子激发下,能量从Tm3+:1G4激发态经由3H4和3F4中间态相继跃迁辐射1185、1466和1800nm三个近红外光子,其量子效率约为160%。进一步,使用积分球尝试测得β-NaYF4:1%Tm3+粉末样品的外量子效率约为32%,远小于160%的理论值,究其原因是水热合成的β-NaYF4:1%Tm3+中存在较大的无辐射能量损失。另一方面,在Gd2O2S:Tm3+中,当Tm3+:1D2受到激发时,先后经由Tm3+:1D2→3H4+Tm3+:3H6→3F2,3和Tm3+:3H4→3F4+Tm3+:3H6→3F4高效交叉弛豫能量传递,一个被吸收的紫外光子(~364nm)将被下转换为四个1789nm近红外光子发射。通过调控Tm3+浓度,可以把Tm3+紫外-可见-近红外发射能有效转换和集中于1789nm目标发射光,促进了Tm3+的四光子近红外量子剪裁材料的可能性应用。基于四光子近红外量子剪裁过程和实测荧光衰减曲线,计算得到,Gd2O2S:10%Tm3+具有275.4%的最大量子效率。进一步,通过Gd2O2S:Tm3+粉末样品的激发和漫反射光谱的对比分析和计算,Gd2O2S:10.0%Tm3+的总量子效率可被合理优化为239.4%。
Since the first demonstration of near-infrared (NIR) quantum cutting (QC) in Tb3+/Yb3+codoping, NIR-QC has been widely studied as efficient downconversion of an ultraviolet(UV)-blue photon to two~1000nm photon. Especially promoted by the promising applicationof NIR-QC downconverter to increase c-Si solar cells efficiency, the energy transfer (ET)mechanisms involving in various donors (Ds), such as rare earth ions RE3+(RE=Tb, Pr, Tm,Er, Nd, Ce, Ho, Dy) and RE2+(RE=Eu, Yb), transition metal ions (Bi3+, Mn2+) and ionicgroups (VO43-, MoO42-, WO42-), etc., and Yb3+acceptors codoping are considered to becooperative or resonant NIR-QC, which own quantum efficiency (QE) greater than unity.However, many of the aforementioned novel NIR-QC of Ds/Yb3+, especially the broadbandNIR-QC, are only determined by photo-excitation and emission spectra, and decay curves ofDsas a function of Yb3+contents, which might be not rigorous and convinced proofs.Moreover, in some cases, these spectroscopic phenomena are just resulted from one-stepresonant ET of1Ds→1Yb3+through charge transfer state (CTS) or assisted by multiphonon,but not the1Ds→2Yb3+two-photon NIR-QC. Accordingly, following the systematic andin-depth study on the NIR emission of Ds/Yb3+codoping, the same fluorescence phenomenaare always explained using different ET mechanisms, such as i) the NIR emission and ETmechanisms of Ce3+/Yb3+are respectively declared to be1Ce3+→2Yb3+cooperative NIR-QCand1Ce3+→1Yb3+downshifting via Ce4+-Yb2+CTS, ii) the NIR-QC of Pr3+/Yb3+is mainlycontributed from the two-step resonant ET but not from the previously reported1Pr3+→2Yb3+cooperative ET, iii) the cooperative QC for~1000nm emission of Tm3+/Yb3+does notoccur in a host lattice with high phonon energy but does by phonon-assisted one Yb3+~1000nm photon emitting and another Tm3+~1800nm photon emitting, etc. Therfore, for thefurther research, it is necessary to rigorously resolve the relevant controversies, and also tostudy the NIR emission and ET mechanisms of single RE3+donor without Yb3+acceptor.
     In1957, Dexter theoretically treated the possibility to obtain QE greater than unity, thatis: i) for an activator with three energy levels excited by a vacuum ultraviolet (VUV) photon,if the energy difference between adjacent levels corresponds to visible photon, the radiative transition probabilities would be sizable from the excited state to intermediate state, and fromthe intermediate state to ground state, sequentially emitting two visible photons; ii) for dualions codoped system excited by a VUV photon, the energy of sensitizer can be equallytransferred to two activators, thereby emitting two visible photons. The sequential visiblephoton emission was first realized in VUV-excited YF3:Pr3+, and then VUV-excited Gd3+/Eu3+codoping is demonstrated for efficient visible QC. In principle, a high-energy photonabsorbed can be cut into two low-energy photons re-emitting. Accordingly, NIR-QC was firstdemonstrated in RE3+/Yb3+(RE=Tb, Tm, Pr) codoping by cooperative ET, and, furthermore,the novel NIR-QC via resonant ET was achieved in Pr3+/Yb3+and Er3+/Yb3+codoping, whichgreatly extend and promote the development of Dexter QC theory. Because the resonant ETrate is1000times over the cooperative ET rate, to design and obtain the novel resonantNIR-QC of RE3+/Yb3+becomes a research hotspot. However, the energy of UV photon ismore than2or3times over that of Yb3+~1000nm NIR photon, so, is it possible to obtainthree-photon NIR-QC in RE3+/Yb3+codoping? What are the corresponding ET mechanisms?On the other hand, from Dexter QC theory, it can be predicted that the two-photon sequentialNIR emission must occur in RE3+-doping. So, what are the ET mechanisms of a sequentialNIR-QC? Moreover, the energy of UV-blue photon is several times over that of certain NIRphotons, so, does three-photon or multiphoton sequential NIR luminescence exist or not?How are going the related ET mechanisms? If there exists the three-photon or multiphotonNIR-QC, how to optimize the fluorescence processes?
     This dissertation is to extend and promote the development of Dexter QC theory, and toclarify and resolve the existing controversies. By using various host lattices activated by RE3+ions, and the static-dynamic fluorescence testing technologies (especially the time-resolvedemission spectrum), the above-mentioned scientific problems are well explored and studied.The main research results of this dissertation are:
     (1) On the basis of the cooperative ET mechanism of1Ce3+→2Yb3+and the one-stepET mechanism of1Ce3+→1Yb3+, decay curves of Ce3+:5d→4f emission as a function ofYb3+contents can be feasibly fit by Monte-Carlo simulation. The corresponding resultsdemonstrate that the Yb3+~1000nm emission is just attributed to the1Ce3+→1Yb3+ luminescence downshifting but not the1Ce3+→2Yb3+NIR-QC.
