用户名: 密码: 验证码:
从包头混合型稀土精矿中回收稀土、磷、氟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
包头混合型稀土精矿作为世界储量最丰富、产量最大的稀土资源,由于其成分复杂且含有难分解的独居石,因此处理困难。目前工业上应用的硫酸分解法和NaOH分解法都不同程度的存在成本和环境保护等问题。因此,合理开发、综合利用包头混合型稀土精矿对我国的经济建设具有很重要的意义。本论文以CaO-NaCl-CaCl2焙烧包头混合稀土精矿的产物为研究对象构思了一个全新的从包头稀土精矿中回收稀土,磷和氟的清洁生产工艺,并对流程的工艺条件、反应机理进行了研究。
     pH值滴定法、分光光度法以及红外光谱法证明了柠檬酸与混合稀土元素在溶液中通过柠檬酸的羧基和羟基配位存在REH2AOH2+、REHAOH+、REAOH、REAO-四种配合物形式,随着pH值的升高柠檬酸稀土的配位方式由单齿配位转变为桥连配位而后又转变为单齿配位。pH值电位滴定法测定柠檬酸稀土配合稳定常数分别为lgβ1=9.1,lgβ2=13.4,lgβ3=14.2,lgβ4=16.1。而在Ca2+、F-、PO43-多离子存在时,柠檬酸稀土溶液中稀土与柠檬酸仍能够形成配合物。溶液中含有与稀土等摩尔的Ca2+时条件配合稳定常数为lgβ1=6.9,lgβ2=10.8,lgβ3=12.9,lgβ4=13.1;含有与稀土等摩尔的F-时条件配合稳定常数为lgβ1=6.1,lgβ2=9.3,lgβ3=11.5,lgβ4=12.2;含有与稀土等摩尔的PO43-时条件配合稳定常数为lgβ1=6.5,lgβ2=9.7,lgβ3=12.3,lgβ4=12.7。
     研究了HCl-H3AOH酸洗包头稀土矿焙烧产物磷溶出以及酸洗液体碱化回收磷的工艺条件和动力学过程。结果表明,磷溶出率达到99.45%时的优化实验条件为:盐酸浓度0.5mol·L-1,柠檬酸浓度0.05mol·L-1,温度30℃,液固比10:1,时间25min,搅拌速度200 r·min-1;酸洗液经NaOH碱化调节pH值为9、控制温度为室温、时间为25min,磷的回收率达到99.51%,稀土的损失率仅为0.98%。沉淀理论计算及XRD分析确定碱化的沉淀物为羟基磷酸钙。酸洗及碱化的过程符合1-(1-α)1/3=Kt的动力学方程,反应速度随温度升高由化学反应速度控制(20~40℃)变为扩散和化学反应速度混合控制(40~50℃)直至扩散速度控制(50~60℃)。酸洗过程上述三段控制步骤的表观活化能分别为E1=42.35kJ·mol-1、E2=21.31kJ·mol-1、E3=1.18kJ·mol-1。碱化过程上述三段控制步骤的表观活化能分别为E1=43.3 kJ·mol-1、E2=27.4 kJ·mol-1、E3=3.03kJ·mol-1。
     研究了HCl-AlCl3浸出酸洗矿以溶解稀土氧化物和氟化钙的工艺条件和动力学过程。盐酸浓度3mol·L-1、Al3+浓度0.5mol·L-1、温度60℃、液固比10:1、时间60min、搅拌速度200 r·min-1的条件下,酸洗矿中RE2O3的浸出率为70.8%,CaF2的浸出率为55.8%。依上述条件经五级逆流浸出后酸洗矿中RE203的浸出率为99.62%,CaF2的浸出率达到98.56%。浸出的反应过程符合1-2/3α-(1-α)2/3=Kt的动力学方程,反应速度始终受扩散和化学反应速度混合控制。酸洗矿中稀土氧化物浸出和氟化钙浸出过程的表观活化能分别为ERE2O3=33.64 kJ·mol-1,ECaF2=23.68 kJ·mol-1。采用P204萃取回收浸出液中稀土,回收率达到98.6%。萃余液加NaOH回收氟铝酸钠,氟的回收率达到93.8%。
     对CaO-NaCl-CaCl2焙烧包头混合型稀土精矿产物的处理工序进行了全流程实验验证,结果表明:包头矿焙烧产物经酸洗、碱化、浸出等工序后,稀土直接回收率为98.28%,氟的直接回收率为84.30%,磷的直接回收率为96.36%,钙的直接回收率为41.17%。全流程中稀土主要损失方向为:稀土萃取余液中0.7%、浸出渣中0.36%、回收的氟铝酸钠中0.16%、回收氟铝酸钠余液中0.29%、其余0.21%为操作过程损失。焙烧矿中氟的主要损失方向为:碱化渣中8.16%、浸出渣中1.36%、回收氟铝酸钠的余液中5.69%、其余0.49%为操作过程损失。焙烧矿中磷的主要损失方向为:浸出渣中2.69%、碱化回收磷的滤液中0.13%、其余0.82%为操作过程损失。焙烧矿中钙的主要损失方向为:回收的稀土氧化物中1.39%,回收的氟铝酸钠中0.4%,回收稀土的余液中7.63%,回收氟铝酸钠的余液中48.9%,其余0.51%为操作过程损失。
     综上所述,论文所构思的新工艺既可以满足工业生产,又符合资源综合利用和环境保护的要求。
The biggest storage and output of rare earth resource is Baotou mixed rare earth concentrate in world. This mineral is not easy to process due to its complex constituents and containing monazite which is difficult to be decomposed. Up till now the widely used methods of processing the Baotou mixed rare earth concentrate are to decompose it with sulfuric acid or NaOH, but these methods have the questions of cost and environmental protection. Therefore, exploitation and utilization of Baotou