用户名: 密码: 验证码:
稀土氧化物和稀土矿物的谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土光谱复杂多变,对稀土光谱的研究不仅能丰富稀土知识,而且能为稀土材料的研究奠定理论基础。本工作研究稀土氧化物和若干典型的稀土矿物的光谱,目的是确定它们的特征和机理,并进而弄清各种稀土光谱之间的关系。论文共分两部分:(1)对振动拉曼光谱和振动红外光谱的研究;(2)对电子光谱,包括光致发光谱、可见光吸收谱、电子拉曼光谱和电子红外光谱的研究。
     1.利用三种显微拉曼光谱仪和不同的激发光,包括325.0nm、457.9nm、488.0nm、514.5nm、632.8nm和785.0nm等六种波长的激光,获取样品的拉曼光谱。用拉曼光谱和红外光谱系统分析了样品的振动特征,主要结果如下:
     (1)第一次完整报道了九种C型(立方型)稀土氧化物在400~800cm~(-1)红外谱区和80~800cm~(-1)拉曼谱区的振动光谱。这些数据表明振动频率取决于晶体结构并揭示了镧系收缩效应对振动频率的规律性影响。作者发现,C型Yb_2O_3的拉曼光谱具有异常现象,不仅其谱图形状不同于其它C型氧化物,而且谱峰位置也不满足镧系收缩规律。作者认为,Yb_2O_3特殊的拉曼光谱可能反映的是Yb~(3+)的电子拉曼光谱与Yb_2O_3的振动拉曼光谱的混合谱或耦合谱,Yb_2O_3特殊的拉曼光谱效应,可能涉及电子拉曼光谱理论的关键问题。
     (2)轻稀土RE_2O_3(RE=La,Pr,Nd,Sm)在空气中极易水化和碳酸化。通过拉曼光谱、红外光谱和X射线衍射法确定了其水化和碳酸化产物为RE(OH)_3、六方RE_2O_2CO_3、四方RE_2O_2CO_3和RE_2O(CO_3)_2。精确测定了Pr_6O_(11)标样中所出现的水化相Pr(OH)_3的结晶学参数,结果为:六方晶系,空间群P6_3/m,a=0.6465,c=0.3759,Z=2,D_x=4.684g/cm~3。补充了Pr(OH)_3的JCPDS衍射卡(45-86)中遗漏的数据,纠正了其中两个衍射峰的指标化错误。
     (3)变生态矿物拉曼光谱的强度很弱、谱线宽而弥散,而退火晶态矿物的拉曼谱峰强而尖锐。确定了褐钇铌矿族矿物、易解石族矿物、独居石和氟碳酸盐矿物的特征拉曼和红外振动频率,并对振动谱峰进行了归属。讨论了矿物的成分、结构对振动光谱的影响。
     2.在电子光谱的研究上,主要结果如下:
     (1)设计了一种利用拉曼光谱仪获取可见光吸收谱的新方法,利用这种方法所获得的高分辨可见光吸收谱可建立起稀土化合物的拉曼光谱、光致发光谱和红外光谱之间的重要联系,它对识别各种复杂的稀土光谱、探讨发光和吸收机理有重要的作用。
    
    薛理辉
    武汉理工大学博士学位论文
    摘要
     (2)发现在常温下,由于Boltzm~分布律的作用,在RE3+的基态电子态
    和激发态间跃迁所产生的发光谱带和吸收谱带中的精细谱峰的位置一一相同,
    解释了产生这种关系的原因,并弄清了Er203中Er3+的基态电子态4lts.12和激发
    态电子态2凡/2、4凡/2的stark能级分裂情况,确定了常温下ErZO3中Er3+的4了15/2
    一2凡/2和‘I,5/2一‘凡/2精细能级间的跃迁形式。
     (3)提出了电子红外光谱的概念,与普通的红外光谱即振动红外光谱不同
    的是,电子红外光谱来源于电子能级间的吸收跃迁。发现EuZq在400一
    4o00cm一’谱区的绝大部分红外谱峰以及NdZ氏、氟碳钟钡矿、氟碳钙钟矿、黄
    河矿、氟碳钟矿在1650一32O0cm一‘谱区中的红外谱峰出自E矿+和Nd3+电子能
    级的吸收跃迁,确定了常温下EuZ伪中Eu3+的’F0一;电子态的stark能级分裂
    情况和’D。一一7F0一;精细能级间的跃迁形式。
     (4)发现在可见光区不发光的LaZO3、 YZ仇和LuZO3,其光谱纯样品在可
    见激光激发下有较强的发光现象,确定了这三个样品的发光谱分别来源于样品
    中痕量的sm3+、Er,+和Eu,+。
     (5)变生态稀土矿物的发光谱带和吸收谱带宽而弥散,加热后谱带明显变
    得尖锐。晶态稀土矿物具有类线性的发光和吸收谱带,而且谱带的形状和位置
    与矿物的化学组分、晶体结构和激发方式紧密相关。呈示并研究了褐忆妮矿族
    矿物、易解石族矿物、独居石和稀土氟碳酸盐矿物在488.OIun和514.5tun激
    光激发下的光致发光谱,确定了光致发光中心的性质。另外,发现这些矿物对
    可见光的吸收主要表现为Nd3+的吸收,Nd3+可能是矿物光致发光的重要敏化
    剂。
