用户名: 密码: 验证码:
碱土—稀土氟化物溶剂热合成中显微组织与发光性能的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土掺杂纳米材料具有独特的发光和磁性质,在发光、颜色显示、防伪、生物大分子检测、生物荧光成像、生物分离和磁共振成像等方面应用前景广阔。寻找新的发光基质材料并研究其可控合成,得到满足各种应用需求的稀土掺杂纳米材料具有重要的学术价值和现实意义。碱土-稀土氟化物在高温下具有丰富的相组成,但对其低温相组成和纳米晶的可控合成还缺乏系统研究。本文以几种典型的碱土-稀土氟化物为研究对象,系统研究了在低温溶剂热合成时,稀土元素含量、反应条件对产物相结构、晶粒尺寸及形貌的影响,并对所获得的纳米晶的发光性能进行了研究。主要研究内容及结论如下:
     1.低温溶剂热合成条件对SrF_2-LaF_3体系反应产物的相组成、晶粒尺寸及形貌的影响,纳米晶发光性能的调控。研究结果表明:采用低温溶剂热合成法制备的产物的相组成取决于SrF_2-LaF_3体系的成分,名义成分为Sr_(1-x)La_xF_(2+x)(原子百分数,at.%,以下相同)的产物,在0≤x<0.35、0.35≤x≤0.9和0.9     2.低温溶剂热合成条件对BaF_2-LuF_3体系反应产物的相组成、晶粒尺寸及形貌的影响,纳米晶发光性能的调控。研究结果表明:以NH_4F为氟源时,可得立方相的BaF2和Ba_(1-x)Lu_xF_(2+x)、单斜相的BaLu2F8和立方相NH_4Lu2F8,其中得到纯立方Ba_(1-x)Lu_xF_(2+x)相的体系成分范围很窄,在x=0.40左右;当反应体系中加入NaOH后,反应产物包括立方相的BaF2和Ba_(1-x)Lu_xF_(2+x)、单斜相的BaLu4F14、六方相的Ba7F12Cl2和NaLuF4,其中获得纯立方相Ba_(1-x)Lu_xF_(2+x)的体系成分范围扩大,在0.30     3.低温溶剂热合成条件对SrF_2-LuF_3体系反应产物的相组成、晶粒尺寸及形貌的影响,纳米晶发光性能的调控及其表面改性。研究结果表明:以HF为氟源、不加NaOH时,名义组成为Sr_(1-x)La_xF_(2+x)的产物在0     4. BaF_2-GdF_3体系超细单分散碱土-稀土氟化物纳米晶的成核生长机制研究。研究结果表明:采用低温溶剂热合成法,可制备出名义为Ba_(1-x)Gd_xF_(2+x)的纳米晶,该纳米晶在0.5≤x≤0.8成分范围内具有纯立方相结构,并通过优化合成条件,其晶粒尺寸可以控制在10nm以下;由于在溶剂热反应体系中,GdF3的溶度积常数极低,导致含有Gd的Ba_(1-x)Gd_xF_(2+x)在结晶过程中更易均匀形核,同时,Ba_(1-x)Gd_xF_(2+x)固溶体中还存在大量缺陷能阻碍晶粒生长,因而Ba_(1-x)Gd_xF_(2+x)在溶剂热合成时更易获得超细单分散的纳米晶。
Due to their unique luminescent and magnetic properties, upercopnversionluminescent nanomaterials doped with rare-earth have a lot of potential applications inthe fileds of luminescence, laser anti-counterfeit, display, detection of biologicalmacromolecules, biological fluorescence imaging and bioseparation and magneticresonance imaging. Therefore, seeking new photoluminescent materials anddeveloping new ways to realize the controlled synthesis of the nanomaterial are veryimportant to meet various requirements of their applications. According to the phasediagram of alkaline earth-rare earth fluoride systems, there exisit aboundance phasesat high temperature in these systems. However, up to date, the systematic work on thephase consititions and the controlled synthesis of these systems at low temperature islacking. Therefore, in the thesis, several typical alkaline earth-rare earth fluorideswere synthesized using solvothermal method at low temperature. The influences of Lncontent and reaction conditons on the phase structure, grain size and morphology ofthe products were studied systematicly, and the upconversion emission properties ofthe synthesized ultra-fine monodisperse nanocrystals were also investigated. The maincontents and results are as follows:
     1. The study on the effects of the reaction conditions on the phase consitutions,grain size and morphology of the reaction products in SrF_2-LaF_3system by usingsolvothermal method, and the multicolor upconversion emission behaviors of thenanosized SrF_2-LaF_3products. It is found that, the phase consititutions of the reactionproducts of Sr_(1-x)La_xF_(2+x)obtained by solvothermal method are strongly dependent onthe fluorides, the cubic phase, mixtures of cubic and hexagonal phases, and hexagonalphase can be obtained in Sr_(1-x)La_xF_(2+x)as its composition is in the range of0≤x<0.35,0.35≤x≤0.9, and0.9     2. The study on the effects of the reaction conditions on the phase consitutions,grain size and morphology of the reaction products in BaF_2-LuF_3system by usingsolvothermal method, the multicolor upconversion emission behaviors of thenanosized BaF_2-LuF_3products. By using NH_4F as fluorine source in the solvothermalreaction sytem of BaF_2-LuF_3, the products containing cubic BaF2and Ba_(1-x)Lu_xF_(2+x)phases, monoclinic BaLu2F8and cubic NH_4Lu2F8phases were succefully synthesized.However, to obtain the Ba_(1-x)Lu_xF_(2+x)with pure cubic structure, the compostion of theflorides should be controlled around x=0.40. By addiing NaOH into the reactionsystems, the products containing cubic BaF2and Ba_(1-x)Lu_xF_(2+x)phases, monoclinicBaLu4F14phase, and hexagonal Ba7F12Cl2and NaLuF4phase can be obtained, and thecompostion of the fluorides to obtain pure cubic Ba_(1-x)Lu_xF_(2+x)phase is expended to bein the range of0.30     3. The study on the effects of the reaction conditions on the phase consitutions,grain size and morphology of the reaction products in SrF_2-LuF_3system by usingsolvothermal method, the multicolor upconversion emission behaviors of thenanosized SrF_2-LuF_3products, and surface modifaction of the products. By usingsolvothermal method under low temperature in the SrF_2-LuF_3reaction systemswithout NaOH containing, the products of Sr_(1-x)Lu_xF_(2+x)contain the mixtures of cubicSrF2and Sr_(1-x)Lu_xF_(2+x)phases, the pure cubic Sr_(1-x)Lu_xF_(2+x)phase, and the mixtures ofcubic Sr_(1-x)Lu_xF_(2+x)and orthogonal LuF3phase as its composition is in the range of0     4. The study on the nucleation and growth mechanism of the ultrasmllmonodisperse alkaline earth-rare earth fluoride nanocrystals in BaF_2-GdF_3system. Byusing solvothermal method, the products of Ba_(1-x)Gd_xF_(2+x)with pure cubic structure canbe synthesized at190C as its composition is in the range of0.5≤x≤0.8, and the grain size of the products is less than10nm. Under the same conditions, the Ba_(1-x)Gd_xF_(2+x)products with the composiotn in the range of0.5≤x≤0.8show a grain size far smallerthan that of pure phase BaF2and GdF3. It is found that GdF3has an extremely lowsolubility product constant in H2O solution in comparison with BaF2and there exist alarge amount of defects in cubic Ba_(1-x)Gd_xF_(2+x)non-stoichiometric phase, which may beresponsible for the ultrafine grain size of Ba_(1-x)Gd_xF_(2+x).