mixed rare earth concentrate with and reasonable and optimized method means a great deal to our country. In this thesis, the products from calcined Baotou mixed rare earth concentrate by CaO-NaCl-CaCl2 is investigated, a new clean technology of recovery RE, P and F from the products is designed, and the technology parameters and reactions mechanics of the new technology are studied.
     The results of pH value titration, spectrophotometric and FT-IR analysis testify that the mixed rare earth elements coordinate with citric acid through carboxyl and hydroxyl in water solution, and the coordination substances of REH2AOH2+, REHAOH+, REAOH and REAO-is coexistence in solution. With increasing pH value, the coordination modes change from monodentate ligands to bridiging ligands, and to monodentate ligands again. The coordination stability constants (β) of rare earth and citric acid are studied by pH potentiometric titration, and the results are lgβ1=9.1 for REH2AOH2+, lgβ2=13.4 for REHAOH+, lgβ3=14.2 for REAOH and lgβ4=16.1 for REAO- respectively. Rare earth still coordinates with citric acid when exists Ca2+, F- and PO43-. The conditional coordination stability constants are lgβ1=6.9,lgβ2=10.8,lgβ3=12.9,lgβ4=13.1 as existing Ca2+,lgβ1=6.1,lgβ2=9.3,lgβ3=11.5, lgβ4=12.2 as existing F-, and lgβ1=6.5,lgβ2=9.7,lgβ3=12.3,lgβ4=12.7 as existing PO43-.
     The technology parameters and the kinetic of the calcination products washed by HCl-H3AOH and basified by NaOH are studied. The results show that, when HCl concentration 0.5mol·L-1,citric acid concentration 0.05mol·L-1,liquid to solid 10:1,stirring speed 200 r·min-1.30℃and 25min, the phosphorus dissolution ratio is optimized to 99.45%. At the conditions of pH value 9, room temperature,25min, the recovery ratio of phosphorus from alkali acid washing solution is 99.51%,and the loss ratio of rare earth is only 0.98%. The hydroxyl calcium phosphate in processing of alkali precipitation is determined by theoretical calculation and XRD analyze. The process of acid washing and alkalization match to kinetic equation of 1-(1-α)1/3=Kt, and the reaction rate is controlled by chemical reaction control mode(20~40℃),mixed control mode(40-50℃) and diffusion control mode(50~60℃) respectively. The apparent activation energy of acid washing are E1=42.35kJ·mol-1for chemical reaction control mode, E2=21.31kJ·mol-1 for mixed control mode, E3=1.18 kJ·mol-1 for diffusion control mode respectively, and those of alkalization process are E1=43.3 kJ·mol-1, E2=27.4 kJ·mol-1,E3=3.03 kJ·mol-1 respectively.