The spectra of the rare earth are complicated, confused and variable. The study on spectra of the rare earth can not only enrich the knowledge of the rare earth, but also provide the theoretical basis for researching the rare earth materials. This work is to study the spectra of the rare earth oxides and some typical rare earth minerals found in China. The aim is to determine their characteristics and mechanisms, and further to clarify the relationship among various spectra. This PhD thesis is divided into two parts: (1) the study on vibrational Raman and infrared spectra, (2) the study on electronic spectra, including the photoluminescence, visible absorption, electronic Raman spectra and the electronic infrared spectroscopy.
    1. Three kinds of laser Raman spectrometers and six wavelengths of exciting source, including 325.0nm, 457.9nm, 488.0nm, 514.5nm, 632.8nm and 785.0nm laser lines, are used to obtain the Raman spectra. The vibrational characteristics of the specimens have been analyzed systematically by Raman and infrared spectra. The main results are as follows:
    (1) The infrared spectra from 400~800cm-1 and Raman spectra from 80~ 800cm-1 of nine cubic rare earth oxides are first reported completely. It is evident from these data that the crystal structure determines the frequency position, and clearly shows the effect of the lanthanide contraction in this series of compounds. An abnormal phenomenon in the Raman spectrum of Yb2O3 is found. It is supposed that the special Raman spectrum may be the mixed or coupled spectra of the electronic Raman spectrum of Yb3+ and the vibrational Raman spectra of Yb2O3. The special Raman effect of Yb2O3 may be related to some key questions about the theory of the electronic Raman spectra.
    (2) The light rare earth sesquioxides are easy to be hydrated and carbonated in air. It is determined from the Raman and infrared spectra and X-ray diffraction patterns of RE2O3(RE=La,Pr,Nd,Sm) specimens that the major hydrated and carbonated products are RE(OH)3, hexagonal RE2O2CO3, tetragonal RE2O2CO3 and RE2O(CO3)2. The crystal structure of Pr(OH)3 has been measured in detail. Pr(OH)3 is hexagonal with 2 molecules per unit cell (a=0.6465, c=0.3759), space
    
    
    group P63/m, and density Dx=4.684g/cm3. Some omitted data of Pr(OH)3 in the JCPDS file 45-86 are supplemented and the two errors of indices have been corrected.
