用户名: 密码: 验证码:
稀土材料开发中放射性钍的迁移规律及其对人体所致辐射剂量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土是中国重要的矿产资源,其储量和稀土材料产品年出口量均居世界第一位。各类稀土矿均伴有天然放射性核素,在开采、冶炼和加工过程中,放射性核素被富集和贫化,稀土材料中的放射性核素的含量高低是影响产品能否为人类友好使用和是否能出口的一个重要因素。我国的稀土产品在世界市场占有率达70%,加入WTO以后,如何使稀土材料中的放射性水平符合国际标准,为我国稀土材料产品的开发利用和出口贸易“保驾护航”,显得十分紧迫。近年来,一些企业的稀土材料在出口贸易中遇到放射性水平不符合国际标准的麻烦,给企业造成了巨大的经济损失。因此,放射性核素在产品中的分布及其在环境介质中的迁移研究是当前物理与化学和环境科学的一个热点课题。
     由于稀土矿产地不同,稀土材料加工工艺上的差别,导致稀土材料产品中的放射性核素含量不同。同时废气、废水和固体废物中的放射性核素可能对环境造成放射性污染给人类带来危害。全国一些地区的稀土开发利用企业曾发生过放射性污染事件,对厂址周围公众健康造成了一定的影响,因此,国内外学者对稀土材料产品中的放射性分布和废弃物中的放射性核素向农作物的转移,而最终造成对人体健康的影响机制及其规律研究尤为关注。
     本研究工作针对我国的现状,调查了全国稀土开采冶炼加工企业62家,监测样品850多个,获得数据2220个。然后对稀土矿在开发利用过程中的放射性钍的迁移规律及其对人体辐射剂量进行了比较深入的研究:因此,本篇论文的研究结果可为放射性核素在产品中的分布及其在环境介质中的迁移和人体辐射影响的进一步深入研究,奠定理论和实验基础,既有重要的科学技术意义,又有保护环境、保护土壤、保护农作物、保护人类健康的实际意义;同时可为我
Rare-earth ore is one of the most important minerals resources in China. The quantities of reservation and export are the first in the world which make the marketing possess ratio over 70%. Rare-earth ore is usually accompanied by different natural radioactivity nuclides. The radioactivity nuclides is extracted in the progress of collected, melted and processed. The content of radioactivity is an important factor of export and application. After the entrance of the WTO, it become urgent and necessary for our export trade to make the radioactive level of the rare-earth materials meet the international standard. Recently, many Chinese enterprises had suffered great loss because of the above-mentioned reason. So the transfer of radioactive nuclides in products and environmental media becomes one of most important problems in environmental sciences and physics as well as chemistry.Due to the difference of source and treating process, the concentration of radio-nuclides in rare-earth materials vary greatly. At the same time, the radio-nuclides in the waste gas, water and solid discharge can pollute the environment and threaten the health of the human being. There are reports on radio-nuclides pollution cases during the extracting and refining process of rare-earth materials in China. So scholars all over the world pay special attention to the study of the regular and mechanism on human health, that come from the transfer of
    radio-nuclides.We have investigated sixty two factories and analyzed about 850 samples to get 2220 data. We have carried out the profound the works focused on the transfer regulation of radio-nuclides and the radiation dose on human being. Therefore, the results of the research are foundation on theory and application in distribution of radio-nuclides in products and migration in environment medium as well as radiation impact of the public. The conclusions is of important scientific significance and application value in environment protection, quality controlling, soil protection and human health. At same time, the results supply theory and technical inquirment for exploring enriches Rare-earth resources properly, and promotes development of economy in our country.1) Determine the concentration of radio-nuclides and the radio level of total a、 total a in rare-earth mine、 rare-earth material products and its exhaust gas、 waste water、 solid discharges by using the Neutron Activation Analysis and a spectrum Analysis. The results indicate that in Panxi area, Sichuan, the natural thorium series is dominating the radio-nuclides in rare-earth mine. The concentration of radio-nuclides of Uranium series is lower about 12 times than that of Thorium series, while the ratio is 18 in Baotou area.2) Study the distribution of the radioactive material and its physical and chemical property in the acid processing of Rare-earth mine, and get processes of chemical reaction and processing condition by using Primary amine resins to separate Thorium. Molecule structure of Thorium is the difference in Rare-earth materials due to the difference of processes. The molecule structure of Thorium among product, solid waste, wastewater and mine are ThO2,ThCl4, Th(SO4)2·Na2(SO4)·6H2O, Th(OH)2, respectively. The concentration ratio of RECI3, REO, RE-ALLOY are (0.01~4.10)×103Bq.kg-1(0.09~2.86)×103Bq.kg-1 and