     Furthermore, the technology parameters and the kinetic of acid washing minerals leaching by HCl-AlCl3 to dissolve RE2O3 and CaF2 are studied. The leaching ratio of RE2O3 and CaF2 is up to 70.8% and 55.8% respectively at the optimization parameters of HCl concentration 3 mol·L-1,Al3+ concentration 0.5 mol·L-1,liquid to solid 10:1,stirring speed 200 r·min-1,60℃with 60min. The leaching ratio of RE2O3 and CaF2 is to 99.62% and 98.56% respectively when quinternary contraflow leaching at the same parameters.The leaching process match to kinetic equation of 1-2/3α-(1-α)2/3=Kt, and the reaction rate is controlled by mixed control mode. The apparent activation energy of RE2O3 and CaF2 leaching process are ERE2O3=33.64 kJ·mol-1,ECaF2=23.68 kJ·mol-1.The studying results of kinetic show that the reaction rate increases with the increase of temperature, reactant concentration and stirring speed. Rare earth is recovered by P204 extraction from leaching solution, and the recovery ratio is 98.6%. The sodium fluoaluminate is recovered from faffinate adding NaOH, and the recovery ratio of fluorine is 93.8%.
     The treating procedures of calcined Baotou mixed rare earthconcentrate by CaO-NaCl-CaCl2 are verified by full-flow experiments. The results show that the direct recovery ratio of rare earth is 98.28%,fluorine is 84.3%,phosphorus is 96.36% and calcium is 41.17%. The loss of rare earth in full-flow is 0.7% in rare earth faffinate,0.36% in leaching slag,0.16% in filtrate of recovery sodium fluoaluminate and 0.21% when operation. The loss of fluorine is 8.16% in alkali precipitation,1.36% in leaching slag,5.69% in recovery filtrate of sodium fluoaluminate, and 0.49% when operation. The loss of phosphorus is 2.69% in leaching slag,0.13% in filtrate of recovery phosphorus, and 0.82% when operation. The loss of calcium is 1.39% in recovery rare earth oxide,0.4% in recovery sodium fluoaluminate, 7.63% in filtrate of recovery rare earth,48.9% in filtrate of recovery sodium fluoaluminate, and 0.51% when operation.
     The new clean technology of recovery RE, P and F from calcinations products satisfy the requirement of industry production, resource utilization, and environmental protection.
引文
[1]F.H. Spedding, A.H. Daane. The rare earths[M],New York and London:United States Atomic Energy Commission,1961,3-26.
    [2]徐光宪.稀土(上册)[M],北京:冶金工业出版社,1995,29-40.
    [3]吕松涛主编.稀土冶金学[M],北京:冶金工业出版社,1978,1-27.
    [4]A.H.泽利克曼著,木卯勤人安文译.稀土金属钍铀冶金学[M],北京:中国工业出版社,1965,1-31.
    [5]吴文远.稀土冶金学[M],北京:化学工业出版社,2005,16-20.
    [6]熊家齐.全球稀土市场现状及发展趋势[J],稀土,2006,27(3):98.
    [7]魏新刚,张英.稀土在钢中的应用与作用[J],内蒙古石油化工,2007,(8):37.
    [8]刘光华,孙洪志,李红英.稀土材料与应用技术[M],北京:化学工业出版社,2005,150-156.
    [9]许崇海,艾兴,邓建新等.稀土元素在氧、碳、硼化物陶瓷材料中的应用研究[J],硅酸盐通报,1998,3:64-68.
    [10]Andrierskaya E R, Lopato L M. Influence of composition on the T→M transformation in the systems ZrO2-Ln2O3 (Ln=La, Nd, Sm, Eu)[J],Jouranl of Materials Science, 1995,30(10):2591-2597.
    [11]黄勇,曾照强,郑隆烈等.Ce-TZP陶瓷在应力作用下的相变特性[J],硅酸盐学报,1990,8(3):228-236.
    [12]Pretorius G Stabilization mechanism of M2O3 c-type rare earth tetragonal stabilized ZrO2 via co-decomposition[J],Jouranl of Materials Science,1995,(30):720-723.
    [13]Gall M Le, Huntz A M, Lesage B, et al. Self-diffusion in α-Al2O3 and growth rate of alumina scales formed by oxidation:effect of Y2O3 doping[J],Jouranl of Materials Science,1995,30(1):201-211.
    [14]Ki-Woong CHae, Doh-Yeon Kim, Byung-Chan Kim, et al. Effect of Y2O3 additions on the densification of an Al2O3-TiC composite[J],Journal of the American Ceramic Society,1993,76(7):1857-1860.
    [15]耿谦,张育兵.稀土元素在玻璃陶瓷中的应用[J],陶瓷,2004,(1):40-43.