    (3) The Raman spectra of the metamict minerals are very weak, but strong and sharp notably after heating. The characteristic frequencies of the Raman and infrared spectra of the fergusonite and aeschynite group minerals, monazites and the rare earth fluoro-carbonate minerals have been determined and assigned. The influence of the minerals' compositions and crystal structures on vibrational peaks has been discussed.
    2. As to the study on the electronic spectra of the rare earth, the main results are as follows.
    (1) Based on a reconstructed Raman microprobe, a new method of obtaining high-resolution visible region absorption spectra is designed. The method makes it possible to establish a relationship among four kinds of spectra of the rare earth specimen, including visible region absorption spectra, photoluminescence spectra, infrared spectra and Raman spectra. The method plays an important role in distinguishing and studying the complicated and confused spectral characteristics and mechanisms of the rare earth.
    (2) It is found and explained that due to the Boltzmann distribution law at room temperature, the positions of the fine peaks of the photoluminescence band stemming from the transitions between an excited state and the ground state of a RE3+, match these of the absorption bands from the transitions between the ground state and the excited state. The Stark split energy levels of the ground state 4I15/2 and two excited states 2S3/2 and 4F9/2 of the Er3+ in Er203 have been determined. And the transmitting form of the Stark split energy levels between the ground state and the two excited states has been clarified.
    (3) A concept of the electronic infr
引文
[1]刘光华.稀土固体材料学.北京:机械工业出版社,1997
    [2]阮永丰,许强,林林.蓝绿光波段激光技术与材料的研究进展.人工晶体学报,2002,31(3):266~276
    [3]徐光宪,倪家缵.神奇之土——稀土科学基础研究.长沙:湖南科学技术出版社,1995
    [4]张培善,陶克捷,杨主明,杨学明.中国稀土矿物学.北京:科学出版社,1998
    [5]中国稀土学会.中国稀土科技进展.北京:冶金工业出版社,2000
    [6]陈丰,林传易,张蕙芬等.矿物物理学概论.北京:科学出版社,1995
    [7]马尔福宁 A S.李高山等译.矿物物理学导论.北京:地质出版社,1984
    [8]Marfunin A S. Spectroscopy, luminescence and radiation centers in minerals. Translated by V.V. Schiffer. New York: Springer-Verlag, 1979
    [9]彭文世,刘高魁.矿物红外光谱图集.科学出版社,1982:122~124
    [10]Farmer V C编.应育浦,汪寿松等译.矿物的红外光谱.北京:科学出版社,1982
    [11]闻辂.矿物红外光谱学.重庆:重庆大学出版社,1988
    [12]卖克米伦 P F.喇曼光谱在矿物学和地球化学上的应用.国外地质科技,1990,(4):54~64
    [13]张惠芬,曹俊臣,谢先德.天然萤石的拉曼光谱和发光谱研究,矿物学报.1996,16(4):394~402
    [14]洪文兴,何松裕,黄舜华等.稀土氟碳酸盐矿物的拉曼光谱研究.光谱学与光谱分析,1999,19(4):546~549
    [15]段玉然,李维华.香花石包头矿黄河及蓟县矿的拉曼光谱特征.岩矿测试,1998,17(3):181~184
