用户名: 密码: 验证码:
基于镧系金属改性壳聚糖的脱氟新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用三种镧系金属(镧、钕和镨)分别对壳聚糖进行改性制备除氟剂,其最佳制备工艺条件为:壳聚糖用量为1.0 g·L~(-1),Ln~(3+)浓度为0.015 mol·L~(-1),反应时间为6~8 h。由三种除氟剂的X衍射图谱、红外谱图、电镜扫描图分析推断,在制备过程中,破坏了壳聚糖分子链内或链间的氢键,使原来壳聚糖的有序结构变得无序,形成了一部分无定形结构。在除氟剂的制备过程中,壳聚糖分子链C3位置上羟基同C2位置上的氨基同Ln(H_2O)_n~(3+)一起参加反应,并构成稳定的五元环。制备过程中将Ln~(3+)负载到壳聚糖分子的骨架上形成了不饱和配合物,配体F-交换除氟剂空腔内水分子的OH~-,完成对F-的吸附。因配位反应只发生在中心离子和配体之间,其它离子无此反应,故表现出高度选择性。
     通过正交试验优化了三种除氟剂(CTS-La、CTS-Nd和CTS-Pr)对氟离子的最优吸附工作条件:pH值为7,温度为323 K,吸附时间为60 min,吸附剂粒径为0.1 mm,脱乙酰度为95%。对于浓度为20 mg·L~(-1)的氟离子溶液,当吸附剂用量为1.2 g·L~(-1)时,去除率达到99%左右,处理后的F-浓度为0.98 mg·L~(-1)左右,可以满足世界卫生组织对于饮用水中氟含量(<1.5 mg·L~(-1))和《生活饮用水卫生标准》对饮用水的要求(<1.0 mg·L~(-1))。溶液中共存阴离子会对除氟效果产生一定的影响,结果表明,当阴离子浓度为500 mg·L~(-1)时,SO_4~(2-)、Cl~-、HCO_3~-、CO_3~(2-)和PO_4~(3-)除氟率分别下降14.3%、9.8%、19.1%、28.5%和17.6%,其影响能力大小顺序为:CO_3~(2-)>HCO_3~->PO_4~(3-)>SO_4~(2-_>Cl~-。吸附饱和的除氟剂,经0.4 g·L~(-1)的NaOH解吸24 h,能有效地恢复除氟剂的除氟性能;经吸附和解吸,再次吸附和解吸,连续使用4次后,除氟性能从98%下降到67%,除氟剂有一定的重复使用性。
     三种除氟剂的吸附等温线基本符合Redlich-Peterson吸附等温线方程,在323K时,CTS-Nd、CTS-Pr和CTS-La对氟离子的饱和吸附容量分别达到42.3、39.7和39.5 mg·g~(-1)。拟一级以及拟二级扩散模型计算得到平衡量qe,cal与实验得到的平衡吸附量qe,exp能较好的吻合,二者差异不显著(p>0.05)。在323 K时,CTS-Nd、CTS-Pr和CTS-La的吸附速率常数分别为0.008、0.009和0.012 g·mg~(-1)·min~(-1)。颗粒内扩散模型的研究结果表明,在吸附过程中,吸附速率的大小不仅受颗粒的内表面扩散的控制,同时也受液膜形成的边界层等因素的影响。根据Arrhenius公式,计算得到CTS-Nd、CTS-Pr和CTS-La吸附氟离子的活化能E值分别为11.583、8.286和8.333 KJ·mol~(-1),均小于42 KJ·mol~(-1),说明吸附过程主要为物理吸附。小白鼠的亚急性毒性试验结果表明:在使用剂量范围内(La~(3+):≤106 mg·L~(-1);Nd~(3+):≤260 mg·L~(-1);Pr~(3+):≤180 mg·L~(-1)),水样对小鼠的行为、体重、饮食状况以及对生理和生化指标均无不良影响,与对照组无明显差异。
     用三种除氟剂对高密市大牟家镇的水样进行处理,通过调整吸附剂的用量,均达到了很好的去除效果。其中3#和4#水样由于氟离子浓度高,而且共存阴离子浓度均超V类水质标准的3~4倍,当吸附剂用量为7.5~8 g·L~(-1)时,出水中氟离子浓度可以满足饮用水低于1.0 mg·L~(-1)的要求。CTS-La、CTS-Nd和CTS-Pr三种壳聚糖的制备成本和运行成本分别为0.22~0.34元/千克和0.032~0.056元/千克。针对大牟家镇的实际水样处理,3#和4#水样的处理成本约为0.24~0.448元/千克,其它站点的水样处理成本均低于0.12元/千克。三种除氟剂比较而言,采用CTS-La除氟剂具有处理成本低,除氟效率高的特点,实际使用,比较可行。采用负载镧系金属离子的壳聚糖应用于含氟水的处理,不但减少了含氟水对人体和环境的毒害作用,而且充分资源化利用了海产品的加工废弃物——壳聚糖,创造了一定的价值。因此,采用以壳聚糖为载体的镧系金属新除氟剂具有一定的社会效益、环境效益和经济效益。
In this work, the applicability of chitosan modified by Ln~(3+) (Lanthanum,Praseodymium, Neodymium) as adsorbents for the remova l of excess fluoride ionsfrom water is studied. The synthesis conditions of Ln~(3+) incorporated chitosan areoptimized as: the dose of chitosan is 1.0 g·L~(-1), the dosage of Ln~(3+) is 0.015 mol·L~(-1), thepreparing time is 6~8 h. From the XRD, FTIR specture, SEM ima ges, it can beobserved that the hydrogen bonding of intermolecular and intramolecular is weakened ,the crysta l structure is destructed and the particle amorphism structure is formed. TheLn(H2O)n~(3+) can chelated with C-3 hydroxyl groups and C-2 amino groups to form the5-element loop. The unsaturated complex is formed when Ln~(3+) is loaded into chitosanmolecular, F- can excha nge with OH- of water molecular and other ions don't has thesame ability, so the adsorbent has higher selectivity adsorption capability.
     The treatment conditions are optimized: pH value is 7, water temperature is 323 K,stirring speed is 400 rpm, contact time is 60 min, particle size is 0.1 mm,deacetylation of chitosan is 95%. A salt rejection against the water containing F- of 20mg·L~(-1) was 99% at the dosage of adsorbent was only 1.2 g·L~(-1), and the resid ualconcentration of F- is 0.98 mg·L~(-1), lower tha n 1.0 mg·L~(-1), which is restricted by WHOand Standard for Domestic Drinking Water. The drinking water contains severa lcommon other anions, which can compete with F- in the sorption process, from theadsorption experiment results, the CO_3~(2-), HCO_3~-, PO_4~(3-), SO_4~(2-)and Cl~- ions showsnega tive effect on the remova l of fluoride , the remova l efficiency could be decreased28.5%, 19.1%, 17.6%, 14.3%, 9.8%, respectively, and the order is CO_3~(2-)>HCO_3~->PO_4~(3-)>SO_4~(2-)>Cl~-. The used adsorbents could be regenerated in 24 h by 0.4 g·L~(-1) ofsodium hydroxide , and the remova l efficiency is reduced from 98% to 67% after it isregenera ted four times, it can be reused in applicability.