    [16]唐志阳.稀土氧化物在陶瓷中的应用[J],山东陶瓷,2005,28(2):16-19.
    [17]Scherzer J, Riter R E. Ion-exchanged ultrastable Y zeolites.3.gas oil cracking over rare earth-exchanged ultrastable Y zeolites[J],Ind. Eng. Chem. Prod. Res. Dev.,1978, 17(3):219.
    [18]Magee J S, Cormier W E, Woltermann G M.Octane catalysts contain special sieves[J], Oil & Gas J.,1985,83(21):59.
    [19]孙书红,庞新梅,郑淑琴等.稀土超稳Y性分子筛催化裂化催化剂的研究[J],石油炼制与化工,2001,32(6):25.
    [20]庞新梅,孙书红,高雄厚.生产低硫汽油新型FCC催化剂研究进展[J],石化技术与应用,2001,19(6):384.
    [21]郭耘,卢冠忠.稀土催化材料的应用及研究进展[J],中国稀土学报,2007,25(1):1-15.
    [22]汪燕鸣,王飞,王跃.稀土元素农业应用的研究进展[J],化工时刊,2007,21(2):47-49.
    [23]王德林.稀土农用技术研发、推广新进展[J],四川稀土,2006,4:24-28.
    [24]Wang Jianchen, Liu Xiangsheng, Yang Jun, et al.Deveolpment and Prospect of Rare Earth Functional Biomaterials for Agriculture in China[J],Journal of Rare Earths,2006, S24:427-431.
    [25]苏锵.国家中长期科学和技术发展规划纲要中与稀土有关部分的思考——稀土发光材料部分[J],四川稀土,2006,(3):2-4.
    [26]李晓丽,刘跃,张忠义等.我国稀土发光材料产业现状与展望[J],稀土,2007,28(2):90-94.
    [27]林河成.我国稀土永磁材料的新进展[J],世界有色金属,2005,5:28-33.
    [28]S J Collocott, J B Dunlop, H C Lovatt and V S Ramsden. Rare-Earth Permanent Magnets:New Magnet Materials and Applications[C],Materials Science Forum,1999, 315-317:77.
    [29]K A Gschneidner, V K Pecharsky. Recent Developments in Magnetic Refrigeration[J],J. Alloys Compds,1998,107:260.
    [30]陈俊良,方方,张晶.纳米储氢材料及其发展[J],稀有金属材料与工程,2007,36(6):1119-1123.
    [31]王新林.中国稀土永磁和储氢材料的进展[J],四川稀土,2006,3:16-18.
    [32]T Vogt, J J Reilly. Non-Stoichiometric AB5 Type Alloys and Their Properties as Metal Hydride Electrodes[C],Materials Science Forum,1999,315-317:94.
    [33]吴全兴译.美国的稀土市场和世界稀土资源[J],稀有金属快报,2007,26(7):46-47.
    [34]Yasuo Kanazawa, Masaharu Kamitani.Rare earth minerals and resources in the world[J],Journal of Alloys and Compounds,2006,408-412:1339-1343.
    [35]王彦译.2006年美国稀土产业状况[J],稀土信息,2007,(275):17-18.
    [36]E.Wm. Heinrich. The Geology of Carbonatites[M],Robert E.Kriager Publishing Company, Inc.,New York:1980,156-247.
    [37]Industrial Minerals,Metal Bulletin Journals Ltd[M],London,1988,No.254,21-56.
    [38]J.B.Hedrick. Rare Earth Elements and Yttrium, Mineral Facts and Problem[J], U.S.Bureall of Mines,1985,647-664.
    [39]P.Moller, Lantharides, Tantalum and Niobium[M],Springer-Verlag,1989,171-189.
    [40]S.Peng. Proceedings of International Conference on Rare Earth Minerals and Minerals for Electronic[M],1991,33-42.
    [41]James B.Hedrick, Shyama P. Sinha, Valery D.Kosynkin. Loparite a rare-earth ore(Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3[J],Journal of Alloys and Compounds,1997,250: 467-470.
    [42]赵增祺.如何面对国外稀土矿的竞争[J],稀土信息,2007,281:5-7.
    [43]钱九红,李国平.中国稀土产业的发展现状[J],稀有金属,2003,27(6):813-818.
    [44]赵增祺.世界主要稀土矿床开采状况及其对稀土产业的影响[J],四川稀土,2007,(03):6-9.