    [16]Schaack G, Koningstein J A. Phonon and Electronic Raman Spectra of Cubic Rare-earth Oxides and Isomorphous Yttrium Oxide. J. Optical Society of America,1970,60(8):1110~1115
    [17]Begun G M,Bambergre C E. Raman Spectra of the Rare Earth Trimetaphosphates. J. Raman Spectroscopy, 1982, 13(3):284~289
    [18]徐怡庄,吴瑾光,孙文秀等.钕的电子拉曼光谱和一种新的拉曼增强机理.高等学校化学学报,2003,24(2):335~336
    [19]科顿 F A,威尔金森 G 著,北京师范大学译.高等无机化学—下册.北京:人民教育出版社,1980
    
    
    [20]褚圣麟.原子物理学.北京:人民教育出版社,1979:115~218
    [21]Marks T J, Fisher R D. Organometallics of the f-elements. Reidel D Publishing Company, 1979
    [22]Hüfner S. Optical Spectra of Transparent Rare-earths Compounds. Academic Press, 1978
    [23]仲慧.推求原子基态光谱项的一种简便方法.山东建材料学院学报,1995,9(2):89~91
    [24]梁发书,赵永鹏.原子光谱项的推导方法.西南石油学院学报,1993,15(3):122~129
    [25]洪文兴,何松裕,黄舜华等.独居石中稀土元素4分组效应的研究及其地质意义.自然科学进展,1999,9(12增刊):1287~1290
    [26]Dieke G H, Crosswhite H M. The Spectra of the Doubly and Triply Ionized Rare Earths. Applied Optics, 1963, 2(7):675~686
    [27]Wegh R T, Meijerink A, Lamminmki R J, et al. Extending Dieke's Diagram. J. Luminescence, 2000, 87-89:1002~1004
    [28]Dieke G H. Spectra and Energy Levels of Rare Earth Ions in Crystals. NewYork:Wiley Interscience, 1968
    [29]Thompson L C. Handbook on the Physics and Chemistry of the Rare Earths—Vol.3. North Holland Publishing Company, 1979:209
    [30]郭硕鸿.电动力学.北京:人民教育出版社,1979:160~202
    [31]王则民.f-f超灵敏跃迁光谱及其应用.化学通报,1988,(3):24
    [32]龚孟濂等.若干Nd~(3+)和Er~(3+)配合物超灵敏跃迁光谱的研究.中山大学学报(自然科学版),1991,33(3):60
    [33]Henrie D E, Choppin G R. Environmental Effects on f-f Transitions Ⅱ. Hypersensitivity Insome Complexes of Trivalent Neodymium. J. Chem. Phys., 1968, 49(2):477~483
    [34]Sinha S P. Spectroscopic Investigations of Some Nedymium Complexes. Spectrochimica Acta, 1966, 22(1):57~62
    [35]倪丽华,王则民,曹锦荣等.某些钕和铒的苯甲酸类配合物的超灵敏跃迁吸收光谱研究.光谱实验室,1996,13(5):1~6
    [36]Grünberg P, Koningstein J A. Electronic Raman Effect.Ⅵ. Enhancement of the Intensity of Electronic Raman Transitions in Special Cases. The Journal of Chemical Physics, 1970, 53(12):4584~4588
    [37]朗DA著.顾本源,许政一,李晨曦等译.喇曼光谱学.北京:科学出版社,1983.
    [38]易宪武,黄春辉,王慰等.《无机化学丛书》第七卷——钪、稀土元素.北京:科学山版社,1998
    
    
    [39] 张若桦.稀土元素化学.天津:天津科学技术出版社,1987
    [40] O'Connor B H, Valentine T M. A Neutron Diffraction Study of the Crystal Structure of the C-form of Yttrium Sesquioxide. Acta Cryst. 1969, B25:2140~2144
    [41] Marezio M. Refinement of the Crystal Structure of In_2O_3 at two Wavelengths. Acta Cryst. 1966, 20:723~728
    [42] White W B, Keramidas V G. Vibrational Spectra of Oxides with the C-type Rare Earth Oxide Structure. Spectrochim. Acta, 1972, 28A:501~509