引文
[1] G. H. Dieke, H. M. Crosswhite, The spectra of the doubly and triply ionized rare earths [J].Applied Optics,1963,2(7):675-686.
    [2]洪光言,稀土发光材料-基础与应用[M].北京:科学出版,2011.
    [3]李晓丽,刘跃,张忠义,我国稀土发光材料产业现状与展望[J].稀土,2007,28(2):90-94.
    [4]张希艳,卢利平,柏朝晖,稀土发光材料[M].北京:国防工业出版社,2005.
    [5] N. Bloembergen, Solid state infrared quantum counters [J]. Physical Review Letters,1959,2(3):84-85.
    [6] F. E. Auzel, Materials and devices using double-pumped-phosphors with energy transfer [J].Proceedings of the IEEE,1973,61(6):758-786.
    [7] F. E. Auzel, Upconversion and anti-stokes processes with f and d ions in solids [J]. ChemicalReviews,2004,104(1):139-174.
    [8] F. Wang, X. G. Liu, Recent advances in the chemistry of lanthanide-doped upconversionnanocrystals [J]. Chemical Society Reviews,2009,38(4):976-989.
    [9] L. J. Zheng, X. Y. Gao, H. L. Liu, et al., The heating effect of the Er3+/Yb3+doped Y2O3nanometer powder by980nm laser diode pumping [J]. Spectroscopy and Spectral Analysis,2013,33(1):151-154.
    [10] P. Zhao, Y. Zhu, X. Yang, et al., Facile synthesis of upconversion luminescent mesoporousY2O3: Er microspheres and metal enhancement using gold nanoparticles [J]. RSC Advances,2012,2(28):10592-10597.
    [11] W. W. Zhang, Y. Q. Gao, X. D. He, et al., Monitoring of laser heating temperature in laserspectroscopic measurements [J]. Optics Communications,2012,285(9):2414-2417.
    [12] M. Rai, K. Mishra, S. K. Singh, et al., Infrared to visible upconversion in Ho3+/Yb3+co-dopedY2O3phosphor: effect of laser input power and external temperature [J]. Spectrochimica ActaPart A-molecular and biomolecular spectroscopy,2012,97:825-829.
    [13] R. Kapoor, C. S. Friend, A. Biswas, et al., Highly efficient infrared-to-visible energyupconversion in Er3+: Y2O3[J]. Optics Letters,2000,25(5):338-340.
    [14] L. Zhou, Z. Gu, X. Liu, et al., Size-tunable synthesis of lanthanide-doped Gd2O3nanoparticlesand their applications for optical and magnetic resonance imaging [J]. Journal of MaterialsChemistry,2012,22(3):966-974.
    [15] H. Guo, N. Dong, M. Yin, et al., Visible upconversion in rare earth ion-doped Gd2O3nanocrystals [J]. Journal of Physical Chemistry B,2004,108(50):19205-19209.
    [16] S. K. Singh, K. Kumar, S. B. Rai, Optical properties and switching behavior in Gd2O3:Er3+nanophosphor [J]. Journal of Applied Physics,2009,106(9):093520,1-6.
    [17] T. Li, K. Beil, C. Kraenkel, et al., Efficient high-power continuous wave Er: Lu2O3laser at2.85μm [J]. Optics Letters,2012,37(13):2568-2570.
    [18] L. Q. An, J. Zhang, M. Liu, et al., Preparation and upconversion properties of Yb3+, Ho3+:Lu2O3nanocrystalline powders [J]. Journal of the American Ceramic Society,2005,88(4):1010-1012.
    [19] F. Vetrone, J. C. Boyer, J. A. Capobianco, et al., NIR to visible upconversion innanocrystalline and bulk Lu2O3+3: Er[J]. Journal of Physical Chemistry B,2002,106(22):5622-5628.
    [20] R. Naccache, F. Vetrone, A. Speghini, et al., Cross-relaxation and upconversion processes inPr3+singly doped and Pr3+/Yb3+codoped nanocrystalline Gd3Ga5O12: the sensitizer/activatorrelationship [J]. Journal of Physical Chemistry C,2008,112(20):7750-7756.
    [21] F. Pandozzi, F. Vetrone, J. C. Boyer, et al., A spectroscopic analysis of blue and ultravioletupconverted emissions from Gd3+3Ga5O12: Tm3+, Ybnanocrystals [J]. Journal of PhysicalChemistry B,2005,109(37):17400-17405.
    [22] A. Brenier, C. Garapon, C. Madej, et al., Excited-state absorption in Tm3+doped LiNbO3-MgO and Gd3Ga5O12and Looping mechanism [J]. Journal of Luminescence,1994,62(3-4):147-156.
    [23] J. A. Capobianco, N. Raspa, A. Monteil, et al., Energy-transfer up-conversion in Gd3Ga5O12:Pr3+[J]. Journal of Physics-Condensed Matter,1993,5(33):6083-6090.
    [24] Z. H. Bai, S. H. Ri, X. Y. Zhang, et al., Preparation of Y2O2S: Er3+,Yb3+and energy split ofEr3+ion [J]. Chinese Journal of Inorganic Chemistry,2012,28(4):674-678.