     (2) Under excitation of blue light, Pr3+-doping and Dy3+-doping can yield the efficientsequential two-photon NIR emissions at~1000nm, respectively, that is: i) with1G4acting asan intermediate level, the energy in excited Pr3+:3Pjstates can be sequentially split into twoNIR photons emitting by the first-step transition of3P1,0→1G4(~915nm) and the second-stepof1G4→3H4(~990nm), where internal QE is calculated to be104%; ii) with6H7/2,6F9/2or6H5/2serving as an intermediate level, the energy in excited Dy3+:4F9/2state can besequentially split into two NIR photons emitting by the first-step transition of4F9/2→6F9/2,6H7/2(~834nm) or4F9/2→6H5/2(~1000nm) and the second-step of6F9/2,6H7/2(6H5/2)→6H15/2(~1000nm), where internal QE is calculated to be111%and107%accordingto Judd-Ofelt theory and the measured luminescence decay time, respectively. On the otherhand, in GdVO4:Dy3+, the broadband UV-excited [VO4]3-groups can strongly sensitize Dy3+ions, thereby achieving the efficient NIR downconversion in250-500nm.
     (3) As Ho3+:5F4,5S2excited, the energy can decay via sequential radiative transitions of5F4,5S2→5I6~1015nm and5I6→5I8~1190nm with5I6acting as an intermediate level. Besides,through the strong sensitization of broadband UV-excited [VO4]3-to Ho3+in YVO4:Ho3+, notonly the full spectrum downconversion can be realized in250-560nm, but the NIR emissionintensities increase by a factor of~10. On the other hand, under excitation of an UV photon~287nm, Ho3+-doped β-NaYF4can yield three NIR photons emitting at850,1015and1180nm, respectively. In term of excitation and emission spectra, decay curves, and time-resolvedvisible and NIR emission spectra, the mechanisms of sequential three-photon NIR-QC and ETof Ho3+are reported, that is: with5F4,5S2and5I6acting as intermediate levels, the energy of3D3excited state can be sequentially decayed to5I8ground state by three-step radiativetransitions, where internal QE is estimated to be124%. Furthermore, as Yb3+introduced intoβ-NaYF4:Ho3+, the radiative transition of3D3→3K8,5F2~850nm and that of5F4,5S2→5I6~1015nm would become the resonant ET paths to increase the emission intensity of Yb3+~1000nm and that of Ho3+~1180nm by several times, which downconverts the absorbed UVenergy of Ho3+to NIR emission completely, and optimizes the three-photon NIR emission ofHo3+greatly. According to the experimental and theoretical calculation, the10mol.%Yb3+ codoped β-NaYF4:1%Ho3+is demonstrated to have the optimal internal QE of~224%.
     (4) In term of static fluorescence spectra, dynamic luminescence decay curves, andtime-resolved NIR emission spectra, it can be found that, under excitation of a blue photon~470nm, the energy of Tm3+:1G4excited state is sequentially de-excited by three photonsemitting at1185,1466and1800nm with3H4and3F4acting as intermediate levels, whereinternal QE is evaluated to be160%. Moreover, by using integrating sphere, the practical QEof β-NaYF4:1%Tm3+phosphors was roughly measured to be32%, rather smaller than thetheoretical value~160%. On the other hand, in Gd2O2S:Tm3+, as Tm3+:1D2state excited by anUV photon~364nm, the efficient cross-relaxations of Tm3+:1D2→3H4+Tm3+:3H6→3F2,3andTm3+:3H4→3F4+Tm3+:3H6→3F4would sequentially occur, quadruply populating Tm3+:3F4state to yield four NIR photons~1789nm. By changing Tm3+contents, the absorbed UVenergy of Tm3+can be efficiently downconverted and concentrated on~1789nm emission,which greatly benefits the practical application of four-photon NIR-QC materials activated byTm3+. On the basis of the four-photon NIR-QC processes and the measured decay curves, theinternal QE of Gd2O2S:10%Tm3+is calculated to be maximum~275.4%. Furthermore, bycomparing the excitation spectra with the diffuse reflection spectra of Gd2O2S:Tm3+, the totalQE of Gd2O2S:10%Tm3+is rationally optimized to be~239.4%.
引文
[1] Blasse G. Grabmaier B. C. Luminescent materials [M]. Berlin: Springer;1994
    [2] Feldmann C., Justel T., Ronda C. R., et al. Inorganic luminescent materials:100years ofresearch and applications [J]. Adv. Funct. Mater.,2003,13(7):511–516
    [3]徐叙镕,苏勉曾主编.发光学与发光材料[M].北京:化学工业出版社,2004
    [4]孙家跃,杜海燕,胡文详编著.固体发光材料[M].北京:化学工业出版社,2003
    [5] Dexter D. L. Possibility of luminescent quantum yields greater than unity [J]. Phys. Rev.,1957,108(3):630-633
    [6] Sommerdijk J. L., Bril A., de Jager A. W. Two phonton luminescence with ultravioletexcitation of trivalent praseodymium [J]. J. Lumin.,1974,8(4):341-343
    [7] Piper W. W., de Luca J. A., Ham F. D. Cascade fluorescent decay in Pr3+-doped fluorides:achievement of a quantum yield greater than unity for emission of visible light [J]. JLumin.,1974,8(4):344-348
    [8] Loureiro S. M., Setlur A., Heward W., et al. First observation of quantum splittingbehavior in nanocrystalline SrAl12O19:Pr,Mg phosphor [J]. Chem. Mater.,2005,17(12):3108-3113
    [9] Pappalardo R. Calculated quantum yield for photon cascade emission (PCE) for Pr3+andTm3+in fluoride hosts [J]. J. Lumin.,1976,14(3):159–193
    [10] Wegh R. T., van Loef E. V. D., Burdick G. W., et al. Luminescence spectroscopy ofhigh-energy4f11levels of Er3+in fluorides [J]. Mol. Phys.,2003,101(7):1047–1056