    [43] Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta cryst., 1976, A32:751~767
    [44] McDevitt N T, William L B. Infrared absorption study of metal oxides in the low frequency region (700-240) . Spectrochimia Acta, 1964, 20:799~808
    [45] McDevitt N T, Davidson A D. Infrared Lattice Spectra of Cubic Rare Earth Oxides in the Region 700 to 50 cm~(-1). J. Optical Society of America, 1966, 56(5):636~638
    [46] Bloor D, Dean J R. Spectroscopy of Rare Earth Oxide Systems: Ⅰ. Far Infrared Spectra of the Rare Earth Sesquioxides, Cerium Dioxide, and Nonstoichiometric Praseodymium and Terbium Oxides. J. Phys. C:Solid State Phys., 1972, 5:1237~1252
    [47] Caro P E, Sawyer J O, Eyrinog L. The Infrared Spectra of Rare Earth Carbonates. Spectrochim. Acta, 1972, 28A: 1167~1173
    [48] Herzberg G. Molecular Spectra and Molecular Structure, Ⅱ. Infrared and Raman Spectra of Polyatomic Molecules. NewYork: D. Van Nostrand Co., Inc., 1945:179
    [49] Turcotte R P, Sawyer J O, Eyring L. On the Rare Earth Dioxymonocarbonates and Their Decomposition. Inorg. Chem., 1969,8:238~246
    [50] Goldsmith J A, Ross S D. Factors Affecting the Infra-red Spectra of Some Planar anions with D_(3h) Symmetry-Ⅲ. The Spectra of Rare-earth Carbonates and Their Thermal Decomposition Products. Spectrochim. Acta, 1967.23A: 1909~1915
    [51] Gopinath C R, Brown I D. Normal Coordinate Analysis of the Raman and Infrared Vibrations of the Alpha Phases of RE_2O_3(RE=La,Pr, Nd) and RE_2O_2S(RE=La.Yb). J. Raman Spectro., 1982:12:278~280
    [52] Denning J H, Ross S D. The Vibrational Spectra and Structures of Rare Earth Oxides in the A Modification. J. Phys., C:Solid State Phys., 1972,5:1123~1133
    [53] Boldish S I, White W B. Vibrational Spectra of Crystals with the A-type Rare Earth Oxide Structure I. La_2O_3 and Nd_2O_3. Spectrochim. Acta, 1979, 35(A):1235~1240
    [54] Wyckoff R W G. Crystal Structure. Vol.2. 2nd ed. New York: John Wiley & Sons Inc.
    
    1964:77
    [55] Rabbiner N. Fluorescence of Dy~(3+) in CaF_2. Physical Review, 1963, 132(1):224~228
    [56] Shinn M D, Windscheif J C. Sardar D K, et al. Optical Transitions of Er~(3+) ions in RbMgF_3 and RbMgF_3:Mn. Physical Review B, 1982, 26(5):2372~2381
    [57] Sardar D K, Shinn M D, Sibley W A. Radiation-defect-perturbed Er~(3+) and Mn~(2+) optical transitions in RbMgF_3. Physical Review B, 1982, 26(5):2382~2389
    [58] Wegh R T, Donker H, Meijerink A, et al. Vacuum-ultraviolet Spectroscopy and Quantum cutting for Gd~(3+) in LiYF_4. Physical Review B, 1997, 56(21):13841~13848