     The equilibrium sorption data are fitted reasonably well for Redlich-Petersonisotherm model, the ma ximum equilibrium sorption of CTS-Nd, CTS-Pr and CTS-Lahave found to be 42.3, 39.7 and 39.5 mg·g~(-1). The qe,cal obtained from pseudo-first orderand pseudo-second order accord well with the qe,exp from the experiments, and have no significa nt difference between two groups (p>0.05). The initia l sorption rate of CTSNd,CTS-Pr and CTS-La are 0.008, 0.009 and 0.012 g·g~(-1)·min~(-1) at 323 K, and thesorption process is complex, both the boundary of liq uid film and intra-particlediffusion contributed to the rate-determining step. The activation energy (E) obtainedfrom Arrhenius equation is 11.583, 8.286 and 8.333 KJ·mol~(-1), which is lower tha n 42KJ·mol~(-1), the adsorption process is physicosorption.
     The results of subacute toxicity test shows that it has no any side effects on behavior,feed and water intakes, physiochemica l parameters and histology of the rats, when theconcentration of La~(3+) is lower tha n 106 mg·L~(-1), Nd~(3+) lower tha n 260 mg·L~(-1), Pr~(3+) lowertha n 180 mg·L~(-1).
     The water sampling from Damujia town in Gaomi area containing high fluorideconcentration, it could be removed effectively by conducting the dosage of adsorbentof CTS-Ln. 3# and 4# water containing fluoride ions and anions simultaneity, which is3~4 times higher tha n the five class of water. When the dosage of adsorbent is 7.5~8g·L~(-1), the resid ual concentration of F- is 0.98 mg·L~(-1), lower tha n 1.0 mg·L~(-1). Thepreparing cost and running cost of CTS-Ln (CTS-La, CTS-Nd and CTS-Pr) is¥0.22~0.34 and¥0.032~0.056 per kilogram, respectively. When the 3# and 4# water istreated by CTS-Ln, the cost is¥0.24~0.448 per kilogram, the cost of other samplingwater is lower than¥0.12 per kilogram. The cost of CTS-La is the cheapest and isfeasible to apply in practice.
     Fluord ie from drinking water can be removed by CTS-Ln, it can minimize thehaza rdous of flurodide water, and ma ximize the utilizing the chitosan obtained fromseafood processing wastes. So, the use of CTS-Ln as adsorbent would be profitablyto socia l, economic and ecological environment.
引文
[1]王久思.水处理化学[M].北京:化学工业出版社,2002:250.
    [2] Ayoob S., Gupta A.K.. Fluoride in drinking water: a review on the status and stress effects[J].Critical Reviews in Environmental Science and Technology.2006(36):433~487.
    [3]张威,傅新锋,张甫仁.地下水中氟含量与温度、pH值、(Na++K+)/Ca2+的关系——以河南省永城矿区为例[J].地质与资源, 2004,13(2):109~113 .
    [4]张红梅.氟在土中运移规律的动态试验研究[J].岩土工程学报, 2006,28(9):1159~1163.
    [5]虞岚.我国部分地下热水中氟的分布与成因探讨[D].中国地质大学(北京), 2007.
    [6]姜凌,刘艳萍.关于人工土壤层吸附氟离子的研究[J].化学工业与工程技术,2005,26(5):37~39.
    [7]董岁明.氟在土-水系统中的迁移机理与含氟水的处理研究[D].长安大学博士学位论文,2004.
    [8]黎昌健,蒙衍强,蒋才武.地方性氟病在中国大陆流行现状[J].实用预防科学,2008,15(4):1295~1298.
    [9] Veressinina Y., Trapido M., Ahelik V., et al. Fluoride in drinking water: the problem and itspossible solutions[J].Proceedings of the Estonian Academy of Sciences. Chemistry.2001(50):81~88.
    [10] Twetman S., Axelsson S., Dahlgren H., et al. Caries-preventive effect of fluoride toothpaste: asystematic review[J].Acta Odontol Scand.2003(61):347~355.
    [11] Sarala K., Rao P.R.. Endemic fluorosis in the Village Ralla, Anantapuram in AndhraPradesh—an epidemiolog ical study[J]. Fluoride.1993(26):177~180.
    [12] Wang B.B., Zheng B.S., Wang H.Y.. Dental caries in fluorine exposure areas in China[J].Environmental Geochemistry and Health.2005,27(4):285-288
    [13]林年丰.医学环境地球化学[M].吉林:吉林科学出版社,1991.
    [14] Shaji E., Bindu, Viju J., et al. High fluoride in groundwater of Palghat District,Kerala[J].Current Science.2007(2):240~245.
    [15] Valenzuela-Vasquez L., Ramirez-Hernandez J., Reyes-Lopez J., et al. The origin of fluoride ingroundwater supply to Hermosillo City, Sonora, Mexico[J].Environmental Geology.2006(1):17~27.
    [16] Abu R.Y., Alsokhny K.. Geochemical assessment of groundwater contamination with specialemphasis on fluoride concentration, North Jordan[J].Chemie Der Erde-Geochemistry.2004(2):171~181.
    [17]马玉新.膨润土系列除氟剂的制备及其除氟性能研究[D].中国海洋大学博士学位论文,2004.
    [18]孙殿军,沈雁峰,赵新华,等.中国大陆地方性氟中毒病情动态与现状分析[J].中国地方病学杂志,2001,20(6):429~433.
    [19]于广军,霍尔查,张惠敏,等.2002、2003年度内蒙古地方性氟中毒重点监测报告[J].中国地方病学杂志,2005,24(6):649~650.
    [20]刘东生,陈庆沐,余志成,等.我国地方性氟病的地球化学问题[J].地球化学, 1980,3(1):13~22.
    [21]陈国阶.环境中的氟[M].北京:科技出版社,1990.
    [22]彼列尔曼A.H.氟的表生地球化学.地理环境污染及其危害[M].科学文献出版社,1974.
    [23]徐志斌.资源与环境地学基础[M].北京:中国矿业大学资源与环境科学学院,1999.
    [24] Zhu C.S., Bai G.L., Liu X.L., et al. Screening high-fluoride and high-arsenic drinking watersand surveying endemic fluorosis and arsenism in Shaanxi Province in western China[J].WaterResearch.2006(40):3015~3022.
    [25] WHO (World Health Organization), Guidelines for Drinking Water Quality (vol. II): HealthCriteria and Supporting Information, World Health Organization, Geneva, Switzerland,1984.
    [26]刘炯,郑照霞,林世刚,等.辽宁省改水降氟工程运行现状调查分析[J].中国地方病学杂志,2005,24(5):554~556.
    [27] Islam M., Patel R.K.. Evaluation of removal efficiency of fluoride from aqueous solutionusing quick lime[J].Journal of Hazardous Materials.2007(143): 303~310.
    [28]张希祥,王煤.氧化钙粉末处理高浓度含氟废水的试验研究[J].四川大学学报(工程科学版),2001,33(6):111~113.
    [29]董铁,刘建明,李志祥.高浓度含氟废水的处理[J].天津化工,2004,18(5):58~61.