    (1.42-9.82) ×103Bq.Kg-1, respectively.The results show that separation ratio of Thorium is 90% by using Primary amine resins to separate Thorium. The process can decrease greatly radiation effect on human health and environment.3) Study the radionuclides distribution regulation in Rare-earth materials during mining, extracting and refining process to get the transfer coefficient of thorium. The results show that the transfer regulation of Thorium in the waste from Rare-earth mine exploring in Baotou area, Neimenggu province is:84.5% into mill tailing and 14.46% into the solid wastes, 0.92% into the slag.·0.06% into the air and 0.06% into the waste water.The transfer regulation of Thorium with acid-method in Rare-earth mine exploring in Panxi area, Sichuan province is:·0.08% into the waste water, 1.03% into the air and 1.98% into the the slag.·87.39% into the solid discharges and 9.52% into the products.4) Immersed experiment was done to study desorption from Rare-earth waste solid The results show that concentration of Thorium in water is more than 1Bq.kg-1 between 1day and 11 day. Modeling raining experiment was done to get the desorption coefficient of Thorium is 7.11 × 10-4 kgl-1 .Thorium releasing into water from one-kilogram waste solid is 40Bq.5) The adsorption coefficient and migration velocity of Thorium on various soil are difference. The result shows that the adsorption coefficient of Thorium is between 345.21 and 587.92.6) Get the transfer coefficient of thorium from soil to crops based on detecting the radioactive level of the soil near the factories. The
    transfer coefficient is (0. 4-11. 0) × 10-1.7) Build up the model to assess the radioactive level of the public through food chain and calculate the dose in the occupational operator and the public. The result shows that the maximum dose of the radioactive Thorium to the occupational worker is 1.74~11.50mSv.a-1 while 0.24~1.40mSv.a-1 to the public in the near area of Rare-earth material producing factories, which is higher than the public dose limit (1mSv.a-1).8) Propose the treatment of the radioactivity and suggest the pollution control method.
引文
[1] Achim Albrech, et al. Journal of Environmental Radioactivity, 59(2002): 239-350.
    [2] O·Sigmarsson, et al. Earth and planetary Science Letters 196(2002): 198-196.
    [3] K·Bunzl, M. Trautmannsheimer. The Science of the Total Environment 231(1999): 91-99
    [4] A·MARTINEN-AGUIRRE, et al. Application Radiation Isotope. 47(1996): 1103-1108.
    [5] Elena Korobova. ~(137)Cs and ~(90)sr mobility in soils and transfer in soil-plant systems in the affected by the Chernobyl accident. Applied Geochemistry, 1998, 13(T): 803-814
    [6] p. Blanco Rodriguez~a, F. Vera Tome~-, J. C. L ozano~b. About the assumption of linearity in soil to plant transfer factors for uranium and thorium isotopes and ~(226)Ra·The Science of the Total Environment284(2002)167-175
    [7] T. Ban-nai, Y. muramatsu. Transfer-factor of radioactive Sc, Sr, Mn, Co and Zn from Japanese soils to root and Leaf of radish. Journal of Environmental radioactivity 63 (2002) 251-264.
    [8] 王兰新.当前我国放射性核素迁移的实验研究·化学研究与应用,1998,10(6)573-576
    [9] 孙荣印.辐射防护·1990,10(4):286
    [10] 庄慧娥.原子能科学技术·1987,21:309
    [11] 庄慧娥.原子能科学技术·1987,22:404
    [12] 叶明吕,陆誓俊等.核化学与放射性化学·1993,15(2):88
    [13] 叶明吕,陆誓俊等.核技术,1996,19(3):176
    [14] 秦苏云等.辐射防护,1995,15(4):241
    [15] Gerzadk Martin. 11etal, Ecosysofzs-4563:1990
    [16] 刘锡岱等,辐射防护,1983,3(3):211
    [17] 周琦.几种核素在土壤中的分布及其向主要农作物的转移研究,四川大学硕士论文,1999.
    [18] 徐光宪主编,稀土(φ)[M],北京:冶金工业出版社,2002,409~412
    徐光宪主编·稀土,上册·北京:冶金工业出版社,2002,8.第3次印刷。
    [19] K. A. Gschneidner, Jr(ed), Industrial Applications of Rare Earth Elements, American Chemical Society, Washington, D. C, 1981: 75-166, 3-17.