    [25] M. Xing, W. Cao, T. Pang, et al., Synthesis of monodisperse spherical Y2O2S: Yb, Houpconversion nanoparticles [J]. Solid State Communications,2009,149(23-24):911-914.
    [26] Y. Tang, S. Dai, and Y. Fang, Electron structure and photoluminescence behavior ofTi0.09Y1.91O2S [J]. Journal of Applied Physics,2009,105(3).
    [27] B. F. Lei, Y. L. Liu, G. B. Tang, et al., Upconversion of Y2O2S: Tm, Mg, Ti phosphor and itslong-lasting phosphorescence [J]. Electrochemical and Solid State Letters,2004,7(10): G225-G227.
    [28] S. Lee, K. Teshima, N. Shikine, et al., Fabrication of upconverting YbPO4: Er crystals bynaturally-derived gel growth and subsequent thermal treatment [J]. Crystal Growth&Design,2009,9(9):4078-4083.
    [29] S. Heer, O. Lehmann, M. Haase, et al., Blue, green, and red upconversion emission fromlanthanide-doped LuPO4and YbPO4nanocrystals in a transparent colloidal solution [J].Angewandte Chemie-international Edition,2003,42(27):3179-3182.
    [30] A. Rapaport, V. David, M. Bass, et al., Optical spectroscopy of erbium-doped lutetiumorthophosphate [J]. Journal of Luminescence,1999,85(1-3):155-161.
    [31] D. Logvinovich, A. Arakcheeva, P. Pattison, et al., Crystal structure and optical and magneticproperties of Pr2(MoO4)3[J]. Inorganic Chemistry,2010,49(4):1587-1594.
    [32] H. L. Jiang, E. Ma, and J. G. Mao, New luminescent solids in the Ln-W(Mo)-Te-O-(Cl)systems [J]. Inorganic Chemistry,2007,46(17):7012-7023.
    [33] A. N. Egorova, M. V. Provotorov, and A. A. Maier, The BaMoO4-La2(MoO4)3system [J].Inorganic Materials,1981,17(7):930-932.
    [34] H. M. Noh, H. K. Yang, B. K. Moon, et al., Effect of Yb3+concentrations on the upconversionluminescence properties of ZrO2:Er3+,Yb3+phosphors [J]. Japanese Journal of Applied Physics,2013,52:01AM02.
    [35] L. Liu, C. Li, X. Zhang, et al., Suppression of energy transfer from Er3+to OH-in Er3+highlydoped zirconia [J]. Optics Communications,2013,287:228-233.
    [36] L. Liu, Y. Wang, Y. Bai, et al., Single band upconversion mechanisms of Er3+/Yb3+: ZrO2nanocrystals [J]. Optics Communications,2012,285(6):1528-1532.
    [37] C. G. Ma, M. G. Brik, W. Ryba-Romanowski, et al., Spectroscopy and calculations for4fN-4fN-15d transitions of lanthanide ions in K3YF6[J]. Journal of Physical Chemistry A,2012,116(36):9158-9180.
    [38] Y. Bai, T. Yang, Q. Gu, et al., Shape control mechanism of cuprous oxide nanoparticles inaqueous colloidal solutions [J]. Powder Technology,2012,227:35-42.
    [39] Y. P. Du, Y. W. Zhang, L. D. Sun, et al., Optically active uniform potassium and lithium rareearth fluoride nanocrystals derived from metal trifluroacetate precursors [J]. DaltonTransactions,2009(40):8574-8581.
    [40] Y. Liu, C. Xu, and Q. Yang, White upconversion of rare-earth doped ZnO nanocrystals and itsdependence on size of crystal particles and content of Yb3+and Tm3+[J]. Journal of AppliedPhysics,2009,105(8).
    [41] L. Li, Y. Yang, M. Zhou, et al., Enhanced performance of dye-sensitized solar cells based onTiO2with NIR-absorption and visible upconversion luminescence [J]. Journal of Solid StateChemistry,2013,198:459-465.
    [42] Y. Ye, E. Liu, X. Hu, et al., Preparation and luminescence properties of Y2O3:Er3+/TiO2withhigh specific surface area [J]. Chinese Science Bulletin,2011,56(25):2668-2673.
    [43] W. Zheng, H. Zhu, R. Li, et al., Visible-to-infrared quantum cutting by phonon-assistedenergy transfer in YPO34:Tm+, Yb3+phosphors [J]. Physical Chemistry Chemical Physics,2012,14(19):6974-6980.
    [44] A. Braud, S. Girard, J. L. Doualan, et al., Energy-transfer processes in Yb:Tm-doped KY3F10,LiYF4, and BaY2F8single crystals for laser operation at1.5and2.3μm [J]. Physical Review B,2000,61(8):5280-5292.
    [45] Y. C. Yan, A. J. Faber, H. de Waal, et al., Erbium-doped phosphate glass waveguide on siliconwith4.1dB/cm gain at1.535μm [J]. Applied Physics Letters,1997,71(20):2922.
    [46] O. M. Kate, H. T. Hintzen, P. Dorenbos, et al., Yb3+doped LaSi3N5and YSi3N5with lowenergy charge transfer for near-infrared light-emitting diode and solar cell application [J].Journal of Materials Chemistry,2011,21(45):18289-18294.
    [47] B. M. van der Ende, L. Aarts, and A. Meijerink, Lanthanide ions as spectral converters forsolar cells [J]. Physical Chemistry Chemical Physics,2009,11(47):11081-11095.
    [48] C. Jacinto, M. Vermelho, E. A. Gouveia, et al., Pump-power-controlled luminescenceswitching in Yb3+/Tm3+codoped water-free low silica calcium aluminosilicate glasses [J].Applied Physics Letters,2007,91(7):071102.
    [49] J. Wang, G. Zhang, Z. Zhang, et al., Investigation on photocatalytic degradation of ethyl violetdyestuff using visible light in the presence of ordinary rutile TiO2catalyst doped withupconversion luminescence agent [J]. Water Research,2006,40(11):2143-2150.
    [50]张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2011.
    [51] M. Bruchez, Semiconductor Nanocrystals as Fluorescent Biological Labels [J]. Science,1998,281(5385):2013-2016.
    [52] W. C. Chan, Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281(5385):2016-2018.