    [59] Thiel C W, Cruguel H, Huasheng W, et al. Relating Localized Electronic States to Host Band Structure in Rare-earth-activated Optical Materials. Optics & Photonics News, 2001, 12(12):1~3
    [60] 阮永丰,卞晓枫,李宝凌等.掺铒铌酸锂晶体的上转换发光.光学学报,1995,15(7):948~952
    [61] Levshin V L. Photoluminescence of Liquid and Solid Substances. Moscow: Gos. Izd. Tekhn-teoret. Lit., 1951
    [62] 陈国珍,黄贤智,郑朱梓等.荧光分析法(第二版).北京:科学出版社,1990:3~15
    [63] 吴大清,林传易,王一先等.独居石、磷钇矿显微阴极射线发光研究.矿物学报,1993,13(2):137~141
    [64] Varsanyi F, Dieke G H. Energy Levels of Hexagonal ErCl_3. J. Chemical Physics, 1962, 36(11):2951~2961
    [65] Shinn M D, Sibley W A, Drexhage M G, et al. Optical Transitions of Er~(3+) Ions in Fluorozirconate Glass. Physical Review B, 1983, 27(11):6635~6648
    [66] Anderson W W, Razi S, Walsh D J. Luminescence of Rare-Earth-Activated Zinc Sulfide. J. Chemical Physics. 1965, 43(4): 1153~1160
    [67] McClure D S, Kiss Z. Survey of the Spectra of the Divalent Rare-Earth Ions in Cubic Crystals. J. Chemical Physics, 1963, 39(12):3251~3257
    [68] Johnson L F. Optical Maser Characteristics of Rare-Earth Ions in Crystals. J. Applied Physics, 1963, 34(4):897~909
    [69] Anderson W W. Luminescence of Rare-Earth-Activated Cadmium Sulfide. J. Chemical Physics, 1966, 44(9):3283~3288
    [70] Binkman R, et al. Continuous-wave Erbium-diffused LiNbO3 Waveguider Laser. Electron. Lett., 1991, 27(5):415
    [71] Desurvire E, et al. Evalution of ~4I_(15/2) and ~4I_(13/2) Stark-level Energies in erbium-doped
    
    Aluminosilicate Glasss Fibers. Optics Lett., 1990, 15(10):547
    [72]黄艺东,罗遵度.锗酸盐玻璃中Er~(3+)离子Stark分裂的分析.红外与毫米波学报,2001,20(1):50~52
    [73]阮永丰,李宝凌,李文润等.掺铒铌酸锂晶体的光谱数据与斯塔克能级.人工晶体学报,1995,24(4):272~277
    [74]Holsa J, Leaskela M. Optical Study of Eu~(3+) Luminescence in Gd, Y and Lu Oxyselenites by Site Selective excitation. Spectrochim. Acta, 1987, 43A(11): 1349~1353
    [75]李毓英.白云鄂博铁矿地质与勘探.北京:地质出版社,1959
    [76]张培善,洪文兴.白云鄂博矿物志.北京:科学出版社,1963
    [77]郭承基.稀土元素矿物化学.北京:科学出版社,1965
    [78]广东地质局中心实验室,地质部第二海洋地质大队实验室.砂矿物图册.北京:地质出版社,1979
    [79]张培善,陶克捷.白云鄂博矿物学.北京:科学出版社,1986
    [80]中国科学院地球化学研究所.白云鄂博矿床地球化学.北京:科学出版社,1988
    [81]张培善.白云鄂博超大型稀土—铁—铌矿床矿物学研究.中国稀土学报,1991,9(4):350~353
    [82]杨学明,张培善.几种矿物中稀土元素激活剂的阴极发光发射光谱及其地质意义.稀土,1991,12(1):43~45
    [83]Martin F, Prieto A C, Martin I, Rull F. Vibroelectronic Transitions in a Geological Fluorapatite (Esparraguina), Journal of Raman Spectroscopy. 1989, 20:21~25