    [20] 王素毅主编·稀土常用辞典·全国稀土信息网·包头·2001
    [21] 中国科学院地球物理研究所等编著·辞海,理科分册(下)·上海:辞书出版社,1978,3.第1版.
    [22] 袁忠信,白鸽·矿床地质·1990,10(1):1,59.
    [23] 张培善,陶克捷编著.白云鄂博矿物学·北京:科学出版社,1978,第1版.
    [24] 《稀土信息》编写组编著·稀土信息.1990,1991.
    [25] 红枫·世界有色金属·1989,国庆专刊.
    [26] 帅震清,赵亚民、赵永明等·伴生放射性矿物资源开发利用中放射性污染现状与对策研究·辐射防护通讯,2001,21(2):3-7.
    [27] 中华人民共和国国家标准:电离辐射防护与辐射源安全基本标准·GBl8871-2002.
    [28] 汪新福、朱光华、沈新尹,颗粒物滤膜样品微量元素浓度的中子和活化分析,核技术,2001,24(4):283-287
    [29] 赵淑权、江俭玲、陈正国等用半导体γ谱仪分析放射性核素的含量。原子能科学技术·1992,26(3)=P21-27.
    [30] 古当长·放射性核素活度测量的方法和技术、科学出版社·北京 1994,262-272.
    [31] 复旦大学、清华大学、北京大学合编,原子核物理实验方法,原子能出版社·北京1997,6-16.
    [32] 钱绍圣·测量不确定度·清华大学出版社·北京·2002.
    张国成,等·中国金属学会1980年论文摘要汇编·1980,北京.
    [33] HJ/T61;2001《环境监测技术规范》。
    [34] 张国成,等·中国金属学会1980年论文摘要汇编·1980,北京.
    [35] 西村新一,(新版)三岛良绩力监修,新金属协会,东京都,1989,60.
    [36] A·E·Bearse, et al: Chem. Eng., 1954, 5(50): 235.,
    [37] 董一诚,等·钢铁·1983,(12):43.
    [38] 强亦忠主编.简明放射化学教程.北京:原子能出版社,1999,6.第1版。
    [39] 复旦大学、铀钍工艺过程化学·上海人民出版社·1976.
    [40] 陆九芬、分离过程化学、清华大学出版社·北京.1993.
    [41] 薛华、李隆弟、郁鉴源等,分析化学,清华大学出版社,北京。
    [42] 张林,光谱实验室,1993,10(5):43-45。
    [43] 张生禄,分析化学,1984,12(2):130-131。
    [44] 大野泰雄,高分子物质的精制与化学反应,上海科技出版社,1980。
    [45] 钱国强、林雪、杨益忠等,离子交换与吸附,1995,11(1):45-53。
    [46] 王少雄,有机合成,北大出版社,1982。
    [47] 卢希庭主编.原子核物理,北京:原子能出版社,19881,32
    [48] 汲长松,核辐射探测器及其实验技术手册,原子能出版社,北京,1990年,16.
    [49] UNSCEAR·Sources and Effects of Ionizing Radiation UNSCEAR 2000 Report to the General Assembly, ANNEX E·New York: United Nations Publication, 2000. [z]Volume: sources. 114.
    [50] 王素毅,稀土常用辞曲,全国科土信息网,包头,2001年,18-54。
    [51] 邱平善、王桂芳、郭立伟,材料近代分析测试方法实验指导,哈尔滨工程大学出版社,哈尔滨,2001,124-136。
    [52] 赵澡潘、周情尧、张悟铭等,仪器分析,高等教育出版社,北京,1999年,207-218。
    [53] 四川大学,现代材料分析技术,341—377。
    [54] 中科院高能所·中子活化分析在环境生物学和地学中的应用·北京:原子能科学出版社,1992第一版.
    [55] UNSCEAR·Sources and Effects of ionizing Radiation·UNSCEAR 1982 Report to the General Assembly, Annex E. New York: United Nations publication, 1982.
    [56] 核素名表编制组编,核素常用数据表,北京,原子能出版社,1997,257-352.
    [57] 陈智主编·过渡元素化学·北京:原子能出版社,1990,6.第1版.