    [53] E. Katz, and I. Willner, Integrated nanoparticle–biomolecule hybrid systems: synthesis,properties, and applications [J]. Angewandte Chemie International Edition,2004,43(45):6042-6108.
    [54] B. Dubertret, P. Skourides, D. J. Norris, et al., In vivo imaging of quantum dots encapsulatedin phospholipid micelles [J]. Science,2002,298(5599):1759-1762.
    [55] X. Wu, H. Liu, J. Liu, et al., Immunofluorescent labeling of cancer marker Her2and othercellular targets with semiconductor quantum dots [J]. Nature Biotechnology,2002,21(1):41-46.
    [56] X. Zhao, From the cover: a rapid bioassay for single bacterial cell quantitation usingbioconjugated nanoparticles [J]. Proceedings of the National Academy of Sciences,2004,101(42):15027-15032.
    [57] A. P. Alivisatos, W. Gu, C. Larabell, Quantum dots as cellular probes [J]. Annual Review ofBiomedical Engineering,2005,7(1):55-76.
    [58] X. Gao, Y. Cui, R. M. Levenson, et al., In vivo cancer targeting and imaging withsemiconductor quantum dots [J]. Nature Biotechnology,2004,22(8):969-976.
    [59] E. B. Voura, J. K. Jaiswal, H. Mattoussi, et al., Tracking metastatic tumor cell extravasationwith quantum dot nanocrystals and fluorescence emission-scanning microscopy [J]. NatureMedicine,2004,10(9):993-998.
    [60] M. Stroh, J. P. Zimmer, D. G. Duda, et al., Quantum dots spectrally distinguish multiplespecies within the tumor milieu in vivo [J]. Nature Medicine,2005,11(6):678-682.
    [61] I. L. Medintz, H. T. Uyeda, E. R. Goldman, et al., Quantum dot bioconjugates for imaging,labelling and sensing [J]. Nature Materials,2005,4(6):435-446.
    [62] A. M. Smith, S. Dave, S. Nie, et al., Multicolor quantum dots for molecular diagnostics ofcancer [J]. Expert Review of Molecular Diagnostics,2006,6(2):231-244.
    [63] X. Gao, L. Yang, J. A. Petros, et al., In vivo molecular and cellular imaging with quantum dots[J]. Current Opinion in Biotechnology,2005,16(1):63-72.
    [64] A. M. Smith, G. Ruan, M. N. Rhyner, et al., Engineering luminescent quantum dots for in vivomolecular and cellular imaging [J]. Annals of Biomedical Engineering,2006,34(1):3-14.
    [65] E. R. Goldman, I. L. Medintz, and H. Mattoussi, Luminescent quantum dots in immunoassays[J]. Analytical and Bioanalytical Chemistry,2005,384(3):560-563.
    [66] H. H. Chen, and K. W. Leong, Quantum-dots-FRET nanosensors for detecting unamplifiednucleic acids by single molecule detection [J]. Nanomedicine,2006,1(1):119-122.
    [67] E. R. Goldman, I. L. Medintz, J. L. Whitley, et al., A hybrid quantum dot-antibody fragmentfluorescence resonance energy transfer-based TNT sensor [J]. Journal of the AmericanChemical Society,2005,127(18):6744-6751.
    [68] D. Chatterjee, A. Rufaihah, and Y. Zhang, Upconversion fluorescence imaging of cells andsmall animals using lanthanide doped nanocrystals [J]. Biomaterials,2008,29(7):937-943.
    [69] J. F. Suyver, A. Aebischer, D. Biner, et al., Novel materials doped with trivalent lanthanidesand transition metal ions showing near-infrared to visible photon upconversion [J]. OpticalMaterials,2005,27(6):1111-1130.
    [70] J. Hampl, M. Hall, N. A. Mufti, et al., Upconverting phosphor reporters inimmunochromatographic assays [J]. Analytical Biochemistry,2001,288(2):176-187.
    [71] F. van de Rijke, H. Zijlmans, S. Li, et al., Up-converting phosphor reporters for nucleic acidmicroarrays [J]. Nature Biotechnology,2001,19(3):273-276.
    [72] R. S. Niedbala, H. Feindt, K. Kardos, et al., Detection of analytes by immunoassay usingup-converting phosphor technology [J]. Analytical Biochemistry,2001,293(1):22-30.
    [73] P. Corstjens, M. Zuiderwijk, A. Brink, et al., Use of up-converting phosphor reporters inlateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test toidentify human papillomavirus type16infection [J]. Clinical Chemistry,2001,47(10):1885-1893.
    [74] M. Zuiderwijk, H. J. Tanke, R. Sam Niedbala, et al., An amplification-free hybridization-based DNA assay to detect streptococcus pneumoniae utilizing the up-converting phosphortechnology [J]. Clinical Biochemistry,2003,36(5):401-403.
    [75] P. Corstjens, M. Zuiderwijk, M. Nilsson, et al., Lateral-flow and up-converting phosphorreporters to detect single-stranded nucleic acids in a sandwich-hybridization assay [J].Analytical Biochemistry,2003,312(2):191-200.
    [76] S. Heer, K. Kompe, H. U. Gudel, et al., Highly efficient multicolour upconversion emission intransparent colloids of lanthanide-doped NaYF4nanocrystals [J]. Advanced Materials,2004,16(23-24):2102-2015.
    [77] J. Shan, J. Chen, J. Meng, et al., Biofunctionalization, cytotoxicity, and cell uptake oflanthanide doped hydrophobically ligated NaYF4upconversion nanophosphors [J]. Journal ofApplied Physics,2008,104(9):094308.
    [78] R. Abdul Jalil, Y. Zhang, Biocompatibility of silica coated NaYF4upconversion fluorescentnanocrystals [J]. Biomaterials,2008,29(30):4122-4128.
    [79] G. S. Yi, H. C. Lu, S. Y. Zhao, et al., Synthesis, characterization, and biological application ofsize-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors[J]. Nano Letters,2004,4(11):2191-2196.
    [80] L. Y. Wang, Y. D. Li, Green upconversion nanocrystals for DNA detection [J]. ChemicalCommunications,2006(24):2557-2559.
    [81] J. Zhou, X. Zhu, M. Chen, et al., Water-stable NaLuF4-based upconversion nanophosphorswith long-term validity for multimodal lymphatic imaging [J]. Biomaterials,2012,33(26):6201-6210.