    [30]王而力,刘子愉.氟化钙晶核在处理低浓度含氟废水的应用[J].辽宁城乡环境科技,2001,21(1):21~24.
    [31]张玲,薛学佳,周钰明.含氟废水处理的最新研究进展[J].化工时刊,2004,18(12):16~18.
    [32] Nigussie W., Zewge F., Chandravanshi B.S.. Removal of excess fluoride from water usingwaste residue from alum manufacturing process[J].Journal of Hazardous Materials.2007(147):954~963.
    [33] Popat K.M., Anand P.S., Dasare B.D.. Selective removal of fluoride ions from water by thealuminium from of the aminomethylphosphonic acid-type ion exchanger[J].Reactive Polymers.1994(23):23~32.
    [34] Hu C.Y., Lo S.L., Kuan W.H., et al. Effects of co-existing anions on fluoride removal inelectrocoagulation (EC) process using aluminum electrodes[J].Water Research.2003(37):4513~4523.
    [35] Zhu J., Zhao H.Z. , Ni J.R.. Fluoride distribution in electrocoagulation defluoridationprocess[J].Separation and Purification Technology.2007(56):184~191.
    [36] Ghosh D., Medhi C.R., Purkait M.K.. Treatment of fluoride containing drinking water byelectrocoagulation using monopolar and bipolar electrode connections[J].Chemosphere.2008(73):1393~1400.
    [37] Emamjomeh M.M., Sivakumar M.. Fluoride removal by a continuous flow electrocoagulationreactor[J].Journal of Environmental Management.2009(90):1204~1212.
    [38] Hu C.Y., Lo S.L., Kuan W.H., et al. Removal of fluoride from semiconductor wastewater byelectrocoagulation–flotation[J].Water Research.2005(39):895~901.
    [39] Hu C.Y., Lo S.L., Kuan W.H., et al. Treatment of high fluoride-content wastewater bycontinuous electrocoagulation–flotation system with bipolar aluminum electrodes[J].Separationand Purification Technology.2008(60):1~5.
    [40] Zuo Q.H., Chen X.M., Li W., et al. Combined electrocoagulation and electroflotation forremoval of fluoride from drinking water[J].Journal of Hazardous Materials.2008(159): 452~457.
    [41] Amor Z., Bariou B., Mameri N., et al. Fluoride removal from brackish water byelectrodialysis[J].Desalination.2001(133):215~223.
    [42] Tahaikt M., Achary I., Menkouchi M.A., et al. Defluoridation of Moroccan groundwater byelectrodialysis: continuous operation[J].Desalination.2004(167):357~365.
    [43] Ergun E., Tor A., Cengeloglu Y., et al. Electrodialytic removal of fluoride from water: effectsof process parameters and accompanying anions[J].Separation and Purification Technology.2008(64):147~153.
    [44] Kabay N., Arar O., Samatya S., et al. Separation of fluoride from aqueous solution byelectrodialysis:Ef fect of process parameters and other ionic species[J].Journal of HazardousMaterials.2008(153):107~113.
    [45] Sehn P.. Fluoride removal with extra low energy reverse osmosis membranes: three years oflarge scale field experience in Finland[J].Desalination.2008(223):73~84.
    [46] Tahaikt M., Habbani R.E., Haddou A.A., et al. Fluoride removal from groundwater bynanofiltration[J].Desalination.2007(212):46~53.
    [47] Tahaikt M., Haddou A.A., Habbani R.E., et al. Comparison of the performances of threecommercial membranes in fluoride removal by nanofiltration Continuous operations[J].Desalination.2008(225):209~219.
    [48] Meenakshi S., Maheshwari R.C.. Fluoride in drinking water and its removal[J].Journal ofHazardous Materials.2006(B137):456~463.
    [49] Singh R., Maheshwari R.C.. Defluoridation of drinking water–a review[J].Indian Journal ofEnvironmental Protection.2001(11):983~991.
    [50] Jacks G., Bhattacharya P., Chaudhary V., et al. Controls on the genesis of some high-fluoridegroundwaters in India[J].Applied Geochemistry.2005(20):221~228.
    [51]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005:1~11.
    [52]王燕飞.水污染控制技术[M].北京:化学工业出版社,2001:164~174.
    [53] Hillier S., Cooper C., Kellingray S., et al. Fluoride in drinking water and risk of hip fracturein the UK: a case-control study[J].The Lancet,2000(355):265~269.
    [54] Ghorai S., Pant K.K.. Investigations on the column performance of fluoride adsorption byactivated alumina in a fixed-bed[J].Chemical Engineering Journal.2004(98): 165~173.
    [55] Chauhan V.S., Dwivedi P.K., Iyengar L.. Investigations on activated alumina based domesticdefluoridation units[J].Journal of Hazardous Materials.2007(139):103~107.
    [56] Ghorai S., Pant K.K.. Equilibrium, kinetics and breakthrough studies for adsorption offluoride on activated alumina[J].Separation and Purification Technology.2005(42):265~271.
    [57] Tang Y.L., Guan X.D., Su T.Z. , et al. Fluoride adsorption onto activated alumina: modelingthe effects of pH and some competing ions[J].Colloids and Surfaces A: Physicochemical andEngineering Aspects.2009(337):33~38.
    [58] Chauhan V.S., Dwivedi P.K., Iyengar L.. Investigations on activated alumina based domesticdefluoridation units[J].Journal of Hazardous Materials.2007(B139): 103~107.
    [59] Tripathy S.S., Bersillon J.L., Gopal K.. Removal of fluoride from drinking water byadsorption onto alum-impregnated activated alumina[J].Separation and Purification Technology.2006(50):310~317.
    [60] Tripathy S.S., Raichur A.M.. Abatement of fluoride from water using manganese dioxidecoatedactivated alumina[J].Journal of Hazardous Materials.2008(153): 1043~1051.
    [61] Maliyekkal S.M., Shukla S., Philip L., et al. Enhanced fluoride removal from drinking waterby magnesia-amended activated alumina granules[J].Chemical Engineering Journal.2008(140):183~192.
    [62] Li Y.H., Wang S.G., Cao A.Y., et al. Adsorption of fluoride from water by amorphousalumina supported on carbon nanotubes.[J]Chemical Physics Letters.2001(350): 412~416.
    [63] Lounici H., Belhocinea D., Grib H., et al. Fluoride removal with electro-activated alumina[J].Desalination.2004(161):287~293.
    [64] Bataller H., Lamaallam S., Lachaise J., et al. Cutting fluid emulsions produced by dilution ofa cutting fluid concentrate containing a cationic/nonionic surfactant mixture[J].Journal ofMaterials Processing Technology.2004(152):215~220.
    [65]王涌.饮用水骨炭除氟机理的研究[J].广州大学学报(自然科学版),2003,2(5):423~426.
    [66]仇付国,王晓昌,王云波.活性氧化铝和骨炭除氟研究[J].西安建筑科技大学学报,2001,3(1):56~60.
    [67]王云波,谭万春,王晓昌,仇付国,等.沸石、骨炭、活性氧化铝除氟效果研究[J].西安建筑科技大学学报,2002,34(4):325~328.