    [45]刘余九.中国稀土产业现状及发展的主要任务[J],中国稀土学报,2007,25(3):257-263.
    [46]国家发展和改革委员会稀土办公室.中国稀土-2005[J],稀土信息,2006,(3):4.
    [47]黄小卫,李红卫,薛向欣,张国成.我国稀土湿法冶金发展状况及研究进展[J],中国稀土学报,2006,24(2):129-133.
    [48]张海顺.包头稀土产业发展的现状与未来[J],稀土信息,2007,9:4-5.
    [49]陈秀昆.对包头白云鄂博矿稀土资源的思考[J],包钢科技,2007,33(1):1-4.
    [50]林东鲁.中国白云鄂博矿资源开发及市场前景[J],四川稀土,2006,4:24-27.
    [51]张国成.包头稀土精矿硫酸强化焙烧萃取法生产氯化稀土工艺研究报告[A],1980年年会论文集[C],北京:中国金属学会,1980,54.
    [52]王伟生,王嵩龄,贾江涛等.我国现行主要稀土矿分解流程的经济技术指标分析[J],中国稀土学报,2006,241(4):385-390.
    [53]姚亚东,李华民,李瑶.一种高收率、低消耗生产混合氯化稀土的工艺——高温烧 碱法[J],矿产综合利用,1999,01:1-6.
    [54]韩学印,李良才,常叔等.浓NaOH溶液分解稀土矿物的研究[J],稀土,1985,6(3):39.
    [55]1981年-1983年有色金属或科技成果将部分项目简介[J],稀有金属,1985,(2):87.
    [56]虞宝煜.工频电场下烧碱法分解稀土精矿机理的研究[J],中国稀土学报,1993,(3):21-26.
    [57]张伯祥.用烧碱法处理稀土精矿生产实践中的一些理论问题的探讨[J],包钢科技,1986,(2):8-14.
    [58]张俊卿,吴志华,段劲松.烧碱法分解稀土精矿的酸浸出[J],内蒙古石油化工,1996,22:63-66.
    [60]郑伟,王树茂.氟碳铈矿纯碱焙烧低酸浸出直接制取氯化稀土和工业纯铈工艺[J],稀土,1996,17(6):59-61.
    [61]Liu Shaogang, Zhang Jirong, Wei Xujun, et al. Roast Reaction Kinetics of Bastnasite Concentrate with Sodium Carbonate Mixture[J],Rare Metals,1997,16(3):168-172.
    [62]柳召刚,杨启山,刘铃声等.碳酸钠焙烧盐酸浸出分解氟碳铈矿精矿工艺的研究[J],稀土,2004,25(2):7-13.
    [63]乔军,柳绍刚,马莹.包头矿碳酸钠焙烧反应动力学研究[J],中国稀土学报,1999,17(1):86-89.
    [64]康明,孙蓉.碳酸钠用量对氟碳铈矿中氟的回收率的影响[J],西南科技大学学报,2004,(04):18-24.
    [65]朱国才,时文中,池汝安.氯化铵焙烧法从氟碳铈矿提取稀土的研究进展[J],中国稀土学报,2002,S2:37-43.
    [66]时文中.氯化铵焙烧法从混合型稀土精矿中回收稀土[J],河南大学学报(自然科学版),2002,(4):45-49.
    [67]杨倩志.用助熔剂萃取法从包头稀土矿提取稀土氧化物[J],稀有金属,1997,12(1):86-89.
    [68]Hikichi Y,HuKuo K,ShioKawa J. Solid state reaction between rare earth orthophosphate and oxide [J],Bull Chemsoc Jpn,1980, (53):1455-1456.
    [69]吴文远,涂赣峰,孙树臣等.氧化钙分解人造独居石的反应机理[J],东北大学学报(自然科学版),2002,12:1158-1161.
    [70]Jin-Ping Zhang, Frank J.Lincoln. The decomposition of monozite by machemical milling with calcium oxide and calcium chloride[J],Journal of Alloys and Compounds, 1994,205:69-75.
    [71]孙培梅,李洪桂,李运姣等.机械活化碱分解独居石新工艺[J],中南工业大学学报,1998,29(1):36.
    [72]吴文远.独居石稀土精矿,独居石与氟碳铈混合型稀土精矿的焙烧方法[P],中国专利,01128097.2,2001.
    [73]吴文远,陈旭东,陈杰等.CaO-NaCl焙烧分解独居石的研究[J],稀土,2004,25(2):16-19.