    [82] S. F. Lim, R. Riehn, W. S. Ryu, et al., In vivo and scanning electron microscopy imaging ofupconverting nanophosphors in caenorhabditisel egans [J]. Nano Letters,2006,6(2):169-174.
    [83] M. Yu, F. Li, Z. Chen, et al., Laser scanning up-conversion luminescence microscopy forimaging cells labeled with rare-earth nanophosphors [J]. Analytical Chemistry,2009,81(3):930-935.
    [84] M. Nyk, R. Kumar, T. Y. Ohulchanskyy, et al., High contrast in vitro and in vivophotoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+andYb3+doped fluoride nanophosphors [J]. Nano Letters,2008,8(11):3834-3838.
    [85] Z. Chen, H. Chen, H. Hu, et al., Versatile synthesis strategy for carboxylic acid-functionalizedupconverting nanophosphors as biological labels [J]. Journal of the American ChemicalSociety,2008,130(10):3023-3029.
    [86] K. Kuningas, T. Rantanen, U. Karhunen, et al., Simultaneous use of time-resolvedfluorescence and anti-stokes photoluminescence in a bioaffinity assay [J]. AnalyticalChemistry,2005,77(9):2826-2834.
    [87] K. Kuningas, T. Rantanen, T. Ukonaho, et al., Homogeneous assaytechnology based onupconverting phosphors [J]. Analytical Chemistry,2005,77(22):7348-7355.
    [88] T. Rantanen, H. Pakkila, L. Jamsen, et al., Tandem dye acceptor used to enhance upconversionfluorescence resonance energy transfer in homogeneous assays [J]. Analytical Chemistry,2007,79(16):6312-6318.
    [89] K. Kuningas, T. Ukonaho, H. P kkil, et al., Upconversion fluorescence resonance energytransfer in a homogeneous immunoassay for estradiol [J]. Analytical Chemistry,2006,78(13):4690-4696.
    [90] T. Rantanen, M. L. J rvenp, J. Vuojola, et al., Fluorescence-quenching-based enzyme-activity assay by using photon upconversion [J]. Angewandte Chemie,2008,120(20):3871-3873.
    [91] P. Zhang, S. Rogelj, K. Nguyen, et al., Design of a highly sensitive and specific nucleotidesensor based on photon upconverting particles [J]. Journal of the American Chemical Society,2006,128(38):12410-12411.
    [92] J. W. Stouwdam, F. van Veggel, Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+doped LaF3nanoparticles [J]. Nano Letters,2002,2(7):733-737.
    [93] J. W. Stouwdam, F. van Veggel, Improvement in the luminescence properties andprocessability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification [J]. Langmuir,2004,20(26):11763-11771.
    [94] V. Sudarsan, F. van Veggel, R. A. Herring, et al., Surface Eu3+ions are different than “bulk”Eu3+ions in crystalline doped LaF3nanoparticles [J]. Journal of Materials Chemistry,2005,15(13):1332-1342.
    [95] S. Sivakumar, F. van Veggel, M. Raudsepp, Bright white light through up-conversion of asingle NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3nanoparticles [J].Journal of the American Chemical Society,2005,127(36):12464-5.
    [96] V. Sudarsan, S. Sivakumar, F. van Veggel, et al., General and convenient method for makinghighly luminescent sol-gel derived silica and alumina films by using LaF3nanoparticles dopedwith lanthanide ions (Er3+, Nd3+, and Ho3+)[J]. Chemistry of Materials,2005,17(18):4736-4742.
    [97] S. Sivakumar, P. R. Diamente, F. van Veggel, Silica-coated Ln3+-doped LaF3nanoparticles asrobust down-and upconverting Biolabels [J]. Chemistry-a European Journal,2006,12(22):5878-5884.
    [98] G. S. Yi, and G. M. Chow, Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystalswith multicolor upconversion fluorescence [J]. Journal of Materials Chemistry,2005,15(41):4460-4464.
    [99] H. Sch fer, P. Ptacek, K. K mpe, et al., Lanthanide-doped NaYF4nanocrystals in aqueoussolution displaying strong up-conversion emission [J]. Chemistry of Materials,2007,19(6):1396-1400.
    [100] Z. Li, and Y. Zhang, Monodisperse silica-coated polyvinylpyrrolidone/NaYF4nanocrystalswith multicolor upconversion fluorescence emission [J]. Angewandte Chemie InternationalEdition,2006,45(46):7732-7735.
    [101] K. W. Kr mer, D. Biner, G. Frei, et al., Hexagonal sodium yttrium fluoride based green andblue emitting upconversion phosphors [J]. Chemistry of Materials,2004,16(7):1244-1251.
    [102] J. F. Suyver, J. Grimm, K. W. Kr mer, et al., Highly efficient near-infrared to visibleup-conversion process in NaYF4: Er3+; Yb3+[J]. Journal of Luminescence,2005,114(1):53-59.
    [103] F. Wang, D. K. Chatterjee, Z. Li, et al., Synthesis of polyethylenimine/NaYF4nanoparticleswith upconversion fluorescence [J]. Nanotechnology,2006,17(23):5786-5791.
    [104] F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission fromlanthanide-doped NaYF4nanoparticles [J]. Journal of the American Chemical Society,2008,130(17):5642-5643.
    [105] C. Li, J. Yang, Z. Quan, et al., Different microstructures of ss-NaYF4fabricated byhydrothermal process: effects of pH values and fluoride sources [J]. Chemistry of Materials,2007,19(20):4933-4942.
    [106] C. Li,, Z. Quan, J. Yang, et al., Highly uniform and monodisperse β-NaYF4:Ln3+(Ln=Eu, Tb,Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescentproperties [J]. Inorganic Chemistry,2007,46(16):6329-6337.
    [107] C. Li, C. Zhang, Z. Hou, et al., β-NaYF4and β-NaYF4:Eu3+Microstructures: morphologycontrol and tunable luminescence properties [J]. The Journal of Physical Chemistry C,2009,113(6):2332-2339.
    [108] J. Zhao, Y. Sun, X. Kong, et al., Controlled synthesis, formation mechanism, and greatenhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+nanocrystals/submicroplates at low doping level [J]. Journal of Physical Chemistry B,2008,112(49):15666-15672.
    [109] Y. Sun, Y. Chen, L. Tian, et al., Controlled synthesis and morphology dependentupconversion luminescence of NaYF4: Yb, Er nanocrystals [J]. Nanotechnology,2007,18(27):275609,1-9.