    [68] Li Y.H., Wang S.G., Zhang X.F., et al. Adsorption of fluoride from water by aligned carbonnanotubes[J].Materials Research Bulletin.2003(38):469~476.
    [69] Sundaram C.S., Viswanathan N., Meenakshi S.. Defluoridation chemistry of synthetichydroxyapatiteat nano scale: Equilibrium and kinetic studies[J].Journal of Hazardous Materials.2008(155):206~215.
    [70] Guptaa V.K., Ali I., Saini V.K.. Defluoridation of wastewaters using waste carbonslurry[J].Water Research.2007(41):3307~3316.
    [71]刘晓飞.铁活化天然斜发沸石除氟应用基础研究[D].呼和浩特:内蒙古大学, 2004.
    [72]王绪绪,陈旬,徐海兵,等.沸石分子筛的表面改性技术进展[J].无机化学学报,2002,18(6):541~549.
    [73] Onyango M.S., Kojima Y., Aoyi O., et al. Adsorption equilibrium modeling and solutionchemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9[J].Journal of Colloid and Interface Science.2004(279): 341~350.
    [74]张英俊,鲁文杰.改性沸石处理含氟水的试验研究[J].供水技术,2008,2(2):47~49.
    [75]孙兴滨,席承菊.改性沸石的除氟性能研究[J].哈尔滨商业大学学报(自然科学版),2008,24(5):539~543.
    [76]王国建,王东田,陈霞,等.吸附法除氟技术的原理与方法[J].环境科学与管理,2008,33(8):121~125.
    [77] Agarwal M., Rai K., Shrivastav R., et al. Deflouridation of water using amended clay[J].Journal of Cleaner Production.2003(11):439~444.
    [78] Hamdi N., Srasra E.. Removal of fluoride from acidic wastewater by clay mineral: Effect ofsolid–liquid ratios[J].Desalination.2007(206):238~244.
    [79] Kang W., Kim E., Park J.. Fluoride removal capacity of cement paste[J].Desalination.2007(202):38~44.
    [80] Sujana M.G., Pradhan H.K., Anand S., et al. Studies on sorption of some geomaterials forfluoride removal from aqueous solutions[J].Journal of Hazardous Materials.2009(161):120~125.
    [81] Zhang J., Xie S.D., Ho Y.S.. Removal of fluoride ions from aqueous solution using modifiedattapulgite as adsorbent[J].Journal of Hazardous Materials.2009.
    [82]姜凌,刘艳萍.人工土壤层对氟离子的吸附试验研究[J].水利科技与经济,2005,11(9):553~555.
    [83]郑雁,郑红,赵磊,等.赤泥除氟效果及吸附特性研究[J].有色矿冶,2008,24(5):38~41.
    [84]盛姣.粘土吸附水中氟离子的研究[J].环境科学导刊,2008,27(4):7~8.
    [85]杜冬云,王代芝,赵小蓉,等.累托石对含氟废水中氟离子吸附作用的研究[J].非金属矿,2003,26(3):37~39.
    [86] Mahramanlioglu M., Kizilcikli I., Bicer I.O., et al. Adsorption of fluoride from aqueoussolution by acid treated spent bleaching earth[J].Journal of Fluorine Chemistry.2002(115):41~47.
    [87] Tor A.. Removal of fluoride from an aqueous solution by using montmorillonite[J].Desalination.2006(201):267~276.
    [88] Tor A., Danaoglu N., Arslan G., et al. Removal of fluoride from water by using granular redmud: Batch and column studies[J].Journal of Hazardous Materials.2008.
    [89] Meenakshi S., Sundaram C.S., Sukumar R.. Enhanced fluoride sorption by mechanochemicallyactivated kaolinites[J].Journal of Hazardous Materials.2008(153):164~172.
    [90]王鲁敏,殷军港,邓昌亮,等.褐煤型吸附剂对氟离子的吸附[J].烟台大学学报(自然科学与工程版),2003,16(4):293~297.
    [91]陶庭先.茶叶质铁对氟离子的吸附性能[J].安徽机电学院学报,1998,13(2):31~35.
    [92] Karthikeyan M., Satheeshkumar K.K., Elango K.P.. Removal of fluoride ions from aqueoussolution by conducting polypyrrole[J].Journal of Hazardous Materials.2007.
    [93] Mohan S.V., Ramanaiah S.V., Rajkumar B., et al. Removal of fluoride from aqueous phaseby biosorption onto algal biosorbent Spirogyra sp.-IO2: Sorption mechanism elucidation[J].Journal of Hazardous Materials.2007(141):465~474.
    [94] Ramanaiah S.V., Mohan S.V., Sarma P.N.. Adsorptive removal of fluoride from aqueousphase using waste fungus (Pleurotus ostreatus 1804) biosorbent: Kinetics evaluation[J].Engineering.2007.
    [95] Mohan S.V., Ramanaiah S.V., Rajkumar B., et al. Biosorption of Xuoride from aqueousphase onto algal Spirogyra IO1 and evaluation of adsorption kinetics[J].BioresourceTechnology.2007(98):1006~1011.
    [96]徐景梅,王晓冬.纤维吸附法去除水中氟离子的研究[J].黑龙江环境通报,2000,24(1):33~36.
    [97]陶庭先,吴之传,赵择卿.阴离子交换纤维的制备及其对氟离子交换性能的影响的研究[J].合成纤维,2002,31(3):22~25.
    [98]赵雅萍,王军锋,陈甫华.载Fe(Ⅲ)配位体交换棉纤维吸附剂在去除饮用水中氟离子的应用[J].环境化学,2002,22(1):64~68.
    [99] Zhao Y.P., Li X.Y., Liu L., et al. Fluoride removal by Fe(III)-loaded ligand exchange cottoncellulose adsorbent from drinking water[J].Carbohydrate Polymers.2008(72):144~150.
    [100] Meenakshi S., Viswanathan N.. Identification of selective ion-exchange resin for fluoridesorption[J].Journal of Colloid and Interface Science.2007(308):438~450.
    [101] Sundaram C.S., Meenakshi S.. Fluoride sorption using organic–inorganic hybrid type ionexchangers[J].Journal of Colloid and Interface Science.2009.
    [103] Viswanathan N., Meenakshi S.. Role of metal ion incorporation in ion exchange resin on theselectivity of fluoride[J].Journal of Hazardous Materials.2009(162):920~930.
    [103] Viswanathan N., Meenakshi S.. Effect of metal ion loaded in a resin towards fluorideretention[J].Journal of Fluoride Chemistry.2008(129):645~653.
    [104]石太宏,陈坚,邹书剑.负载型吸附剂在废水处理中的研究进展[J].安全与环境工程,2008,15(4):34~38.
    [105] Crini G., Badot P.. Application of chitosan, a natural aminopolysaccharide, for dye removalfrom aqueous solutions by adsorption processes using batch studies: A review of recentliterature[J].Progress in Polymer Science.2008(33):399~447.
    [106]孙胜玲,王丽,吴瑾,等.壳聚糖及其衍生物对金属离子的吸附研究(上)[J].高分子通报,2005,10(5):58~68.