    [74]陈旭东,吴文远,孙树臣等.CaO-NaCl体系焙烧混合稀土精矿的研究[J],稀土,2004,25(1):32-35.
    [75]吴文远,孙树臣,涂赣峰等.氟碳铈与独居石混合型稀土精矿热分解机理研究[J],稀有金属,2002,(1):76-79.
    [76]邓家姝,邓家恂.我国稀土产业可持续发展的对策研究[J],中国金属通报,2006,(46):8-10.
    [77]侯宗林.我国稀土资源利用现状及存在的问题[J],稀土信息,2005,(4):6-7.
    [78]徐光宪.关于保护白云鄂博矿钍和稀土资源避免黄河和包头受放射性污染的紧急呼吁[J],中国科学院刊,2005,20(6):448-450.
    [79]Salih Aydogan, Murat Erdemoglu, Ali Aras, et al. Dissolution kinetics of celestite(SrSO4) in HCl solution with BaCl2[J],Hydrometallurgy,2006,84:239-246.
    [80]Rajko Z. Vracar, Natasa Vuckovic, Zeljko Kamberovic. Leaching of copper sulphide by sulphuric acid solution with addition of sodium nitrate[J],Hydrometallurgy,2003,70: 143-151.
    [81]Rajko Z. Vracar, Ivana S.Parezanovic, Katarina P. Cerovic. Leaching of copper sulfide in calcium chloride solution[J],Hydrometallurgy,2000,58:261-267.
    [82]Welham, N. J. Effect of extend grinding on the dissolution of a Ta/Nb concentrate[J], Canadian Metallurgical Quaterly,2001,40(9):143-154.
    [83]Suong Oh Lee, Tam Tran, Yi Yong Park, et al.Study on the kinetic of iron oxide leaching by oxalic acid[J],Int. J. Miner. Process,2006,80:144-152.
    [84]Abdulkerim Yorukoglu, Abdullah Obut, Ismail Girgin. Effect of thiourea on sulphuric acid leaching of bastnaesite[J],Hydrometallurgy,2003,68:195-202.
    [85]谷晋川,刘亚川.柠檬酸助浸效果研究[J],矿冶工程,2001,21(4):49-51.
    [86]Chiarizia R, Horwitz E. P..New formulations for iron oxides dissolution[J], Hydrometallurgy,1991,27:339-360.
    [87]Ambikadevi, V.R.,Lalithambika, M. Effect of organic acids on ferric iron removal from iron-stained kaolinite[J],Appl.Clay Sci,2000,16:133-145.
    [88]李斯加,喻庆华,陈一波等.南方某类稀土矿的抑杂浸出[J],稀土,1996,17(2):29-34.
    [89]胡岳华,孙伟,蒋玉仁等.柠檬酸在白钨矿萤石浮选分离中的抑制作用及机理研究[J],国外金属矿选矿,1998,(5):27-29.
    [90]王伟生.对目前我国稀土工业国际竞争力的分析[J],世界有色金属,2007,(4):8-9.
    [91]张国成,黄文梅.稀土产业发展现状及问题[J],稀土信息,2004,(5):6-7.
    [92]徐光宪.白云鄂博矿钍资源开发利用迫在眉睫[J],稀土信息,2005,(5):34.
    [93]孙树臣.氧化钙体系分解混合型稀土精矿的研究[D],沈阳:东北大学,2007,93-97.
    [1]吴文远,涂赣峰,孙树臣等.氧化钙分解人造独居石的反应机理[J],东北大学学报(自然科学版),2002,12:1158-1161.
    [2]吴文远,陈旭东,陈杰等.CaO-NaCl焙烧分解独居石的研究[J],稀土,2004,25(2):16-19.
    [3]陈旭东,吴文远,孙树臣等.CaO-NaCl体系焙烧混合稀土精矿的研究[J],稀土,2004,25(1):32-35.
    [4]杨传铮.物相衍射分析[M],北京:工业出版社,1989,7-10.
    [5]包钢稀土研究院分析室编写组.冶金分析手册[M],中国稀土学会,包头钢铁公司,1994,30-31.
    [6]W.J.威廉斯著.曲长菱,齐大勇,陈乐恬译.阴离子测定手册[M],北京:冶金工业出版社,1987,437-619.
    [7]吴文远.稀土冶金学[M],北京:冶金工业出版社,2005,57-58.
    [8]孙树臣.氧化钙体系分解混合型稀土精矿的研究[D],沈阳:东北大学,2007,93-97.