    [110] L. Wang, R. Yan, Z. Huo, et al., Fluorescence resonant energy transfer biosensor based onupconversion-luminescent nanoparticles [J]. Angewandte Chemie International Edition,2005,44(37):6054-6057.
    [111] J. H. Zeng, J. Su, Z.H. Li, et al., Synthesis and upconversion luminescence of hexagonal-phaseNaYF4: Yb3+, Er3+phosphors of controlled size and morphology [J]. Advanced Materials,2005,17(17):2119-2123.
    [112] J. H. Zeng, Z. H. Li, J. Su, et al., Synthesis of complex rare earth fluoride nanocrystalphosphors [J]. Nanotechnology,2006,17(14):3549-3555.
    [113] X. Liang, X. Wang, J. Zhuang, et al., Branched NaYF4nanocrystals with luminescentproperties [J]. Inorganic Chemistry,2007,46(15):6050-6055.
    [114] X. Wang, J. Zhuang, Q. Peng, et al., A general strategy for nanocrystal synthesis [J]. Nature,2005,437(7055):121-124.
    [115]王定胜,彭卿,李亚栋,单分散纳米晶的合成-组装及其介孔材料的制备[J].中国科学G辑:物理学力学天文学,2008,38(11):1434-1454.
    [116] X. Wang, J. Zhuang, Q. Peng, et al., Hydrothermal synthesis of rare-earth fluoridenanocrystals [J]. Inorganic Chemistry,2006,45(17):6661-6665.
    [117] L. Wang, and Y. Li, Na(Y1.5Na0.5)F6single-crystal nanorods as multicolor luminescentmaterials [J]. Nano Letters,2006,6(8):1645-1649.
    [118] L. Wang, and Y. Li, Controlled synthesis and luminescence of lanthanide doped NaYF4nanocrystals [J]. Chemistry of Materials,2007,19(4):727-734.
    [119] X. Liang, X. Wang, J. Zhuang, et al., Synthesis of NaYF4nanocrystals with predictable phaseand shape [J]. Advanced Functional Materials,2007,17(15):2757-2765.
    [120] F. Zhang, Y. Wan, T. Yu, et al., Uniform nanostructured arrays of sodium rare-earth fluoridesfor highly efficient multicolor upconversion luminescence [J]. Angewandte Chemie-international Edition,2007,46(42):7976-7979.
    [121] Y. W. Zhang, X. Sun, R. Si, et al., Single-crystalline and monodisperse LaF3triangularnanoplates from a single-source precursor [J]. Journal of the American Chemical Society,2005,127(10):3260-3261.
    [122] H. X. Mai, Y. W. Zhang, R. Si, et al., High-quality Sodium rare-earth fluoride nanocrystalscontrolled synthesis and optical properties [J]. Journal of the American Chemical Society,2006,128(11):6426-6436.
    [123] H. X. Mai, Y. W. Zhang, L. D. Sun, et al., Size and phase-controlled synthesis ofmonodisperse NaYF4: Yb, Er nanocrystals from a unique delayed nucleation pathwaymonitored with upconversion spectroscopy [J]. Journal of Physical Chemistry C,2007,111(37):13730-13739.
    [124] H. X. Mai, Y. W. Zhang, L. D. Sun, et al., Highly efficient multicolor up-conversionemissions and their mechanisms of monodisperse NaYF4: Yb, Er Core and CoreShell-Structured Nanocrystals [J]. Journal of Physical Chemistry C,2007,111(37):13721-13729.
    [125] J. C. Boyer, F. Vetrone, L. A. Cuccia, et al., Synthesis of colloidal upconverting NaYF4nanocrystals doped with Er3+, Yb3+and Tm3+, Yb3+via thermal decomposition of lanthanidetrifluoroacetate precursors [J]. Journal of the American Chemical Society,2006,128(23):7444-7445.
    [126] J. C. Boyer, L. A. Cuccia, J. A. Capobianco, Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+and Tm3+/Yb3+monodisperse nanocrystals [J]. Nano Letters,2007,7(3):847-852.
    [127] J. C. Boyer, J. Gagnon, L. A. Cuccia, et al., Synthesis, characterization, and spectroscopy ofNaGdF34: Ce+, Tb3+/NaYF4core/shell nanoparticles [J]. Chemistry of Materials,2007,19(14):3358-3360.
    [128] G. S. Yi, G. M. Chow, Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tmnanocrystals with efficient up-conversion fluorescence [J]. Advanced Functional Materials,2006,16(18):2324-2329.
    [129] G. S. Yi, G. M. Chow, Water-soluble NaYF4: Yb, Er(Tm)/NaYF4/polymer core/shell/shellnanoparticles with significant enhancement of upconversion fluorescence [J]. Chemistry ofMaterials,2007,19(3):341-343.
    [130] J. Shan, Y. Ju, Controlled synthesis of lanthanide-doped NaYF4upconversion nanocrystals vialigand induced crystal phase transition and silica coating [J]. Applied Physics Letters,2007,91(12):123103.
    [131] J. Shan, X. Qin, N. Yao, et al., Synthesis of monodisperse hexagonal NaYF4: Yb, Ln(Ln=Er,Ho and Tm) upconversion nanocrystals in TOPO [J]. Nanotechnology,2007,18(44).
    [132] F. Zhang, Y. Wan, Y. Shi, et al., Ordered mesostructured rare-earth fluoride nanowire arrayswith upconversion fluorescence [J]. Chemistry of Materials,2008,20(11):3778-3784.
    [133] M. Yu, J. Lin, and J. Fang, Silica spheres coated with YVO4: Eu3+layers via sol-gel process: asimple method to obtain spherical core-shell phosphors [J]. Chemistry of Materials,2005,17(7):1783-1791.
    [134] K. K mpe, H. Borchert, J. Storz, et al., Green-Emitting CePO4:Tb/LaPO4core-shellnanoparticles with70%photoluminescence quantum yield [J]. Angewandte ChemieInternational Edition,2003,42(44):5513-5516.
    [135] X. M. Sun, and Y. D. Li, Cylindrical silver nanowires: preparation, structure, and opticalproperties [J]. Advanced Materials,2005,17(21):2626-2630.
    [136] X. M. Sun, and Y. D. Li, Ag@C Core/Shell Structured Nanoparticles: Controlled Synthesis,Characterization, and Assembly [J]. Langmuir,2005,21(13):6019-6024.