    [107] Ding S.M., Zhang X.Y.. Synthesis of N,N’-diallyl dibenzo 18-cr-own-6 crown ether crosslinkedchitosan and their adsorption properties for metal ions[J].Reactive and FunctionalPolymers.2006(3):357~363.
    [108] Ruiz M., Sastre A., Guibal E.. Pd and Pt recovery using chitosan gel beads. Influence ofchem. Ical modifications on sorption propertyes[J].Separation Science and Technology.2002(10):2385~2408.
    [109] Wan N., Liang K.H.. Adsorption of Gold(Ⅲ) Ions onto Chitosan and N-CarboxymethylChitosan: Equilibium Studies[J].Industria and Engineering Chemistry Research.1999(38):1411~1414.
    [110]易琼,叶菊招.壳聚糖吸附剂的制备及其性能[J].离子交换与吸附,1996,12(1):19.
    [111]石光,袁彦超,陈炳稔,等.交联壳聚糖的结构及其对不同金属离子的吸附性能[J].应用化学,2005,22(2):195~199.
    [112] Inoue K., Ohto K., Yoshizuka K., et a1. Adsorption of Lead(II) ion on complexane types ofchemically modified chitosan[J].Bulletin of the Chemical Society of Japan.1997(70):2443~2447.
    [113]黄晓佳,王爱勤,袁光谱.N-烷基壳聚糖衍生物的合成及其对阳离子的吸附性能[J].应用化学,2000,1(17):66~68.
    [114] Sun S.L., Wang A.Q.. Adsorption properties of carboxymethyl-chitosan and cross-linkedcarboxymethyl-chitosan resin with Cu(II) as template[J].Separation and PurificationTechnology.2006(3):197~204.
    [115] Athena W., Halling M.D., David G., et al. Metal complexation of chitosan and itsglutaraldehyde cross-linked derivative[J].Carbohydrate Research.2007(3):1189~1201.
    [116] Li B., He J., David G.. Morphology and size control of Ni–Al layered double hydroxidesusing chitosan as template[J].Journal of physical and chemistry of solids.2006(5):1067~1070.
    [117]周利民,王一平,刘峙嵘,等.羧甲基化壳聚糖-Fe3O4纳米粒子的制备及对Zn2+的吸附行为[J].物理化学学报,2006,22(11):1342~1346.
    [118]张艳雅,马启敏.壳聚糖改性吸附剂的制备及其吸附性能研究[J].中国海洋大学学报,2006,36(增刊):153~156.
    [119]陈湘平,俞继华.N-亚水杨基壳聚糖Schiff碱树脂的合成及其吸附性能的研究[J].湿法冶金,2000,19(3):63~66.
    [120] Kurita K., Koyama Y., Nishimura S., et al. Preparation of water-soluble chitin fromchitosan[J].Chemistry Letters.1989(2):1597~1598.
    [121] Lee S.T., Mi F.L., Shen Y.J.. Equilibrium and kinetic studies of copper(Ⅱ) ion uptake bychitosan-tripolyphosphate chelating resin[J].Polymer.2001(5):1879~1892.
    [122] Bosso S.T., Enzweiler J.. Evaluation of heavy metal removal from aqueous solution ontoscolecite[J].Water Research.2002(36):4795~4800.
    [123] Dzul E.M., Saucedo M.T., Navarro M.R., et al. Cadmium sorption on chitosan sorbents:kinetic and equilibrium studies[J].Hydrometallurgy.2001(61):157~167.
    [124] Wu J.M., Wang Y.Y.. Immobilized chitosan as a selective absorbent for the nickel removal inwater sample[J].Journal of Environmental Sciences.2003(5):633~638.
    [125] Dambies L., Vincent T., Guibal E.. Treatment of arsenic-containing solutions using chitosanderivative: uptake mechanism and sorption performances[J].Water Research.2002(36):3699~3710.
    [126] Jaafari K., Ruiz T., Elmaleh S., et al. Simulation of a fixed bed adsorber packed withprotonated cross-linked chitosan gel beads to remove nitrate from contaminated water[J].ChemicalEngineering Journal.2005(1):199~208.
    [127] Chassary P., Vincent T., Guibal E., et al. Metal anion sorption on chitosan and derivativematerials: a strategy for polymer modification and optimum use[J].Journal of EnvironmentManagement.2004(60):137~149.
    [128] Cardenas G., Orlando P., Edelio T.. Synthesis and applications of chitosan mercaptanes asheavy metal retention agent[J].International Journal of Biolog ical Macromolecules.2001(2):167~174.
    [129] Rojas G., Silva O., Flores A.A., et al. Adsorption of chromium onto cross-linked chitosan[J].Separation and Purification Technology.2005(1):31~36.
    [130] Arrascue M.L., Garcia H.M.. Gold sorption on chitosan derivatives[J].Hydrometallurgy.2003(1):191~200.
    [131]刘芳,董世化,徐羽梧.带希夫碱和酰肼基团的壳聚糖螯合树脂的合成及其吸附性能[J].环境化学,1996,15(3):207~2131.
    [132]孙昌梅,曲荣君,王春花,等.基于壳聚糖及其衍生物的金属离子吸附剂的研究进展[J].离子交换与吸附,2004,20(2):184~192.
    [133] Kyzas G.Z., Lazaridis N.K.. Reactive and basic dyes removal by sorption onto chitosanderivatives[J].Journal of Colloid and Interface Science.2009(331):32~39.
    [134] Monvisade P., Siriphannon P.. Chitosan intercalated montmorillonite: Preparation,characterization and cationic dye adsorption[J].Applied Clay Science.2009(42): 427~431.
    [135] Annadurai G., Ling L.Y., Lee J.F.. Adsorption of reactive dye from an aqueous solution bychitosan: isotherm, kinetic and thermodynamic analysis[J].Journal of Hazardous Materials.2008(152):337~346.
    [136] Sirlei R., Laranje ira C.M., Riela H.G., et al. Cross-linked quaternary chitosan as anadsorbent for the removal of the reactive dye from aqueous solutions[J].Journal of HazardousMaterials.2008(155):253~260.
    [137] Uzun I.. Kinetics of the adsorption of reactive dyes by chitosan[J].Dyes and Pigments.2006(70):76~83.
    [138]王应红,张知锦,向清祥,等.含铬革废屑-壳聚糖-戊二醛对酸性红B1的吸附研究[J].水处理技术,2008,34(5):29~33.
    [139] Cheung W.H., Szeto Y.S., McKay G.. Enhancing the adsorption capacities of acid dyes bychitosan nano particles[J].Bioresource Technology.2009(100):1143~1148.
    [140] Chiou M.S., Li H.Y.. Adsorption behavior of reactive dye in aqueous solution on chemicalcross-linked chitosan beads[J].Chemosphere.2003(50):1095~1105.
    [141]苏丽政,李明春,辛梅华,等.牛血清白蛋白在交联壳聚糖微球上的吸附研究[J].化工技术与开发,2008,37(7):4~9.
    [142]施晓文,肖玲,杜予民,等.球形改性壳聚糖的制备及吸附牛血清蛋白性能的研究[J].武汉大学学报(理学版),2002,48(2):188~193
    [143]蒋挺大,甘友新,张春萍.交联壳聚糖对氨基酸的吸附性能[J].离子交换与吸附,1994,10(2):127~133
    [144]程霜,牛梅菊,薛.壳聚糖对油脂中脂肪酸的吸附研究[J].食品工业科技,2002,23(10):13~15.