    [58] 牟保磊,元素地球化学·北京:北京大学出版社,1999。
    [59] 温维辉,稀土加工项目的环境影响.中国辐射卫生·2003,22(2):125。
    [60] 中华人民共和国国家标准:放射性废物的分类·GB9133-1995.
    [61] 中华人民共和国国家标准:污水综合排放标准·GB8978-1996.
    [62] 万荣生,镧产品中放射性与氯化稀土矿源的关系分析,中国辐射性,2004,13(2):96-98。
    [63] 赵淑权等·稀土产品放射性的分析与思考·中国辐射卫生·2003,12(2):134.
    [64] 赵淑权等·离子吸附型稀土矿放射性研究·中国辐射卫生·2000,9(1):85.
    [65] 吴新生,中子活化分析在煤质分析中的应用.核技术·2001,24(4):264~267
    [66] 核素名表编制组编,核素常用数据表,北京,原子能出版社,1997,257-352.
    [67] 李书鼎,污染生态物理化学,中国环境科学出版社·2002.
    [68] V. K. b. A winkler and E. Butow. Experiment investigation and modeling of the migration of radionuclides from the Ellweiler Uranium mill tails Radiochemistry Acta. 1992, 58(59): 447-451
    (69) S. Staunton, Adsorption of radiocaesium on various soils: Interpretation and consequences of the effects of soil: solution ratio and solution composition on the distribution coefficient. Eur. J. soil science, 1994(45): 409.
    [70] N. J. Barrow, J. W. Bowden, A. M Posner, J. P. Quirk, Describing the absorption of copper, zinc and lead on a variable charge mineral surface. Aust. J. soil, res., 1981(19): 309.
    [71] 马腾,淋滤作用影响放射性核素在浅层地下水系统中迁移的反应运耦合模拟·中国地质大学博士学位论文,2000.
    [72] T. E. Payne and T. D. Waite. Surface complexion modeling of uranium sorption data obtained by isotope exchange techniques, Radiochemistry Acta, 1991, 52/53: 487-493.
    [73] Y. Fujikawa, M. Fukui, Radionuclides sorption to rocks and minerals: Effects of pH and inorganic anions partl. sorption of cesium, cobalt, strontium and manganese radio chemical Acta., 1997(76): 153-162.
    [74] Janet G Hering and Stephan Kramer. Kinetics of Complication reaction at surfaces and in solution implication For enhanced radionuclides migration. Radiochemistry Acta. 1994. 66(67): 63-71
    [75] G. Sposito, The surface chemistry of soil solution, Oxford Clarendon Press, New York 1984: 223.
    [76] Hayes K. F., Redden G. G., Elaw. and Leckie J. O. surface complexion models: An evaluation of model parameter estimation using FITEQL and oxide mineral titration data, J. colloid interf. science, 1991, 142: 448-469.
    [77] Robekfo T. P abalan and David R. Turner. Uranium sorption on montmorillonite: experimental and surface complexion modeling study. Aquatic Geochemistry, 1997, 2: 203-226.
    [78] J. Westall, Adsorption mechanisms in aquatic surface chemistry. in: Aquatic surface chemistry. John Wiley and Sons, New York. 1987: 520.
    [79] V. Jedinakova-krizova, Migration of radio nuclides in the environment J. Radiation and. nuclear chemistry. 1998, 229(1-2): 13
    [80] 徐世明等,钴-60在小麦、油菜、玉米中的吸收累积和迁移规律,核农学通报,1996,17(6):283-285。
    [81] 杨勇,苑国琪,张东,四川环境,2004,23(3):85-89。
    [82] 四川土壤普查办公室,四川省农业厅,四川土壤普查数据资料,成都1991。
    [83] 金相灿、沉积物污染化学、中国环境科学出版社、北京1992.
    [84] 钱庭荣,等·废水中铀、钍、镭在水稻中的转移规律·中华放射医学与防护杂志·1982,2(2):60-63.
    [85] 孙志明,陈传群,王寿祥等,放射性钴在模拟水稻田中的迁移模型。
    [86] 李德成等、铈在不同土壤中的吸附、解吸动力学研究.环境科学学报.2000,20(6):549-551.
    [87] Davis PA Avadhanula Mancio D, Carboneras P, coughtrey P, b IOMOVS 11: An international test of the performance of environmental transfer models. J Environmental Radioactivity 1999: 42: 117-130.
    [88] Markose PM, Bhat IS, Pillai KC. Some characteristics of ~(226)Ra transfer from soil and uranium mill tailings to plants. J Environment Radioactivity 1993, 21: 132-142.