    [11] Peijzel P. S., Meijerink A. Visible photon cascade emission from the high energy levelsof Er3+[J]. Chem. Phys. Lett.,2005,401(1-3):241–245
    [12] Wegh R. T., Donker H., Meijerink A., et al. Vacuum–ultraviolet spectroscopy andquantum cutting for Gd3+in LiYF4[J]. Phys. Rev. B,1997,56(21):13841–13848
    [13] Yang Z, Lin J. H., Su M. Z., Tao Y., et al. Photon cascade luminescence of Gd3+inGdBaB9O16[J]. J. Alloys Compd.,2000,308(7):94–97
    [14] Feofilov S. P., Zhou Y., Seo H. J., et al. Host sensitization of Gd3+ions in yttrium andscandium borates and phosphates: application to quantum cutting [J]. Phys. Rev. B,2006,74(8):085101
    [15] Zhou Y., Feofilov S. P., Seo H. J., et al. Energy transfer to Gd3+from the self-trappedexciton in ScPO4:Gd3+: dynamics and application to quantum cutting [J]. Phys. Rev. B,2008,77(7):075129
    [16] Wegh R. T., Donker H., Oskam K. D., et al. Visible quantum cutting in LiGdF4:Eu3+through downconversion [J]. Science,1999,283(5402):663-666
    [17] Wegh R. T., Donker H., Oskam K. D., et al. Visible quantum cutting in Eu3+-dopedgadolinium fluorides via downconversion [J]. J. Lumin.,1999,82(2):93-104
    [18] Zhang Q. Y., Huang X. Y. Recent progress in quantum cutting phosphors [J]. Prog. Mater.Sci,2010,55(5):353-427
    [19] Ronda C. R. Phosphors for lamps and displays: an applicational view [J]. J. AlloysCompd.,1995,225(1-2):534–538
    [20] Henderson B., Imbusch G. F. Optical spectroscopy in inorganic solids [M]. Oxford:Clarendon;1998
    [21]张希艳,卢利平等编.稀土发光材料[M].北京:国防工业出版社,2005
    [22]张中太,张俊英编著.无机光致发光材料及应用[M].北京:化学工业出版社,2005
    [23] Moine B., Bizarri G. Why the quest of new rare earth doped phosphors deserves to go on?[J]. Opt. Mater.,2006,28(1-2):58–63
    [24] Ronda C. R., Justel T., Nikol H. Rare earth phosphors: fundamentals and applications [J].J. Alloys Compd.,1998,275–277(24):669–676
    [25] Sommerer T. J. Model of a weakly ionized, low-pressure xenon dc positive columndischarge plasma [J]. J. Phys. D: Appl Phys,1996,29(3):769–778
    [26] Justel T., Nikol H. Optimization of luminescent materials for plasma display panels [J].Adv. Mater.,2000,12(7):527–530
    [27] Peijzel P. S., Schrama W. J. M., Meijerink A. Thulium as a sensitizer for the Gd3+/Eu3+quantum cutting couple [J]. Mol. Phys,2004,102(11-12):1285–1290
    [28] Lee T. J., Luo L.Y., Diau E. W. G., et al. Visible quantum cutting through K2GdF5:Tb3+phosphors [J]. Appl. Phys. Lett.,2006,89(13):131121
    [29] Jia W., Zhou Y., Feofilov S. P., et al. Quantum splitting and its dynamics in GdLiF4:Nd[J]. Phys. Rev. B,2005,72(7):075114
    [30] Babin V., Oskam K. D., Vergeer P., et al. The role of Pb2+as a sensitizer for Gd3+-Eu3+downconversion couple in fluorides [J]. Radiat. Meas.,2004,38(4-6):767–770
    [31] Justel T., Nikol H., Ronda C. New developments in the field of luminescent materials forlighting and displays [J]. Angew. Chem. Int. Ed.,1998,37(22):3084–3103
    [32] van der Kolk E., Dorenbos P., van Eijk C. W. E., et al. Luminescence excitation study ofthe higher energy states of Pr3+and Mn2+in SrAlF5, CaAlF5, and NaMgF3[J]. J. Appl.Phys.,2004,95(12):7867–7872
    [33] Wang X. J., Huang S., Lu L., et al. Energy transfer in Pr3+and Er3+codoped CaAl12O19crystal [J]. Opt. Commun.,2001,195(5-6):405–410
    [34] Nie Z. G., Zhang J. H., Zhang X., et al. Evidence for visible quantum cutting via energytransfer in SrAl12O19:Pr,Cr [J]. Opt. Lett.,2007,32(8):991–993
    [35]禹德朝,张勤远.近红外量子剪裁研究进展[J].中国科学:化学,2013,43(11):1431-1456
    [36] Vergeer P., Vlugt T. J. H., Kox M. H. F., et al. Quantum cutting by cooperative energytransfer in YbxY1-xPO4:Tb3+[J]. Phys. Rev. B,2005,71(1):014119-014129
    [37] Auzel F. Upconversion processes in coupled ion systems [J]. J. Lumin.,1990,45(1-6):341-345
    [38] Brown R. S., Brocklesby W. S., Barnes W. L., et al. Cooperative energy transfer in silicafibers doped with ytterbium and terbium [J]. J. Lumin.,1995,63(1-2):1-7
    [39] Noginov M. A., Venkateswarlu P., Mahdi M. Two-step upconversion luminescence inYb:Tb:YSGG crystal [J]. J. Opt. Soc. Am. B,1996,13(4):735-741
    [40] Barbosa-Garcia O., Struck C. W. Monte Carlo treatment of the nonradiative energytransfer process for nonrandom placements of dopants in solids [J]. J. Chem. Phys.,1994,100(6):4554-4567
    [41] Zhang Q. Y., Yang C. H., Pan Y. X. Cooperative quantum cutting in one-dimensional(YbxGd1-x)Al3(BO3)4:Tb3+nanorods [J]. Appl. Phys. Lett.,2007,90(2):021107
    [42] Zhang Q. Y., Yang C. H., Jiang Z. H., et al. Concentration-dependent near-infraredquantum cutting in GdBO3:Tb3+,Yb3+nanophosphors [J]. Appl. Phys. Lett.,2007,90(6):061914
    [43] Zhang Q. Y., Yang G. F., Jiang Z. H. Cooperative downconversion inGdAl3(BO3)4:RE3+,Yb3+(RE=Pr, Tb, and Tm)[J]. Appl. Phys. Lett.,2007,91(5):051903
    [44]杨成浩.稀土掺杂氧化物的能量传递与发光[D].广州:华南理工大学硕士论文,2008
    [45] Dieke G. H. Spectra and energy levels of rare earth ions in crystals [M]. New York:Interscience,1968
    [46] Matrín I. R., Yanes A. C., Ramos J. M., et al. Cooperative energy transfer in Yb3+-Tb3+codoped silica sol-gel glasses [J]. J. Appl. Phys.,2001,89(5):2520-2524