    [137] F. Wang, R. Deng, and X. Liu, Tuning upconversion through energy migration in core–shellnanoparticles [J]. Nature Materials,2011,(10):968-973.
    [138] X. L. Li, J. P. Ge, and Y. D. Li, Atmospheric pressure chemical vapor deposition: analternative route to large-scale MoS2and WS2inorganic fullerene-like nanostructures andnanoflowers [J]. Chemistry-A European Journal,2004,10(23):6163-6171.
    [139] Y. Li, X. Li, Z. X. Deng, et al., From surfactant-inorganic mesostructures to tungstennanowires [J]. Angewandte Chemie,2002,114(2):343-345.
    [140] Y. D. Li, X. L. Li, R. R. He, et al., Artificial lamellar mesostructures to WS2Nanotubes [J].Journal of the American Chemical Society,2002,124(7):1411-1416.
    [141] X. Wang, and Y. Li, Synthesis and characterization of lanthanide hydroxide single-crystalnanowires [J]. Angewandte Chemie International Edition,2002,41(24):4790-4793.
    [142] X. Wang, Y. Li, Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles:synthesis, characterization, and properties [J]. Chemistry-a European Journal,2003,9(22):5627-5635.
    [143] X. Wang, X. M. Sun, D. Yu, et al., Rare earth compound nanotubes [J]. Advanced Materials,2003,15(17):1442-1445.
    [144] Z. Lei, J. Li, Y. Ke, et al., Two-step templating route to macroporous or hollow sphere oxides[J]. Journal of Materials Chemistry,2001,11(12):2930-2933.
    [145] T. Kawai, H. Sekikawa, H. Unuma, Preparation of hollow hydroxyapatite microspheresutilizing poly(divinylbenzene) as a template [J]. Journal of the Ceramic Society of Japan,2009,117(1363):340-343.
    [146] X. Sun, J. Liu, Y. Li, Use of carbonaceous polysaccharide microspheres as templates forfabricating metal oxide hollow spheres [J]. Chemistry-a European Journal,2006,12(7):2039-2047.
    [147] M. Yada, M. Mihara, S. Mouri, et al., Rare earth(Er, Tm, Yb, Lu) oxide nanotubes templatedby dodecylsulfate assemblies [J]. Advanced Materials,2002,14(4):309-313.
    [148] F. Zhang, D. Zhao, Synthesis of uniform rare earth fluoride(NaMF4) nanotubes by in situ ionexchange from their hydroxide [M(OH)3] parents [J]. ACS Nano,2009,3(1):159-164.
    [149] B. P. Sobolev, K. B. Seiranian, Phase diagrams of systems SrF2-(Y,Ln)F3. II. Fusibility ofsystems and thermal behavior of phases [J]. Journal of Solid State Chemistry,1981,39(3):337-344.
    [150] B. P. Sobolev, N. L. Tkachenko, Phase diagrams of BaF2-(Y, Ln)F3systems [J]. Journal of theLess-Common Metals,1982,85(C):155-170.
    [151] D. Chen, Y. Yu, F. Huang, et al., Phase transition from hexagonal LnF3(Ln=La, Ce, Pr) tocubic Ln0.8M0.2F2.8(M=Ca, Sr, Ba) nanocrystals with enhanced upconversion induced byalkaline-earth doping [J]. Chemical Communications,2011,47(9):2601-2603.
    [152] D. Chen, Y. Yu, F. Huang, et al., Modifying the size and shape of monodisperse bifunctionalalkaline-earth fluoride nanocrystals through lanthanide doping [J]. Journal of the AmericanChemical Society,2010,132(29):9976-9978.
    [153] C. F. Xu, M. Ma, L. W. Yang, et al., Lanthanide doping-facilitated growth of ultrasmallmonodisperse Ba2LaF7nanocrystals with excellent photoluminescence [J]. Journal of Colloidand Interface Science,2012,368:49-55.
    [154] C. F. Xu, M. Ma, S. J. Zeng, et al., Solvothermal synthesis of monodisperse ultrasmallcubic-structure Ba2YbF7nanocrystals with intense upconversion [J]. Journal of Alloys andCompounds,2011,509(30):7943-7947.
    [155] C. Xu, M. Ma, L. Yang, et al., Upconversion luminescence and magnetic properties ofligand-free monodisperse lanthanide doped BaGdF5nanocrystals [J]. Journal of Luminescence,2011,131(12):2544-2549.
    [156] M. Ma, L. Yang, G. Ren, et al., Solvothermal synthesis, cubic structure and multicolorupconversion emission of ultrasmall monodisperse lanthanide-doped BaYF5nanocrystals [J].Journal of Luminescence,2011,131(7):1482-1486.
    [157] D. Yang, C. Li, G. Li, et al., Colloidal synthesis and remarkable enhancement of theupconversion luminescence of BaGdF5:Yb3+/Er3+nanoparticles by active-shell modification[J]. Journal of Materials Chemistry,2011,21(16):5923-5927.
    [158] N. I. Sorokin, D. N. Karimov, E. A. Sulyanova, et al., Nanostructured crystals of fluoritephases Sr1-xRxF2+x(R are Rare Earth Elements) and their ordering:5. a study of the ionicconductivity of as-grown Sr1-xRxF2+xcrystals [J]. Crystallography Reports,2010,55(4):662-667.
    [159] N. M. Kompanichenko, A. O. Omelchuk, O. P. Ivanenko, et al., Phase transformations inLnF3-(Ln, Zr)-ZrF4systems, where Ln=Sm, Eu, Tm, Yb [J]. Journal of Fluorine Chemistry,2010,131(2):282-287.
    [160] V. A. Fedorov, D. N. Karimov, O. N. Komarkova, et al., Nanostructured crystals of fluoritephases Sr1-xRxF2+x(R are Rare-Earth Elements) and their ordering: IV. study of the opticaltransmission spectra in the2-17μm wavelength range [J]. Crystallography Reports,2010,55(1):122-126.
    [161] E. A. Sulyanova, V. N. Molchanov, I. A. Verin, et al., Nanostructured crystals of the fluoritephases Sr1-xRxF2+x(R-Rare-Earth Elements) and their ordering: II. crystal structure of theordered Sr4Lu3F17Phase [J]. Crystallography Reports,2009,54(3):516-525.