    [89] Martine Z-Aguirre A., Garcia-Leon M. and Ivanovich M. The distribution of U,. Th and ~(226)Ra derived form the phosphate fertilizer industries on an estuarine system in southwest Spain J. Environment Radioactivity. 1994, 22: 155.
    [90] Tracy B, L., PrantI E A. and Quinn J. M. Transfer ~(226)Ra, ~(210)pb and U from soil to garden produce, assessment of risk. Health Physics. 1983, 44, 469.
    [91] Tracy BL, Prantl FA, Quinn J M. Transfer of ~(226)Ra, ~(210)pb and U from soil to
    [92] Vera Tome F, Blance Rodrigue Z P, Lozano JC. Distribution of U, Th and ~(226)Ra in the plant-soil comportments of a mineralized Uranium area in the south-west of Spain. J Environment Radioactivity 2001(in press).
    [93] 内田滋夫,Radioisotopes,1987,36(7),323.
    [94] 内田滋夫,Radioisotopes,1987,36(12),623.
    [95] T·E·Myrick, etal; Health Physics, 1991, 60(4): 575.
    [96] F·R·Livens, etal; Health Physics, 1991, 60(4): 575.
    [97] Nishita·H, etal; PB-287431.
    [98] Mistry·K·B, etal; Health Phys, 1965, 11(12):; 1459.
    [99] R·G·Schrockise, etal; Health Pays, 1978, 35(6): 920.
    [100] 夏元初,等·磷肥中天然放射性核素在土壤和水稻中的吸收与转移·中华放射医学与防护杂志·1982,2(3):56-60.
    [101] Bear J. Verruijt A. Modeling Groundwater. Flow and Pollution [M]. Holland. Dordrencht, 1987: 174-177.
    [102] Frind, E. O, etal Modeling of multicomponent transport with microbial transformation on groundwater, the Fuhrbrey case, water Resources Research, 1990, 26(8): 1708-1719.
    [103] O. Zitzsche, B, Merkel and C. Helling, Reaction transport modeling of primordial nuclides in groundwater. In B. Merkel, S. Hurst, E. P. Lohnert @W.struckmerier eds. Geo. Congress 1.proceedings of the International Conference and workshop, 1995, 10: 407-424.
    [104] Grcy R. Aherl., Jenny B. C. etal.. Modeling groundwater flow and radioactive transport in a fractured aquifer, Groundwater. 1999, 37(5): 770-784.
    [105] Wishire H. G., Fried man I., contamination migration at two low-level radioactive waste site in arid western United States a review. Environmental Geology, 1999, 37(1-2): 112-123.
    [106] 陈式、马明燮等,中低水平放射性废物的安全处置,原子能出版社,北京,1998.
    [107] 程杰,张本主编·黄河水系放射性水平调查与卫生学评价·济南:黄河出版社,2000,4,第1版。
    [108] UNSCEAR·Sources and Effects of Ionizing Radiation UNSCEAR 1993 Report to the General Assembly, ANNEX E·New York: United Nations Publication, 1993.
    [109] 帅震清等·核动力工程·核电工程环境保护类微机程序色开发设计综述·3(21):216-220
    [110] 帅震清主编·辐射危害与防护及日本环境保护·北京:中国环境科学出版社,2001.11.第1版.
    [111] User's Manual for Ladtap Computer Program for Calculating Radiation Exposure to Man from Routine Release of Nuclear Reactor Liquid Effluents, NUREG/CR-1276.
    [112] 帅震清等·核动力工程·稀土湿法生产过程中放射性核素的迁移及对公众所致剂量研究·2003,6(24):593-596
    [113] 刘玉兰等,我国食品和饮水中放射性核素水平调查·中华放射医学与防护杂.1998,8(增刊):1—14.
    [114] 清华大学,辐射防护概论.北京 2003:105-116.
    [115] 李星洪等,辐射防护基础,原子能出版社,1982:193-204.
    [116] UNSCEAR. Sources and Effects of Ionizing Radiation UNSCEAR 2000 Report to the General Assembly, Annex E. New York: United Nations publication, 2000.
    [117] ICRP. Recommendations of the International commission on Radiological protection. ICRP publication 60.Annuals of the 1CRP, 1990.
    [118] 陈兴安·IAEA高水平天然辐射工作场所职业防护条件评估技术委员会会议概况·辐射防护通讯·2001,5(21):45-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700