    [47] Matrín I. R., Rodriguez V. D., Rodriguez-Mendoza U. R., et al. Energy transfer withmigration. Generalization of the Yokota-Taninoto model for any kind of multipoleinteraction [J]. J. Chem. Phys.,1999,111(3):1191-1194
    [48] Richards B. S. Enhancing the performance of silicon solar cells via the application ofpassive luminescence conversion layers [J]. Sol. Energy Mater. Sol. Cells,2006,90(15):2329-2337
    [49] Richards B. S. Luminescent layers for enhanced silicon solar cell performance:Down-conversion [J]. Sol. Energy Mater. Sol. Cells,2006,90(9):1189-1207
    [50] Strümpel C., McCann M., Beaucarne G., et al. Modifying the solar spectrum to enhancesilicon solar cell efficiency―An overview of available materials [J]. Sol. Energy Mater.Sol. Cells,2007,91(4):238-249
    [51] Shockley W., Queisser H. Detailed balance limit of efficiency of p-n junction solar cells[J]. J. Appl. Phys.,1961,32(3):510-519
    [52] Trupke T., Green M. A., Würfel P. Improving solar cell efficiencies by down-conversionof high-energy photons [J]. J. Appl. Phys.,2002,92(3):1668-1674
    [53] van der Ende B. M., Aarts L., Meijerink A. Lanthanide ions as spectral converters forsolar cells [J]. Phys. Chem. Chem. Phys.,2009,11(47):11081-11095
    [54] Chen D. Q., Wang Y. S., Hong M. C. Lanthanide nanomaterials with photon managementcharacteristics for photovoltaic application [J]. Nano Energy,2012,1(1):73-90
    [55] Lian H. Z., Hou Z. Y., Shang M. M., et al. Rare earth ions doped phosphors forimproving efficiencies of solar cells [J]. Energy,2013,57(1):270-283
    [56] Huang X. Y., Han S. Y., Huang W., et al. Enhancing solar cell efficiency: the search forluminescent materials as spectral converters [J]. Chem. Soc. Rev.,2013,42(1):173-201
    [57] Chen D. Q., Wang Y. S., Yu Y. L., et al. Near-infrared quantum cutting in transparentnanostructured glass ceramics [J]. Opt. Lett.,2008,33(16):1884-1886
    [58] Ye S., Zhu B., Chen J. X., et al. Infrared quantum cutting in Tb3+,Yb3+codopedtransparent glass ceramics containing CaF2nanocrystals [J]. Appl. Phys. Lett.,2008,92(14):141112
    [59] Ye S., Zhu B., Luo J., et al. Enhanced cooperative quantum cutting in Tm3+-Yb3+codoped glass ceramics containing LaF3nanocrystals [J]. Opt. Express,2008,16(12):8989-8994
    [60]张军杰,段忠超,何冬兵,戴世勋,胡丽丽.频率上转换掺稀土氧氟纳米微晶玻璃的研究进展[J].激光与光电子学进展,2005,42(6):2-7
    [61]陈钦俊.稀土掺杂氟氧微晶玻璃的制备及近红外光谱特性研究[D].广州:华南理工大学硕士论文,2011
    [62]黄小勇.稀土掺杂发光材料下转换发光特性研究[D].广州:华南理工大学博士论文,2011
    [63] Zhang Q. Y., Pita K., Kam C. H. Sol-gel derived zinc silicate phosphor films forfull-color display applications [J]. J. Phys. Chem. Solids,2003,64(2):333-338
    [64] Selomulya R., Ski S., Pita K., et al. Luminescence properties of Zn2SiO4:Mn2+thin-filmsby a sol-gel process [J]. Mater. Sci. Eng. B,2003,100(2):136-141
    [65] Huang X. Y., Zhang Q. Y. Efficient near-infrared downconversion in Zn2SiO4:Tb3+,Yb3+thin-films [J]. J. Appl. Phys.,2009,105(5):053521
    [66] Prado P., Beobide G., Marcaide A., et al. Development of multifunctional sol-gelcoatings: Anti-reflection coatings with enhanced self-cleaning capacity [J]. Sol. EnergyMater. Sol. Cells,2010,94(6):1081-1088
    [67] Han J. B., Dou Y. B., Wei M., et al. Erasable nanoporous antireflection coatings based onthe reconsctruction effect of layered double hydroxides [J]. Angew. Chem. Int. Ed.,2010,49(12):2171-2174
    [68] Peng Y. J., Liu J., Zhang K., et al. Near-infrared luminescent and antireflective inSiO2/YVO4:Yb3+bilayer films for c-Si solar cells [J]. Appl. Phys. Lett.,2011,99(12):121110
    [69] van der Ende B. M., Aarts L., Meijerink A. Near-infrared quantum cutting forphotovoltaics [J]. Adv. Mater.,2009,21(30):3073-3077
    [70] Jia D., Meltzer R. S., Yen W. M., et al. Green phosphorescence of CaAl2O4:Tb3+,Ce3+through persistence energy transfer [J]. Appl. Phys. Lett.,2002,80(9):1535-1537
    [71] Chen D. Q., Wang Y. S., Yu Y. L., et al. Quantum cutting downconversion bycooperative energy transfer from Ce3+to Yb3+in borate glasses [J]. J. Appl. Phys.,2008,104(11):116105
    [72] Huang X. Y., Yu D. C., Zhang Q. Y. Enhanced near-infrared quantum cutting inGdBO3:Tb3+,Yb3+phosphors by Ce3+doping [J]. J. Appl. Phys.,2009,106(11):113521
    [73] Zhang Q. H., Wang J., Zhang G. G., et al. UV photon harvesting and enhancednear-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+phosphor [J].J. Mater. Chem.,2009,19(38):7088-7092
    [74] Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem.Rev.,2004,104(1):139-173
    [75] Zhou J. J., Teng Y., Ye S., et al. Enhanced downconversion luminescence by co-dopingCe3+in Tb3+-Yb3+doped borate glasses [J]. Chem. Phys. Lett.,2010,486(4-6):116-118
    [76] Song P., Jiang C. Broadband solar spectral conversion in near-infrared quantum cuttingCe3+-Tb3+/Yb3+system for improving Si solar cells performance [J]. IEEE Photonics J.,2013,5(2):8400110
    [77] Shao L. M., Jing X. P. Near-infrared luminescence of Tb3+-Yb3+and Ce3+-Yb3+co-dopedY3Al5O12[J]. ECS J. Solid State Sci. Technol.,2012,1(1): R22-R26
    [78] Zhang G. G., Liu C. M., Wang J., et al. A dual-mode solar spectral converterCaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectralconverting mechanism [J]. J. Mater. Chem.,2012,22(5):2226-2232