    [145]谢英,李明春,辛梅华,等.烷基化改性壳聚糖制备条件对酚类化合物吸附的影响[J].应用化学,2008,25(10):1201~1205.
    [146]辛梅华,李明春,兰心仁.改性壳聚糖对酚类污染物的竞争吸附研究[J].环境科学与技术,2007,30(7):71~74.
    [147]陈天明,王世和,许琦,等.膨润土负载壳聚糖吸附剂对苯酚的吸附性能研究[J].化工时刊,2006, 20 (7):1~3.
    [148]卢丽霞,雷彤,林群龙,等.壳聚糖复合微球的制备及其对F-的吸附[J].化工时刊,2002,18(2):45~46.
    [149] Menkouchi M.A., Annouar S., Tahaikt M., et al. Fluoride removal for underground brackishwater by adsorption on the natural chitosan and by electrodialysis[J].Desalination.2007(212):37~45.
    [150]褚衍洋,苗娟,姜勇.壳聚糖混凝剂除氟的研究[J].安全与环境工程,2007,14(3):43~46.
    [151] Ma W., Ya F.Q., Han M., et al. Characteristics of equilibrium, kinetics studies foradsorption of fluoride on magnetic-chitosan particle[J].Journal of Hazardous Materials.2007(143):296~302
    [152] Kamble S.P., Jagtap S., Labhsetwar N.K., et al. Defluoridation of drinking water usingchitin, chitosan and lanthanum-modified chitosan[J].Chemical Engineering.2006(297):38~45.
    [153] Viswanathan N., Meenakshi S.. Selective sorption of fluoride using Fe(III) loadedcarboxylated chitosan beads[J].Journal of Fluorine Chemistry.2008(129):503~509.
    [154] Sundaram C.S., Viswanathan N., Meenakshi S.. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite[J].Bioresource Technology.2008(99): 8226~8230.
    [155] Viswanathan N., Sundaram C.S., Meenakshi S.. Removal of fluoride from aqueous solutionusing protonated chitosan beads[J].Journal of Hazardous Materials.2009(161): 423~430.
    [156] Sundaram C.S., Viswanathan N., Meenakshi S.. Defluoridation of water using magnesia/chitosan composite[J].Journal of Hazardous Materials.2009(163):618~624.
    [157] Viswanathan N., Sundaram C.S., Meenakshi S.. Sorption behaviour of fluoride oncarboxylated cross-linked chitosan beads[J].Colloids and Surfaces B: Biointerfaces.2009(68):48~54.
    [158] Jagtap S., Thakre D., Wanjari S., et al. New modified chitosan-based adsorbent fordefluoridation of water[J].Journal of Colloid and Interface Science.2009
    [159]彭安.稀土元素的环境化学及生态效应[M].北京:中国环境出版社,2003:1~10.
    [160]徐光宪.稀土[M].北京:冶金工业出版社,2002:29~133.
    [161] Takahashi Y., Hirata T., Shimizu H., et al. A rare earth element signature of bacteria innatural waters[J].Chemical Geology.2007(244):569~583.
    [162] Tang J.W., Karen H.J.. Speciation of rare earth elements in natural terrestrial waters:assessing the role of dissolved organic matter from the modeling approach[J]Geochimica etCosmochimica Acta.2003(67):2321~2339.
    [163] Wood S.A., Gammons C.H., Parker S.R.. The behavior of rare earth elements in naturallyand anthropogenically acidified waters[J].Journal of Alloys and Compounds. 2006(18):161~165.
    [164] Takahashi Y., Chatellier X., Hattori K.H., et al. Adsorption of rare earth elements ontobacterial cell walls and its implication for REE sorption onto natural microbial mats[J].ChemicalGeology.2005(219):53~67.
    [165] Tanaka D.A., Kerketta S., Llosatanco M.A.. et al. Adsorption of fluoride ion on thezirconium(IV) complexes of the chelating resins functionalized with amine-N-acetate ligands[J].Separation Science and Technology.2002(4):877~894.
    [166]于桂生,暴大鹏,康敏.新型氟离子吸附剂活性二氧化钛除氟的研究[J].天津师范大学学报.2001,21(4):41~43.
    [167] Raichur A.M., Basu M.J.. Adsorption of fluoride onto mixed rare earth oxides[J].Separationand Purification Technology.2001(24):121~127.
    [168]于桂生.氟离子吸附剂活性氧化锆的除氟研究[J].天津化工.2003,17(4):49~51.
    [169]季桂娟,赵勇胜.活性TiO2的制备与去除地下水中氟离子(F-)性能的研究[J].吉林大学学报(地球科学版).2006,36(1):148~153.
    [170]宋宽秀,李晓云,颜秀茹,等.水合氧化铈的表征及其对氟离子的吸附作用[J].天津大学学报.1999,32(6):739~745.
    [171] Shuzo T., Harron M.J.. Removal of fluoride ion from aqueous solutions by multival metalcompounds[J].International Journal of Environmental Studies.1995(48):17~28.
    [172] Wasay S.A., Tokunaga S., Park S.W.. Removal of hazardous anions from aqueous solutionsby La(III)- and Y(III)-impregnated alumina[J].Seperation Science Technology.1991(31):1501~1514.
    [173]刘瑞霞,杨鸿霄.负载镧纤维吸附剂对氟离子的吸附性能[J].环境化学,2000,21(4):34~37.
    [174]徐应明,戴晓华,金家志.活性氧化铈/介孔分子筛除氟剂对环境水体的脱氟行为研究[J].农业环境保护,2001,20(1):48~50.
    [175]余春香,周钰明.负载镧氟离子吸附剂的制备及其性能研究[J].中国稀土学报,2002,10(20): 125~127.
    [176]张昱,魏国,杨敏,等.锆负载型树脂用于含氟废水深度处理的研究[J].环境污染治理技术与设备, 2002,3(5): 45~48.
    [177]焦中志,张昱,杨敏,等.稀土铈基无机吸附剂对氟的吸附性能[J].环境化学,2002,21(4):365~371.
    [178]焦中志,陈忠林,杨敏,等.无机铈基吸附剂的合成及对氟的吸附研究[J].南京理工大学学报, 2004,28(5): 542~546.
    [179] Zhou Y.M., Yu C.X., Shan Y.. Adsorption of fluoride from aqueous solution on La3+-impregnated cross-linked gelatin[J].Separation and Purification Technology.2004(36): 89~94.
    [180]詹予忠,朱小丽,李玲玲,等.硅胶负载氧化锆的吸附除氟研究[J].郑州大学学报(工学版).2007,28(4):20~23.
    [181]王桂萍,王桂燕,李锋,等.氧化锆负载树脂氟离子吸附剂的性能研究[J].水处理技术.2008,34(11):32~35.
    [182] Stephan A.M., Nahm K.S.. Review on composite polymer electrolytes for lithiumbatteries[J].Polymer,2006(47):5952~5964.