    [84]Wopenka B, Jolliff B L, Zinner E, Kremser D T. Trace Element Zoning and Incipient Metamictization in a Lunar Zircon: Application of Three Microprobe Techniques, American Mineralogist, 1996, 81:902~912
    [85]邓华兴.磷灰石的阴极射线发光研究.地球化学,1980,(4):368~374
    [86]周玲棣,邓华兴.我国某些稀土矿床中方解石的阴极射线发光性质.矿物学报,1981,1(3):161~165
    [87]林传易,田淑贵,洪文兴等.不同变生程度锆石的阴极射线发光谱.矿物学报,1992.12(4):323~328
    [88]林传易,曹俊臣,张惠芬等.天然萤石的阴极射线发光谱研究.发光学报,1992,(3):220~225
    [89]王濮,潘兆橹,翁玲宝等.系统矿物学(下册).北京:地质出版社,1987:438~444
    [90]张培善,陶克捷,杨主明.我国稀土铌钽矿物学研究回顾与展望.高校地质学报,2000,6(2):126~131
    
    
    [91]贡伟亮.白云鄂博褐钇铌矿族矿物的矿物化学与矿物演化.矿物学报,1991.11(3):200~207
    [92]张培善,陶克捷.中国褐钇铌矿族和易解石族矿物特征.中国稀土学报,1987,5(3):1~7
    [93]Klee W E, Weitz G. Infrared Spectra of Ordered and Disordered Pyrochlore-Type Compounds in the Series RE_2Ti_2O_7, RE_2Zr_2O_7, and RE_2Hf_2O_7. J. Inorg. Nucl. Chem., 1969, 31 (8):2367~2372
    [94]杨学明,张培善,詹旺龙.锆石结构α衰变损伤的红外光谱效应.科学通报,1990,35(13):1005~1007
    [95]杨学明,张培善,陶克捷.浅变生褐钇矿的高温相变研究.科学通报,1993,38(14):1298~1301
    [96]孙未君,马凤俊,庄世杰.β-钕褐钇铌矿(Fergusonite-beta-Nd).地质科学,1983,(1):78~81
    [97]郭其悌,王一先.褐钇铌矿族矿物的研究.地球化学.1973,(2):86~92
    [98]Porto S P S, Scott J F. Raman Spectra of CaWO_4, CaMoO_4, and SrMoO_4. Physical Review, 1967, 157:716~719
    [99]Griffith W P. Raman Studies on Rock Forming Minerals Part Ⅱ, Minerals Containing MO_3, MO_4 and MO_6 Groups. J. Chem. Soc., 1970, A2:286~291
    [100]Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4th Ed. New York: John Wiley & Sons, 1986:137~138
    [101]Ramakrishnan V, Aruldhas G. The IR and Raman Spectra of Tb_(0.2)Dy_(0.9)Gd_(0.9)(MoO_4)_3. Infrared Phys., 1986, 16:93~96
    [102]陈海燕.干福熹.含Nb_2O_5玻璃的拉曼光谱.硅酸盐学报.1984.12(3):385~386
    [103]Imbushch G F. Luminescence Spectroscopy, ed. Lumb M D. London: Acad. Press, 1978:1~89
    [104]陶克捷,张培善.变生易解石的特性.岩石矿物学杂志,1994,13(1):67~77
    [105]蔡根庆.富钆镝易解石的发现.矿物学报,1987,7(1):66~73
    [106]陈德潜,尹道玲,周剑雄等.钇易解族的端员——钛钇易解石的发现.地质论评,1994,40(1):82~86
    [107]齐玲仪.易解石-钇易解石族的新变种——钛钇矿.地质学报,1974,48(1):91~94
    [108]西门露露,贾春林,丁孝石.钇易解石的高分辨电子显微学研究.矿物学报,1990,10(2):97~101
    [109]Headley H J, Ewing R C. Amorphous Structure of Metamict Minerals Observed by
    
    TEM. Nature, 1981, 293(5832):449~450
    [110]贡传亮,史国顺,孙文华等.易解石族矿物变生非晶态的高温X射线衍射和高温透射电镜的研究.矿物学报,1992,12(2):120~126
    [111]Repelin Y, Husson E, Brusset H. Etude Par Spectroscopies D'absorption i.r. et Diffusion Raman des Composés A~(11)Bv~2O_6 de Structure de Type "blocs 1×2"—Ⅰ. Etude du Niobate de Baryum BaNb_2O_6. Spectrochimica Acta, 1979, 35A:937~948
    [112]张如柏,韩凤鸣.阿尔泰202号伟晶岩脉中的富钍独居石.矿物学报,1983,3(4):313~317.
    [113]于桂梅,赵良超.我国首次发现的钕独居石.矿物学报,1988,8(1):25~30.