    [79] Guille A., Pereira A., Breton G., et al. Energy transfer in CaYAlO4:Ce3+,Pr3+forsensitization of quantum-cutting with the Pr3+-Yb3+couple [J]. J. Appl. Phys.,2012,111(4):043104
    [80] Rakov N., Maciel G. S. Near-infrared quantum cutting in Ce3+, Er3+, and Yb3+dopedyttrium silicate powders prepared by combustion synthesis [J]. J. Appl. Phys.,2011,110(8):083519
    [81] Sun J. Y., Sun Y. N., Zhu J. C., et al. Near-infrared downconversion in Eu2+and Pr3+co-doped KSrPO4phosphor [J]. Chin. Phys. B,2013,22(5):057803
    [82] Li S. W., Hou Z. Y., Cheng Z. Y., et al. Enhanced near-infrared quantum cutting in1,2,4,5-benzenetetracarboxylic acid/NaYF4:Tb3+,Yb3+hybrid nanoparticles [J]. RSCAdv.,2013,3(16):5491-5497
    [83] Jiang G. C., Wei X. T., Chen Y. H., et al. Broadband downconversion inYVO4:Tm3+,Yb3+phosphors [J]. J. Rare Earth,2013,31(7):27-31
    [84] Zhou J. J., Zhuang Y. X., Ye S., et al. Broadband downconversion based on infraredquantum cutting by cooperative energy transfer from Eu2+to Yb3+in glasses [J]. Appl.Phys. Lett.,2009,95(14):141101
    [85] Ueda J., Tanabe S. Visible to near infrared conversion in Ce3+-Yb3+co-doped YAGceramics [J]. J. Appl. Phys.,2009,106(4):043101
    [86] Lin H., Zhou S. M., Teng H., et al. Near infrared quantum cutting in heavy Yb dopedCe0.03Yb3xY(2.97-3x)Al5O12transparent ceramics for crystalline silicon solar cells [J]. J.Appl. Phys.,2010,107(4):043107
    [87] Wei X. T., Huang S., Chen Y. H., et al. Energy transfer mechanisms in Yb3+doped YVO4near-infrared downconversion phosphor [J]. J. Appl. Phys.2010,107(10):103107
    [88] Deng K. M., Li L., Wei X. T., et al. Near infrared quantum cutting in Yb3+-dopedNaY(WO4)2phosphor with a high quenching concentration [J]. J. Nanosci. Nanotechnol.,2011,11(11):9489-9493
    [89] Cao X., Li L., Wei X. T., et al. CaMoO4:x%Yb3+: a novel near-infrared quantum-cuttingphosphors via cooperative energy transfer [J]. J. Nanosci. Nanotechnol.,2011,11(11):9543-9549
    [90] Eilers J. J., Biner D., van Wijngaaerden J. T., et al. Efficient visible to infrared quantumcutting through downconversion with the Er3+-Yb3+couple in Cs3Y2Br9[J]. Appl. Phys.Lett.,2010,96(15):151106
    [91] Meijer J. M., Aarts L., van der Ende B. M., et al. Downconversion for solar cells inYF3:Nd3+,Yb3+[J]. Phys. Rev. B,2010,81(3):035107
    [92] Chen D. Q., Yu Y. L., Lin H., et al. Ultraviolet-blue to near-infrared downconversion ofNd3+-Yb3+couple [J]. Opt. Lett.,2010,35(2):220-222
    [93] van Wijngaarden J. T., Scheidelaar S., Vlugt T. J. H., et al. Energy transfer mechanismfor downconversion in the (Pr3+, Yb3+) couple [J]. Phys. Rev. B,2010,81(15):155112
    [94] Aarts L., van der Ende B., Reid M. F., et al. Downconversion for solar cells inYF3:Pr3+,Yb3+[J]. Spectrosc. Lett.,2010,43(5):373-381
    [95] Zheng W., Zhu H. M., Li R. F., et al. Visible-to-infrared quantum cutting byphonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors [J]. Phys. Chem. Chem.Phys.,2012,14(19):6974-6980
    [96] Xie L. C., Wang Y. H., Zhang H. J. Near-infrared quantum cutting in YPO4:Yb3+,Tm3+via cooperative energy transfer [J]. Appl. Phys. Lett.,2009,94(6):061905
    [97] Zhang Q., Zhu B., Zhuang Y. X., et al. Quantum cutting in Tm3+/Yb3+-codopedlanthanum aluminum germanate glasses [J]. J. Am. Ceram. Soc.,2010,93(3):654-657
    [98] Kong L. B., Zhang T. S., Ma J., et al. Progress in synthesis of ferroelectric ceramicmaterials via high-energy mechanochemical technique [J]. Prog. Mater. Sci.,2008,53(2):207-322
    [99] Kingsley J., Patil K. C. A novel combustion process for the synthesis of fine particleα-alumina and related oxide materials [J]. Mater. Lett.,1988,6:427-432
    [100] Patil K. C., Aruna S. T., Ekambaram S. Combustion synthesis [J]. Curr. Opin. SolidState Mater. Sci.,1997,2(2):158-165
    [101] McKittrick J., Shea L. E., Bacalski C. F., et al. The influence of processing parameterson luminescent oxides produced by combustion synthesis [J]. Displays,1999,19(4):169-172
    [102] Chen L. M., Liu Y. N., Huang K. L. Hydrothermal synthesis and characterization ofYVO4-based phosphors doped with Eu3+ion [J]. Mater. Res. Bull.,2006,41(1):158-166
    [103] Chen X. P., Zhang Q. Y., Yang C. H., et al. Comparative investigation on structure andluminescence properties of fluoride phosphors codoped with Er3+/Yb3+[J]. Spectrochim.Acta A: Mol. Biomol. Spectrosc.,2009,74(2):441-445
    [104]张维娟.掺Ho3+氟氧化物微晶玻璃近—中红外发光特性研究[D].广州:华南理工大学博士论文,2012
    [105]张家鹏.掺Ho3+氧氟锗酸盐2.0μm发光特性研究[D].广州:华南理工大学硕士论文,2013
    [106]杨页如主编.无机非金属材料测试方法(第一版)[M].哈尔滨:哈尔滨工业大学出版社,2000
    [107] Malta O. L., Carlos L. D. Intensities of4f-4f transitions in glass materials [J]. Quim.Nova,2003,26(6):889-895
    [108]姜中宏,刘粤惠,戴世勋.新型光功能玻璃[M].北京:化学工业出版社,2008
    [109]张思远.稀土离子的光谱学:光谱性质和光谱理论[M].北京:科学出版社,2008
    [110] Liu Z. J., Li J. Y., Yang L. Y., et al. Efficient near-infrared quantum cutting inCe3+-Yb3+codoped glass for solar photovoltaic [J]. Sol. Energy Mater. Sol. Cells,2014(1),122:46-50
    [111] Zhou W. L., Li Y., Zhang R. H., et al. Ultraviolet to near-infrared downconversion ofY2SiO5:Ce3+,Yb3+nanobelt-poly-EVA films [J]. Opt. Lett.,2012,37(21):4437-4439.