    [183] Simon W.. HSAB matching and mismatching in selective catalysis and synthesis [J].Tetrahedron, 2002(58):1017~1050.
    [184] Kurita K.. Controlled functionalization of the polysaccharide chitin[J].Progress in PolymerScience.2001(26):1921~1971.
    [185] Viswanathan N., Meenakshi S.. Enhanced fluoride sorption using La (Ⅲ) incorporatedcarboxylated chitosan beads[J].Journal of Colloid and Interface Science.2008(322):375~383.
    [186]杨兴华,印春生,潘忠孝.影响镧系金属离子Ln3+定量构效关系的神经网络研究[J].高等学校化学学报,2001,22(9):1466~1475.
    [187]印春生,赵巍,杨兴华,等.影响镧系金属离子的结构参数与配合物稳定常数的关系研究[J].湘潭大学自然科学学报,2001,23(1):44~48.
    [188]郭敏杰,刘振,李梅.壳聚糖吸附重金属离子的研究进展[J].化工环保,2004,24(4):262~265.
    [189] Hu C.Y., Lo S.L., Kuan W.H., et al. Treatment of high fluoride-content wastewater bycontinuous electrocoagulation-flotation system with bipolar aluminum electrodes[J].Separationand Purification Technology.2008(60):1~5.
    [190]李继平,韩吉慧,宋立民,等.壳聚糖对镧(Ⅲ)离子的吸附性能研究[J].辽宁化工,2002,31(11):469~471.
    [191]李继平,宋立民.壳聚糖对钕(Ⅲ)离子的吸附性能研究[J].辽宁化工,2001,30(10):442~444.
    [192] Fan X., Parker D.J., Smith M.D.. Adsorption kinetics of fluoride on low cost materials[J].Water Research, 2003(37):4929~4937.
    [193]王莉莉,杨宏伟,祝万鹏,等.粒径对水合氧化镧除氟效果的影响[J].环境科学研究,2009,22(1):103~107.
    [194] Hernandez R.B., Franco A.P., Yola O.R., et al. Coordination study of chitosan andFe3+[J].Journal of Molecular Structure.2008(877):89~99.
    [195]朱再盛,袁彦超,陈炳稔.交联壳聚糖树脂与Zn2+的配位作用[J].离子交换与吸附,2007,23(5):469~474.
    [196]蒋挺大.壳聚糖[M].北京.化学工业出版社,2006:21~30.
    [197]刘智,刘新海,曹赤诚.氯化镧与聚氨酯相互作用的FTIR研究[J].光谱学与光谱分析,2004, 24(5):536~538.
    [198] Majeti N.V., Kumar R.. A review of chitin and chitosan applications [J].Reactive andFunctional Polymers.2000(46):1~27.
    [199]田冶,焦延鹏,陈义康,等.不同脱乙酰度对壳聚糖表面物理及吸附性能的影响[J].广州化学,2005,(30)2:20~25.
    [200] Dutta S., Mohapatra P.K., Ramnani S.P., et al. Use of chitosan derivatives as solid phaseextractors for metal ions [J].Desalination.2008(232):234~242.
    [201] Zhao Y.P., Li X.Y., Liu L., et al. Fluoride removal by Fe(III)-loaded ligand exchange cottoncellulose adsorbent from drinking water[J].Carbohydrate Polymer.2008 (72):144~150.
    [202] Wang S.G., Sun X.F., Liu X.W., et al. Chitosan hydrogel beads for fulvic acid adsorption:Behaviors and mechanisms[J].Chemical Engineering Journal.2008 (12):239~247.
    [203] Sneha J., Dilip T., Snehal W., et al. New modified chitosan-based adsorbent fordefluoridation of water[J].Journal of Colloid and Interface Science.2009 (322):280~290.
    [204]孙铁珩.污染生态学[M].北京:科学出版社,2001.1~10.
    [205] Amini M., Mueller K., Abbaspour K.C., et al. Statistical modeling of global geogenicfluoride contamination in groundwaters[J].Environmental Science & Technology.2008(42):3662~3668.
    [206] Padmavathy S., Amali J., Raja R.E., et al. A study of fluoride level in potable water ofSalem district and an attempt for defluoridation with lignite[J].Indian Journal of EnvironmentalProtection.2003(23):1244~1247.
    [207] Alvarez-Ayuso E., Querol X.. Study of the use of coal fly asd as an additive to minimisefluoride leaching from FGD gypsum for its disposal[J].Chemosphere.2008(71):140~146.
    [208] Gupta V.K., Ali I., Saini V.K., et al. Defluoridation of wastewaters using waste carbonslurry[J].Water Research.2007(41):3307~3316.
    [209] Mitali S., Aparna B., Partha P.P., et al. Use of laterite for the removal of fluoride fromcontaminated drinking water[J].Journal of Colloid and Interface Science.2005(302):432~441.
    [210]陈艳艳,周文斌,黄克玲,等.无机类吸附剂处理含氟废水的研究[J].江西化工,2005,3(1):23~27.
    [211] Lv L., He J., Ma W., et al. Treatment of high fluoride concentration water by MgAl-CO 3layered double hydroxides: kinetics and equilibrium studies[J].Water Research,2007(41):1534~1542.
    [212] Mandal S., Mayadevi S.. Defluoridation of water using as synthesized Zn/Al/Cl anionic clayadsorbent: equilibrium and regeneration studies[J]. Journal of Hazardous Materials.2009.
    [213]王国建,王东田,陈霞,等.吸附法除氟技术的原理与方法[J].环境科学,2008,33(8):121~125.
    [214] Wasay S.A., Tokunaga S.. Removal of hazardous anions from aqueous solutions by La(Ⅲ)and Y(Ⅲ)-impregnated alumina [J].Separation Science and Technology.1996(10):1501.
    [215] Meena A.K., Mishra G.K., Rai P.K., et al. Removal of heavy metal ions from aqueoussolutions using carbon aerogel as an adsorbent[J].Journal of Hazardous Materials.2005(B122):161~170.
    [216] Wu F.C., Tseng R.L., Juang R.S.. Comparative adsorption of metal and dye on flake-andbead-types of chitosans prepared from fishery wastes[J].Journal of Hazardous Materials.2000(B73): 63~75.
    [217] Uzun I., Guze l F.. Rate studies on the adsorption of some dyestuffs and p-nitrophenol bychitosan and monocarboxymethylated (MCM)-chitosan from aqueous slution[J].Dyes Pigments.2005(118): 141~145.
    [218] Crini G., Badot P.M.. Application of chitosan, a natural aminoplysaccharide, for dyeremoval from aqueous solutions by adsorption processes using batch studies: A review of recentliterature[J].Progress in Polymer Science.2008(33):399~447.
    [219] Lima I.S., Ribeiro E.S., Airoldi C.. The use of chemically modified chitosan with succinicanhydride in the methylene blue adsorption[J].Qium Nova,2006(29):501~506.
    [220] Sagheer F.A., Sughayer M.A., Muslim S., et al. Extraction and characterization of chitin andchitosan from marine sources in Arabian Gulf[J].Carbohydrate Polymers.2009.
    [221]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.173.