    [1]陈冠荣,陈敏恒,成思危.化工百科全书[M],北京:化学工业出版社,1991,386.
    [2]袁春波,赵大庆,吴亦洁等.13C NMR研究稀土柠檬酸配合物的溶液配位结构[J],化学学报,1996,54:581-584.
    [3]XU Wei-Min,WANG Li,WANG Lu-Fen et al. Influence of La and Nd Complexes with Citric Acid on Cellulase Activity and Its Mechanism[J],Journal of Rare Earth,2006, 24(3):366-369.
    [4]Kisch T., Ziegenfuss H.,Maurer G.Distribution of citric, acetic and oxalic acids between water and organic solutions of tri-n-octylamine[J],Fluid Phase Equilibria,1997, 129(1):235-266.
    [5]Prochazka J.,Heyberger A.,Volaufova E.. Amine extraction of hydroxyl-carboxylie acids[J],Industrial &Engineering Chemistry Research,1997,36(7):2799-2807.
    [6]徐光宪.稀土[M],北京:冶金工业出版社,2002,645.
    [7]Rahul Ghildiyal, Pallavi Page, K. V.R. Murthy. Synthesis and characterization of Sr2CeO4 phosphor:Positive features of sol-gel technique[J],Journal of Luminescence,2007,124: 217-220.
    [8]Yu Xibin, He Xianghong, Yang Shiping, et al. Synthesis and Luminescence of Sr2CeO4 Superfine Particles by Citrate-gel Method[J],Materials Letters,2003,58:48-50.
    [9]Chen Shu-jian, Chen Xue-Tai, Yu Zhi, et al. Preparation and Characterization of Fine Sr2CeO4 Blue Phosphor Powders[J],Solid State Communications,2004,130:281-285.
    [10]董相廷,曲晓刚,洪广言.CeO2纳米晶的制备及其在电化学上的应用[J],科学通报,1996,41(9):847-850.
    [11]Lauffer R.B..Paramanetic metal complexes as water proton relaxation agents for NMR imaging:Theory and design[J],Chemical Reviews,1987,87:901-927.
    [12]B.S.Jean, G.K. Jayaprakasha, R.P. Singh.,et al.Chemistry and biochemistry of Hydroxycitric acid from Garcinia[J],Agri.and food chemistry,2002(50):10-22.
    [13]黄春辉.稀土配位化学[M],北京:科学出版社,1997,28.
    [14]F.H. Spedding, A.H. Daane. The rare earths[M],New York and London:United States Atomic Energy Commission,1961,61.
    [15]周新木.柠檬酸络盐沉淀法制备超细氧化铈[J],中国稀土学报,20:67-69.
    [16]傅素冉,齐丽,黎乐民,徐光宪.稀土四环素络合物的研究Ⅰ.三价铈四环素络合物的稳定常数的测定[J],北京大学学报(自然科学版),1983,(4):50-60.
    [18]慈云祥,周天泽.分析化学中的多元络合物[M],北京:科学出版社,2001,30-31.
    [19]申令生.化学分析计算手册[M],北京:水利电力出版社,1992,424-425.
    [20]慈云祥,周天泽.分析化学中的配位化合物[M],北京:北京大学出版社,1986,100-102.
    [21]周性尧,任建国.分析化学中的离子平衡[M],北京:科学出版社,1998,373-394.
    [22]K. Nakanishi. Infrared Absorption Spectroscopy[M],2nd Ed. Holden-Day,1997,499.
    [23]Maria Kaliva, Catherine Gabriel, Catherine P. Raptopoulou, et al. pH-specific synthesis, isolation, spectroscopic and structural characterization of a new dimeric assembly of binuclear vanadium(V)-citrate-peroxo species from aqueous solutions[J],Inorganica Chimica Acta,2007,11:1-10.
    [24]M. Kaliva, E. Kyriakakis, C.Gabriel, et al. Syntheis, isolation, spectroscopic and structural characterization of a new pH complex structural variant from the aqueous vanadium(V)-peroxo-citrate ternary system[J],Inorganica Chimica Acta,2006,359: 4535-4548.
    [25]宁永成.有机化合物结构鉴定与有机波谱学[M],北京:科学出版社,2000,329-332.
    [26]Levien B.J. A physicochemical study of aqueous citric acid solutions[J],Journal of Physical Chemistry,59:640-644.
    [27]陈允魁.红外吸收光谱及其应用[M],上海:上海交通大学出版社,1993,84-85.