    [112] Liu X. F., Teng Y., Zhuang Y. X., et al. Broadband conversion of visible light tonear-infrared emission by Ce3+,Yb3+-codoped yttrium aluminum garnet [J]. Opt. Lett.,2009,34(22):3565-3567
    [113] Chen J. D., Zhang H., Li F., et al. High efficient near-infrared quantum cutting inCe3+,Yb3+co-doped LuBO3phosphors [J]. Mater. Chem. Phys.,2011,128(1-2):191-194
    [114] Verweij J. W. M., Pédrini C., Bouttet D., et al. Fluorescence of Ce3+in LiREF4(RE=Gd,Yb)[J]. Opt. Mater.,1995,4(5):575-582
    [115] Cooke D. W., Muenchausen R. E., Bennett B. L., et al. Temperature-dependentluminescence of cerium-doped ytterbium oxyorthosilicate [J]. J. Lumin.,1998,79(3):185-190
    [116] Rivas-Silva J. F., Durand-Niconoff S., Schemidt T. M., et al. Theoretical explanation ofthe quenching of luminescence in cerium-doped ytterbium oxyorthosilicate [J]. Int. J.Quantum Chem.,2000,79(3):198-203
    [117] Wojtowicz A. J., Lempicki D., Wisniewski D., et al. Cerium-doped orthophosphatescintillators [J]. Mat. Res. Soc. Symp. Proc.,1994,348:123-128
    [118] Miyakawa T., Dexter D. L. Phonon sidebands, multiphonon relaxation of excited states,and phonon-assisted energy transfer between ions in solids [J]. Phys. Rev. B,1970,1(7):2961-2969
    [119] van Driel A. F., Nikolaev I. S., Vergeer P., et al. Statistical analysis of time-resolvedemission from ensembles of semiconductor quantum dots: Interpretation of exponentialdecay models [J]. Phys. Rev. B,2007,75(3):035329
    [120] Yuan J. L., Zeng X. Y., Zhao J. T., et al. Energy transfer mechanisms in Tb3+,Yb3+codoped Y2O3downconversion phosphor [J]. J. Phys. D: Appl. Phys.,2008,41(8):105406
    [121] Dorenbos P. Anomalous luminescence of Eu2+and Yb2+in inorganic compounds [J]. J.Phys.: Condens. Mater.,2003,15(17):2645-2665
    [122] Dorenbos P. The Eu3+charge transfer energy and the relation with the band gap ofcompounds [J]. J. Lumin.,2005,111(1-2):89-104
    [123] Blasse G. The influences of charge-transfer and rydberg states on the luminescenceproperties of lanthanides and actinides [J]. Struct. Bonding,1976,26:43-79
    [124] Aarts L., van der Ende B. M., Meijerink A. Downconversion for solar cells inNaYF4:Er,Yb [J]. J. Appl. Phys.,2009,106(2):023522
    [125] Teng Y., Zhou J. J., Liu X. F., et al. Efficient broadband near-infrared quantum cuttingfor solar cells [J]. Opt. Express,2010,18(9):9671-9676
    [126] Huang X. Y., Zhang Q. Y. Near-infrared quantum cutting via cooperative energy transferin Gd2O3:Bi3+,Yb3+phosphors [J]. J. Appl. Phys.,2010,107(6):063505
    [127] Huang X. Y., Ji X. H., Zhang Q. Y. Broadband downconversion of ultraviolet light tonear-infrared emission in Bi3+-Yb3+-codoped Y2O3phosphors [J]. J. Am. Ceram. Soc.,2011,94(3):833-837
    [128] Chen X. P., Huang X. Y., Zhang Q. Y. Concentration-dependent near-infrared quantumcutting in NaYF4:Pr3+,Yb3+phosphor [J]. J. Appl. Phys.,2009,106(6):063518
    [129] Gao G. J., Wondraczek L. Near-infrared downconversion in Pr3+/Yb3+co-dopedboro-aluminosilicate glasses and LaBO3glass ceramics [J]. Opt. Mater. Express,2013,3(5):633-644
    [130] Chen Q. J., Zhang W. J., Huang X. Y., et al. Efficient down-and up-conversion ofPr3+-Yb3+co-doped transparent oxyfluoride glass ceramics [J]. J. Alloys Compd.,2012,513(5):139-144
    [131] Jaffrès A., Viana B., van der Kolk E. Photon management in La2BaZnO5:Tm3+,Yb3+andLa2BaZnO5:Pr3+,Yb3+by teo steo cross-relaxation and energy transfer [J]. Chem. Phys.Lett.,2012,527(27):42-46
    [132] Hu J. X., Xia H. P., Hu H. Y., et al. Synthesis and efficient near-infrared quantumcutting of Pr3+/Yb3+codoped LiYF4single crystals [J]. J. Appl. Phys.,2012,112(7):073518
    [133] Zhou J. J., Teng Y., Ye S., et al. A discussion on spectral modification from visible tonear-infrared based on energy transfer for silicon solar cells [J]. Opt. Mater.,2012,34(5):901-905
    [134] Man S. Q., Zhang H. L., Liu Y. L., et al. Energy transfer in Pr3+/Yb3+codoped telluiteglasses [J]. Opt. Mater.,2007,30(2):334-337
    [135] zen G., Forte O., Di Bartolo B. Downconversion and upconversion dynamics inPr-doped Y3Al5O12crystals [J]. J. Appl. Phys.,2005,97(1):013510
    [136] Lakshminarayana G., Qiu J. R. Near-infrared quantum cutting in RE3+/Yb3+(RE=Pr,Tb, and Tm): GeO2-B2O3-ZnO-LaF3glasses via downconversion [J]. J. Alloys Compd.,2009,481(1-2):582-589
    [137] Zhou B., Tao L. L., Tsang Y. H., et al. Superbroadband near-IR photoluminescence fromPr3+-doped fluorotellurite glasses [J]. Opt. Express,2012,20(4):3803-3813
    [138] Carnall W. T., Fields P. R., Rajnak K. Electronic energy levels in the trivalent lanthanideaquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+[J]. J. Chem. Phys.,1968,49(10):4424-4442
    [139] Yu D. C., Ye S., Peng M. Y., et al. Efficient near-infrared downconversion inGdVO4:Dy3+phosphors for enhancing the photo response of solar cells [J]. Sol. EnergyMater. Sol. Cells,2011,95(7):1590-1593
    [140] Hsu C., Powell R. C. Energy transfer in europium doped yttrium vanadate crystals [J]. J.Lumin.,1975,10(5):273-293
    [141] Liu J. F., Yao Q. H., Li Y. D. Effects of downconversion luminescent film indye-sensitized solar cells [J]. Appl. Phys. Lett.,2006,88(17):173119
    [142] Bao A., Yang H., Tao C. Y., et al. Luminescent properties of nanoparticlesYPxV1-xO4:Dy phosphors [J]. J. Lumin.,2008,128(1):60-66