    [162] B. P. Sobolev, D. N. Karimov, S. N. Sulyanov, et al., Nanostructured crystals of fluoritephases Sr1-xRxF2+x(R are rare-earth elements) and their ordering. I. Crystal growth ofSr1-xRxF2+x(R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu)[J].Crystallography Reports,2009,54(1):122-130.
    [163] T. M. Glushkova, D. N. Karimov, E. A. Krivandina, et al., Nanostructured crystals of fluoritephases Sr1-xRxF2+x(R=Y, La-Lu) and their ordering: Part III. a study of the refractive indices[J]. Crystallography Reports,2009,54(4):603-608.
    [164] N. I. Sorokin, B. P. Sobolev, Nonstoichiometric fluorides-solid electrolytes forelectrochemical devices: a review [J]. Crystallography Reports,2007,52(5):842-863.
    [165] X. Qiao, X. Fan, M. Wang, et al., Luminescence behavior of Er3+doped glass ceramicscontaining Sr2RF7(R=Y, Gd, La) nanocrystals [J]. Journal of Applied Physics,2008,104(4):043508.
    [166] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomie distances inhalides and chaleogenides [J]. Acta Crystallographica,1976, A32:751-767.
    [167] F. Vetrone, V. Mahalingam, and J. A. Capobianco, Near-infrared-to-blue upconversion incolloidal BaYF35:Tm+, Yb3+Nanocrystals [J]. Chemistry of Materials,2009,21(9):1847-1851.
    [168] N. Rakov, G. S. Maciel, R. B. Guimar es, et al., Upconversion emission from Tm3+: Yb3+andTm3+, Er3+, Yb3+doped Y2SiO5powders prepared by combustion synthesis [J]. MaterialsChemistry and Physics,2010,123(1):199-202.
    [169] T. Passuello, F. Piccinelli, M. Pedroni, et al., White light upconversion of nanocrystallineEr/Tm/Yb doped tetragonal Gd4O3F6[J]. Optical Materials,2011,33(4):643-646.
    [170] Q. Sun, H. Zhao, X. Chen, et al., Upconversion emission enhancement in silica-coatedGd2O3:Tm3+, Yb3+nanocrystals by incorporation of Li+ion [J]. Materials Chemistry andPhysics,2010,123(2):806-810.
    [171] T. Xie, S. Li, Q. Peng, et al., Monodisperse BaF2nanocrystals: phases, size transitions, andself-assembly [J]. Angewandte Chemie-international Edition,2009,48(1):196-200.
    [172] N. L. Tkachenko, L. S. Garashina, O. E. Izotova, et al., Phase equilibria in BaF2(Y, Ln)F3systems [J]. Journal of Solid State Chemistry,1973,8(3):213-218.
    [173] A. A. Kaminskii, and A. V. Butashin, Orthorhombic BaLu2F8-A new crystal host for lasertrivalent lanthanide ions [J]. Doklady Akademii Nauk,1996,351(4):489-493.
    [174] J. C. vant Spijker, P. Dorenbos, C. W. van Eijk, et al., Luminescence and scintillationproperties of BaY2F8: Ce3+, BaLu2F8and BaLu2F8: Ce3+[J]. Journal of Luminescence,1999,85(1-3):11-19.
    [175] O. Greis, P. Stede, M. Kieser, Preparation and characterization of the ternary compoundsBaRe2F8with BaDy2F8, BaLu2F8and BaY2F8[J]. Zeitschrift Fur Anorganische UndAllgemeine Chemie,1981,477(6):133-138.
    [176] G. De, W. Qin, J. Zhang, et al., Synthesis and photoluminescence of single crystals europiumion-doped BaF2cubic nanorods [J]. Journal of Solid State Chemistry,2006,179(3):955-958.
    [177] T. Yanagida, N. Kawaguchi, K. Fukuda, et al., Scintillation properties of Nd3+, Tm3+, and Er3+doped LuF3scintillators in the vacuum ultra violet region [J]. Nuclear Instruments&Methodsin Physics Research Section a-Accelerators Spectrometers Detectors and AssociatedEquipment,2011,659(1):258-261.
    [178] O. S. Wenger, D. R. Gamelin, H. U. Gudel, et al., Site-selective optical spectroscopy andupconversion mechanisms of the laser material BaLu2F8: Er3+[J]. Physical Review B,1999,60(8):5312-5320.
    [179] O. S. Wenger, D. R. Gamelin, H. U. Gudel, et al., Site-selective yellow to violet andnear-infrared to green upconversion in BaLu2F3+8: Nd[J]. Physical Review B,2000,61(24):16530-16537.
    [180] A. A. Kaminskii, A. V. Butashin, S. N. Bagaev, et al., Three-micron cw stimulated emissionfrom a new Er3+: BaLu2F8laser crystal subjected to laser-diode pumping [J]. QuantumElectronics,1998,28(2):93-94.
    [181] E. A. Sulyanova, I. A. Verin, B. P. Sobolev, Nanostructured crystals of fluorite phasesSr1-xRxF2+xand their ordering:7. a procedure for cluster modeling of Sr1-xRxF2+xbased on thestructure of an ordered Phase(R=Lu)[J]. Crystallography Reports,2012,57(1):73-84.
    [182] P. Melnikov, G. de Carvalho, M. Nalin, et al. Glasses containing lutetium fluoride. Proc. SPIE3416, infrared glass optical fibers and their applications,1998,3416:209-212.
    [183] C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearlymonodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journalof the American Chemical Society,1993,115(19):8706-8715.
    [184] D. Chen, Y. Yu, F. Huang, et al., Monodisperse upconversion Er3+/Yb3+: MFCl(M=Ca, Sr, Ba)nanocrystals synthesized via a seed-based chlorination route [J]. Chemical Communications,2011,47(39):11083-11085.
    [185] D. Chen, and Y. Wang, Impurity doping: a novel strategy for controllable synthesis offunctional lanthanide nanomaterials [J]. Nanoscale,2013,5(11):4621-4637.
    [186] A. A. Migdisov, A. E. Williams-Jones, T. Wagner, An experimental study of the solubility andspeciation of the Rare Earth Elements(III) in fluoride-and chloride-bearing aqueous solutionsat temperatures up to300°C [J]. Geochimica et Cosmochimica Acta,2009,73(23):7087-7109.
    [187]王世中,臧鑫士,现代材料研究方法[M].北京:北京航空航天大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700