    [114]Black L P, Fitzgerald J D, Hareley S L. Pb Isotopic Composition, Colour, and Microstructure of Monazites from a Polymetamorphic Rock in Antarctica. Contrib Mineral Petrol, 1984, 85:141~148
    [115]Copeland P, Parrish R R, Identification of Ingerited Radiogenic Pb in Monazite and its Implications for U-Pb systematics. Nature 1988, 333:760~763
    [116]Karioris F G, Appaji Gowda K, Cartz L, Heavy Ion Bombardment of Monoclinic ThSiO_4, ThO_2, and Monazite. Rad. Eff. Lett. 1981,58:1~3
    [117]Bemstein L R. Monazite from North Carolina Having the Alexandrite Effect. Mineralogical Society of America, 1982, 67:356~359
    [118]Meldrum A, Wang L M, Ewing R C, Ion-beam-induced Amorphization of Monazite. Nucl. Instr. Meth. Phy. Res, 1996, B116:220~224
    [119]Meldurm A, Boatner L A, Ewing R C. A Comparison of Radiation Effects in Crystalline ABO_4-type Phosphates and Silicates. Mineral Mag. 2000,64:183~192
    [120]Nasdala L, Finger F, Kinny P, Can Monazite Become Metamict? Eur. J. Mineral, 1999, 11:164
    [121]Ni Y, Hughes J M, Mariano A N, Crystal Chemistry of the Monazite and Xenotime Structures. Am. Mineral, 1995, 80:21~26
    [122]Parrish R R U-Pb Dating of Monazite and its Application to Geological Problems. Canadian J. Earth Sci., 1990,27:1431~1450
    [123]何作霖.绥远白云鄂博稀土类矿物初步研究.中国地质学会会志.1935,14(2):279~282
    [124]司幼东.青岛海滨砂矿的地质来源、矿物组成及工业意义.山东大学校刊,1950:13~15
    [125]中国科学院地质研究所.中国铌钽稀土矿床矿物及地球化学.北京:中华人民共和
    
    国科学技术委员会出版.1963:156~166
    [126]中国科学院地质研究所.富钟贺矿物志.北京:科学出版社,1965:76~83
    [127]中国科学院地球化学研究所.华南南部花岗岩类地球化学.北京:科学出版社,1978:129~150
    [128]中国科学院地球化学研究所.西藏南部花岗岩类地球化学.北京:科学出版社,1982:65~69
    [129]Hezel A, Ross S D. Forbidden Transitions in the IR spectra of Tetrahedral Anions. Ⅲ. Spectra-structure Correlations in Perchlorates, Sulphates and Phosphates of the Formula MXO_4. Spectrochim. Acta, 1966, 22:1949~1961.
    [130]杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社,2000:367.
    [131]Zaitsev E, Menshikov Y P, Polezhaeva L I, et al. New Mineralogy of Karelian-kola Region. Science Centre of the USSR AS, Petrozavodsk, 1990:76
    [132]杨学明,杨晓勇,陈双喜等.白云鄂博钡稀土氟碳酸盐矿物的新产状及其矿物学特征.科学通报,1999,44(9):984~989
    [133]杨主明.氟碳铈钡矿Ba_3Ce_2(CO_3)F_5晶体结构重测.地质科学.1996,31(2):140~146
    [134]杨学明,张培善,陶克捷等.白云鄂博稀土氟碳酸盐矿物的共面网定向附生结构.科学通报,1998,43(2):209~212
    [135]沈今川,宓锦校.对于氟碳钡铈矿(Cordylite-Ce)成分成结构的质疑.岩石矿物学杂志.1992,11(1):69~74
    [136]杨主明.黄河矿—中华铈矿系列稀土矿物的多体性特征.中国稀土学报,1998,16(2):97~99
    [137]千金子.黄河矿超结构的测定.物理学报,1982,31(5):577~583
    [138]Sadtler Research Laboratories, Inc. Raman Spectra. USA:Sadtler Research Laboratories, Inc. 1976, 6:2001R

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700