    [143] van Dijk J. M. F., Schuurmans M. F. H. On the nonradiative and radiative decay ratesand a modified exponential energy gap law for4f–4f transitions in rare-earth ions [J]. J.Chem. Phys.,1983,78(9):5317-5323
    [144] Suyver J. F., Aebischer A., Biner D., et al. Novel materials doped with trivalentlanthanides and transition metal ions showing near-infrared to visible photonupconversion [J]. Opt. Mater.,2005,27(6):1111-1130
    [145] Miller S. A., Caspers H. H., Rast H. E. Lattice vibrations of yttrium vanadate [J]. Phys.Rev.,1968:168(3):964-969
    [146] Cavalli E., Bettinelli M., Belletti A., et al. Optical spectra of yttrium phosphate andyttrium vanadate single crystals activated with Dy3+[J]. J. Alloys Compd.,2002,341(1-2):107-110
    [147] Kaminskii A. A. Crystalline lasers: physical processes and operating schemes [M]. BocaRaton, FL, CRC Press,1996
    [148] Riseberg L. A., Gandrud W. B., Moos H. W. Multiphonon relaxation of near-infraredexcited states of LaCl3:Dy3+[J]. Phys. Rev.,1967,159(2):262-266
    [149] Bai Z. H., Fujii M., Hasegawa T., et al. Efficient ultraviolet-blue to near-infrareddownconversion in Bi-Dy-Yb-doped zeolites [J]. J. Phys. D: Appl. Phys.,2011,44(45):455301
    [150] Yu D. C., Huang X. Y., Ye S., et al. A sequential two-step near-infrared quantumsplitting in Ho3+singly doped NaYF4[J]. AIP Adv.,2011,1(4):042161
    [151] Yu D. C., Huang X. Y., Ye S., et al. Efficient near-infrared quantum splitting inYVO4:Ho3+for photovoltaics [J]. Sol. Energy Mater. Sol. Cells,2012,101(3):303-307
    [152] Zhang W. J., Yu D. C., Zhang J. P., et al. Near-infrared quantum splitting in Ho3+:LaF3nanocrystals embedded germinate glass ceramics [J]. Opt. Mater. Express,2012,2(5):636-643
    [153] Yu D. C., Huang X. Y., Ye S., et al. Three-photon near-infrared quantum splitting inβ-NaYF4:Ho3+[J]. Appl. Phys. Lett.,2011,99(16):161904
    [154] Yu D. C., Ye S., Huang X. Y., et al. Enhanced three-photon near-infrared quantumsplitting in β-NaYF4:Ho3+by codoping Yb3+[J]. AIP Adv.,2012,2(2):022124
    [155] Chen X. P., Zhang W. J., Zhang Q. Y. Towards efficient upconversion anddownconversion of NaYF4:Ho3+,Yb3+phosphors [J]. Physica B,2011,406(6-7):1248-1252
    [156]陈小萍.水热法合成稀土掺杂NaYF4的上转换及下转换发光性能研究[D].广州:华南理工大学硕士论文,2010
    [157] Yu D. C., Huang X. Y., Ye S., et al. Efficient first-order resonant near-infrared quantumcutting in β-NaYF4:Ho3+, Yb3+[J]. J. Alloys Compd.,2011,509(41):9919-9923
    [158] Li C. X., Quan Z. W., Yang J., et al. Highly uniform and monodisperse β-NaYF4:Ln3+(Ln=Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesisand luminescent properties [J]. Inorg. Chem.,2007,46(16):6329-6337
    [159] Shannon R. D. Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides [J]. Acta Cryst. A,1976,32(5):751-767
    [160] Kr mer K. W., Biner D., Frei G., et al. Hexagonal sodium yttrium fluoride based greenand blue emitting upconversion phosphors [J]. Chem. Mater.,2004,16(7):1244-1251
    [161] Heer S., Kr mpe K., Güdel H. U., et al. Highly efficient multicolour upconversionemission in transparent colloids of lanthanide-doped NaYF4nanocrystals [J]. Adv. Mater.,2004,16(23-24):2102-2104
    [162] Lin H., Chen D. Q., Yu Y. L., et al. Near-infrared quantum cutting in Ho3+/Yb3+codopednanostructured glass ceramic [J]. Opt. Lett.,2011,36(6):876-878
    [163] Deng K. M., Gong T., Hu L. X., et al. Efficient near-infrared quantum cutting inNaYF4:Ho3+, Yb3+for solar photovoltaics [J]. Opt. Express,2011,19(3):1749-1754
    [164] Go b S., Solarz P., Dominiak-Dzik G., et al. Spectroscopy of YVO4:Ho3+crystals [J].Appl. Phys. B,2002,74(3):237-241
    [165] Walsh B. M., Barnes N. P., Di Bartolo B. Branching ratios, cross sections, and radiativelifetime of rare earth ions in solids: Application to Tm3+and Ho3+ions in LiYF4[J]. J.Appl. Phys.,1998,83(5):2772-2787
    [166] Medenbach O., Shannon R. D. Refractive indices and optical dispersion of103synthetic and mineral oxides and silicates measured by a small-prism technique [J]. J.Opt. Soc. Am. B,1997,14(12):3299-3318
    [167] Smetad G. P. Absorptivity as a predictor of the photoluminescence spectra of siliconsolar cells and photosynthesis [J]. Sol. Energy Mater. Sol. Cells,1995,38(1):57-71
    [168] Rodíguez V. D., Tikhomirov V. K., Méndez-Ramos J., et al. Towards broad range andhighly efficient down-conversion of solar spectrum by Er3+-Yb3+co-dopednano-structured glass-ceramics [J]. Sol. Energy Mater. Sol. Cells,2010,94(10):1612-1617
    [169] Chen D. C., Yu Y. L., Huang P., et al. Color-tunable luminescence for Bi3+/Ln3+:YVO4(Ln=Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light [J]. Phys. Chem.Chem. Phys.,2010,12(28):7775-7778
    [170] Huang X. Y., Wang J. X., Yu D. C., et al. Spectral conversion for solar cell efficiencyenhancement using YVO4:Bi3+,Ln3+(Ln=Dy, Er, Ho, Eu, Sm, and Yb) phosphors [J]. J.Appl. Phys.,2011,109(11):113526
    [171] Tian L. H., Mho S. Enhanced photopluminescence of YVO4:Eu3+by codoping the Sr2+,Ba2+or Pb2+ion [J]. J. Lumin.,2007,122-123(1-4):99-103
    [172] Malinowski M., Frukacz Z., Szuflińska M., et al. Optical transitions of Ho3+in YAG [J].J. Alloys Compd.,2000,300-301(12):389-394
    [173] Malinowski M., Kaczkan M., Wnuk A., et al. Emission from high lying excited states ofHo3+ions in YAP and YAG crystals [J]. J. Lumin.,2004,106(3-4):269-279