    [28]Nakamoto Kazuo. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B:Applications in Coordination, Organometallic and Bioinorganic Chemistry[M].New York:John Wiley & Sons Ine,5th Ed.,1997,59-69.
    [29]Deacon G B, Philips R J. J.. Coord Chem Rev[J],1980,33:227-250.
    [30]梅燕,聂祚仁,王为.利用红外光谱分析有机羧酸在均相反应中的配位作用机理[J],光谱学与光谱分析,2007,27(2):254-258.
    [31]傅素冉,胡延风,王晓梅,黎乐民,徐光宪.稀土柠檬酸络合物的各级稳定常数的测定[J],北京大学学报(自然科学版),1984,(6):73-78.
    [32]姚允斌,解涛,高敏英.物理化学常数[M],上海:上海科学技术出版社,1985,782-819.
    [1]徐光宪.稀土(上册)[M],北京:冶金工业出版社,1995,75.
    [2]魏绪钧,冯法伦.有色冶金实验研究方法[M],沈阳:东北大学出版社,1996,54-62.
    [3]朱伟勇,段晓东,唐明等.最优设计在工业中的应用[M],沈阳:辽宁科学技术出版社,1993,329-423.
    [4]孙树臣.氧化钙体系分解混合型稀土精矿的研究[D],沈阳:东北大学,2007,93-97.
    [5]J.A.迪安.兰氏化学手册[M],北京:科学出版社,2003,968-980.
    [6]慈云祥,周天泽.分析化学中的配位化合物[M],北京:北京大学出版社,1986,100-102.
    [7]蒋汉瀛.湿法冶金过程物理化学[M],北京:冶金工业出版社,984,71-106.
    [8]Y. Abali, S.U.Bayca, E.Mistincik. Kinetics of oxalic acid leaching of tinal[J], Chemical Engineering Journal,2006,123:25-30.
    [1]高永峰.我国磷矿资源的特点及加工利用建议[J],化学工业,2007,25(11):1-6.
    [2]Steen I. Phosphorus availability in the 21st century:management of a non-renewable resource[J],Phosphorus & Potassium,1998,217:25-32.
    [3]Demirbas, A.,Y. K. Abaly, E. Mert. Recovery of phosphate from calcinated bone by dissolution in hydrochloric acid solutions[J],Resources, Conservation and Recycling, 1999,26:251-258.
    [4]袁俊宏.我国磷资源现状及资源保障程度分析[J],中国矿业,2003,12(4):4-9.
    [5]陈利德.浅议污水厂的磷回收[J],环境工程,2004,22(4):26-27.
    [6]申令生.化学分析计算手册[M],北京:水利电力出版社,1992,424-425.
    [7]周性尧,任建国.分析化学中的离子平衡[M],北京:科学出版社,1998,373-394.
    [8]慈云祥,周天泽.分析化学中的多元络合物[M],北京:科学出版社,2001,30-31.
    [9]J.A.迪安.兰氏化学手册[M],北京:科学出版社,2003,968-980.
    [10]Saktaywin W. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery[J],Water Res.,2005,39(5):902-910.
    [11]Y Jaffer, T A Clark, P Pearce, et al.Potential phosphorus recovery by struvite formation[J],Water Research,2002,36:1834-1842.
    [12]Morse G. K. Review Phosphorus removal and recovery technologies[J],The Science of the Total Environment,1998,212(1):69-81.
    [13]蒋汉瀛.湿法冶金过程物理化学[M],北京:冶金工业出版社,1984,71-106.
    [14]Y. Abali, S.U. Bayca, E. Mistincik. Kinetics of oxalic acid leaching of tinal[J], Chemical Engineering Journal,2006,123:25-30.
    [1]杭州大学化学系分析化学教研室.分析化学手册(第二分册)[M],北京:化学工业出版社,1997,554-560.
    [2]J.A.迪安.兰氏化学手册[M],北京:科学出版社,2003,968-980.
    [3]蒋汉瀛.湿法冶金过程物理化学[M],北京:冶金工业出版社,1984,71-106.
    [4]Y. Abali, S.U. Bayca, E. Mistincik. Kinetics of oxalic acid leaching of tinal[J], Chemical Engineering Journal,2006,123:25-30.
    [5]蔚东升,张梅玲,陈慧婷等.铝酸钙去除水中氟离子的条件研究[J],环境科学与技术,2006,29(7):87-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700