    [174] Kaczkan M., Pracka I., Malinowski M. Optical transitions of Ho3+in SrLaGa3O7[J].Opt. Mater.,2004,25(3):345-352
    [175] Yuan D., Tan M. C., Riman R. E., et al. Comprehensive study on the size effects of theoptical proiperties of NaYF4:Yb,Er nanocrystals [J]. J. Phys. Chem. C,2013,17(25):13297-13304
    [176] Knowles D., Cassanho A., Jenssen H. P. Tunable solid state laser [M]. Buggor L. D.,Esterowitz L., DeShazer L. G., Eds. Berlin, Germany: Springer Verlag,1989, pp.139–145
    [177] Becher P. C., Hayhurst T., Shalimoff G., et al. Crystal field analysis of Tm3+and Yb3+inYPO4and LuPO4[J]. J. Chem. Phys.,1984,81(7):2872-2878
    [178] Richman I. Raman spectra of YPO4and YbPO4[J]. J. Opt. Soc. Am.,1966,56(11):1589-1590
    [179] Borrero-González L. J., Nunes L. A. O. Near-infrared quantum cutting through athree-step energy transfer process in Nd3+-Yb3+co-doped fluoroindogallate glasses [J]. J.Phys.: Condens. Mater.,2012,24(38):385501
    [180] Yu D. C., Ye S., Peng M. Y., et al. Sequential three-step three-photon near-infraredquantum splitting in β-NaYF4:Tm3+[J]. Appl. Phys. Lett.,2012,100:191911
    [181] Yu D. C., Zhang J. P., Chen Q. J., et al. Three-photon near-infrared quantum cutting inTm3+-doped oxyfluoride glass ceramics [J]. Appl. Phys. Lett.,2012,101(17):171108
    [182] Martín-Rodríguez R., Fischer S., Ivaturi A., et al. Highly efficient IR to NIRupconversion in Gd2O2S:Er3+for photovoltaic applications [J]. Chem. Mater.,2013,25(9):1912-1921
    [183] Patterson A. L. The Scherrer formula for X-ray particle size determination [J]. Phys.Rev.,1939,56(15):978-982
    [184] Eick H. A. The preparation, lattice parameters and some chemical properties of the rareearth mono-thio oxides [J]. J. Am. Chem. Soc.,1958,80(1):43-44
    [185] Lakshminarayana G., Yang H. C., Ye S., et al. Co-operative downconversionluminescence in Tm3+/Yb3+:SiO2-Al2O3-LiF-GdF3glasses [J]. J. Phys. D: Appl. Phys.,2008,41(17):175111
    [186] Yu S. L., Yang Z. M., Xu S. H. Spectroscopic properties and energy transfer analysis ofTm3+-doped BaF2-Ga2O3-GeO2-La2O3glass [J]. J. Fluoresc.,2010,20(3):745-751
    [187] Etchart I., Hernández I., Huignard A., et al. Oxide phosphors for light upconversion;Yb3+and Tm3+co-doped Y2BaZnO5[J]. J. Appl. Phys.,2011,109(6):063104
    [188] Mita Y., Ide T., Togashi M., et al. Energy transfer processes in Yb3+and Tm3+ion dopedfluoride crystals [J]. J. Appl. Phys.,1999,85(8):4160-4164
    [189] Razumova I., Tkachuk A., Nikitichev A., et al. Spectral-luminescent properties ofTm:YLF crystal [J]. J. Alloys Compd.,1995,225(1-2):129-132
    [190] Xu Y. S., Zhang X. H., Dai S. X., et al. Efficient near-infrared down-conversion inPr3+-Yb3+codoped glasses and glass ceramics containing LaF3nanocrystals [J]. J. Phys.Chem. C,2011,115(26):13056-13062
    [191] Fan B., Chlique C., Merdrignac-Conanec O., et al. Near-infrared quantum cuttingmaterial Er3+/Yb3+doped La2O2S with an external quantum yield higher than100%[J]. J.Phys. Chem. C,2012,116(21):11652-11657
    [192] de Mello J. C., Wittmann H. F., Friend R. H. An improved experimental determinationof external photoluminescence quantum efficiency [J]. Adv. Mater.,1997,9(3):230-232
    [193] Wang M., Mi C. C., Zhang Y. X., et al. NIR-responsive silica-coated NaYbF4:Er/Tm/Houpconversion fluorescent nanoparticles with tunable emission colors and theirapplications in immunolabeling and fluorescent imaging of cancer cells [J]. J. Phys.Chem. C,2009,113(44):19021-19027
    [194] Wang Y. Z., Yu D. C., Lin H. H., et al. Broadband three-photon near-infrared quantumcutting in Tm3+singly doped YVO4[J]. J. Appl. Phys.,2013,114(20):203510
    [195] Zhang J. P., Yu D. C., Zhang F. F., et al. Sequential three-photon near-infrared quantumcutting in transparent fluorogermanate glass-ceramics containing LaF3:Tm3+nanocrystals[J]. Opt. Mater. Express,2014,4(1):111-120
    [196] ten Kate O. M., de Jong M., Hintzen H. T., et al. Efficiency enhancement calculations ofstate-of-the-art solar cells by luminescent layers with spectral shiting, quantum cutting,and quantum tripling function [J]. J. Appl. Phys.,2013,114(8):084502
    [197] Thrash R. J., Johnson L. F. Upconversion laser emission from Yb3+-sensitized Tm3+inBaY2F8[J]. J. Opt. Soc. Am. B,1994,11(5):881-885
    [198] O’Connor R., Mahiou R., Martinant D., et al. Luminescence and dynamics inTm3+:NaYF4[J]. J. Alloys Compd.,1995,225(1-2):107-110
    [199] Orlovskii Y. V., Basiev T. T., Pukhov K. K., et al. Oxysulfide optical ceramics doped byNd3+for one micron lasing [J]. J. Lumin.,2007,125(1-2):201-215
    [200] Carnall W. T., Fields P. R., Rajnak K. Spectral intensities of the trivalent lanthanides andactinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+[J]. J. Chem. Phys.,1968,49(10):4412-4422
    [201] Chen X. B., Salamo G. J., Yang G. J., et al. Multiphoton near-infrared quantum cuttingluminescence phenomena of Tm3+ion in (Y1-xTmx)3Al5O12powder phosphor [J]. Opt.Express,2013,21(S5): A829-A840
    [202] Yang Z. Y., Luo L., Chen W. The1.23and1.47μm emissions from Tm3+inchalcogenide glasses [J]. J. Appl. Phys.,2006,99(7):076107
    [203] van Schaik W., Blasse G. Influence of defects on the luminescence quantum yield ofyttrium europium oxide (Y1.94Eu0.06O3)[J]. Chem. Mater.,1992,4(2):410-415

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700