    [222] Sarkar M., Benerjee A., Pramanick P.P., et al. Design and operation of fixed bed lateritecolumn for the removal of fluoride from water[J].Chemical Engineering Journal,2007(131):329~335.
    [223] Haim D., Cil A., David A.. Kinetics of surfactant adsorption: the free energy approach[J].Collides and Surfaces. A: physicochemical and Engineering Aspects,2001(183): 259~276.
    [224]张莉平.特殊水质处理技术[M].北京:化学工业出版社,2005.189.
    [225]王九思.水处理化学[M].北京:化学工业出版社,2002.153~201.
    [226] Ho Y.S.. Review of second-order models for adsorption systems[J].Journal of HazardousMaterials.2006(B136):681~689.
    [227] Saiers J.E., Hornberger G.M., Liang L.. First- and second-order kinetics approaches formodeling the transport of colloidal particles in porousmedia[J].Water Resources Research.1994(30):2499~2506.
    [228] Limousin G., Gaudet J.P., Charlet L., et al. Sorption isotherms: A review on physical bases,modeling and measurement[J].Applied Geochemistry.2007(22):249~275.
    [229] HO Y.S., Mckay G.. A comparison of chemisorption kinetics models applied to pollutantremoval on various sorbents[J].Process Safety and Environmental Protection.1998(76):332~341.
    [230] Rudzinski W., Panczyk T.. Kinetics of isothermal adsorption on energetically heterogeneoussolid surfaces: a new theoretical description based on the statistical rate theory of interfacialtransport[J].Journal of Physical Chemistry B.2000(104):9149~9162.
    [231] Paria S., Khilar K.C.. A review on experimental studies of surfactant adsorption atthehydrophilic solid–water interface[J].Advances in Colloid and Interface Science.2004(110):75~95.
    [232] Kilislioglu A., Bilgin B.. Thermodynamic and kinetic investigations of uranium adsorptionon amberlite IR-118H resin[J].Applied radiation and isotopes.2003(5):155~160.
    [233] Mohan S.V., Ramanaiah S.V., Rajkumar B., et al. Removal of fluoride from aqueous phaseby biosorption on to algal biosorbent spirogyra Sp.–102: sorption mechanism elucidation[J].Journal of Hazardous Materials.2007(141):465~474.
    [234] Das D.P., Das J., Parida K.. Physicochemical characterization and adsorption behavior ofcalcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueoussolution[J].Journal of Colloid and Interface Science.2003(261):213~220.
    [235] Ghorai S., Pant K.K.. Investigation on the column performance of fluoride adsorption byactivated alumina in a fixed bed[J].Chemical Engineering Journal.2004(98): 165~173.
    [236] Biswas K., Bandhoyapadhyay D., Ghosh U.C.. Adsorption kinetics of fluoride on iron(III)–zirconium(IV) hybrid oxide [J].Adsorption.2007(13):83~94.
    [237] Biswas K., Saha S.K., Ghosh U.C.. Adsorption of fluoride fromaqueous solution by asynthetic iron(III)–aluminum(III) mixed oxide[J]. Industrial & Engineering Chemistry Research.2007(46):5346~5356.
    [238] Biswas K., Gupta K., Ghosh U.C.. Adsorption of fluoride by hydrous iron(III)–tin(IV)bimetal mixed oxide from the aqueous solutions[J].Chemical Engineering Journal.2008.
    [239] Daifullah A.A.M., Yakout S.M., Elreefy S.A.. Adsorption of fluoride in aqueous solutionsusing KMnO4–modified activated carbon derived from steam pyrolysis of rich straw[J].Journal ofHazardous Materials.2007(147):633~643.
    [240] Gopal V., Elango K.P.. Equilibrium kinetics and thermodynamics studies of adsorption offluoride onto plaster of paris[J].Journal of Hazardous Materials.2007(141):98~105.
    [241] Oguz E.. Equilibrium isotherms and kinetics studies for the sorption of fluoride on lightweight concrete materials[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects.2007(295):258~263.
    [242] Tor A.. Removal of fluoride from aqueous solution by using montmorillonite[J].Desalination.2006(201):267~276.
    [243] Islam M., Patel R.K.. Evaluation of removal efficiency of fluoride from aqueous solutionusing quick-lime[J].Journal of Hazardous Materials .2007(143):303~310.
    [244] Sarkar M., Banerjee A., Pramanik P.P., et al. Use of laterite for the removal of fluoride fromcontaminated drinking water[J].Journal of Colloid and Interface Science.2006(302):432~444.
    [245] Cheung W.H., Szeto Y.S., Mckay G.. Intraparticle diffusion processes during acid dyeadsorption onto chitosan[J].Bioresource Technology,2007(98):2897~2904.
    [246] Kadirvelu K., Goel J., Rajagopa l C.. Sorption of lead, mercury and cadmium ions in multicomponentsystem using carbon aerogel as adsorbent[J].Journal of Hazardous Materials .2008(153):502~507.
    [247]倪嘉瓒.稀土生物无机化学[M].北京:科学出版社,1995
    [248]王晓蓉.稀土元素的环境化学研究现状及发展趋势[J].环境化学,1991,10(6):73~74
    [249]杨频,魏春英.稀土与细胞、器官、组织的作用及其生理效应[J].化学通报,1996,7:14~17
    [250]彭安,王文华.环境生物无机化学[M].北京:北京大学出版社,1991
    [251]杨维东,王艇,雷衡毅,等.稀土生物效应研究进展[J].稀土,2000,21(3):62~70.
    [252]凤志慧,王玺,张孙曦,等.稀土元素La、Gd和Ce对培养大鼠细胞生物学效应的研究[J].中华核医学杂志,2000,21(2):111~114.
    [253]程驿,沈赞聪,张强,等.稀土离子促进胰岛素经大鼠肺部吸收及降血糖的效应[J].科学通报,1999,44(22):2393~2397.
    [254]纪云晶,栗建林.我国稀土某些生物学效应的研究概况[J].卫生毒理学杂志,2000,14(1):23~28.
    [255]杨辉,嵇庆,张锡然,等.氯化钇和氯化镨引起的人淋巴细胞DNA分子损伤的研究[J].遗传,1998,20(2):16~18.
    [256]杨维东,罗琛,田雪梅,等.Ce(NO3)3对不同细胞DNA损伤作用研究[J].中山大学学报,1999,38(5):50~53.
    [257]朱为方,徐素琴,张辉,等.稀土区儿童智商调查研究-赣南稀土区生物效应研究[J].科学通报,1996,41(10):914~916.
    [258]张君倩,孔聘颜,钟广涛,等.稀土元素对小白鼠的生物效应[J].稀土,2000,21(4):73~74.
    [259]申治国,杨维东,刘洁生,等.长期喂饮稀土Y对小鼠内脏组织中微量元素含量的影响[J].中国卫生检验杂志,2001,11(6):641~642.
    [260]王洋,聂刘旺,陈文,等.硝酸镧在小鼠肝中的积累及遗传毒理研究[J].应用生态学报,2005,16(1):133~136.
    [261]秦俊法,陈祥友,李增禧.稀土的生物学效应[J].广东微量元素科学, 2002, 9 (3): 1~16.
    [262]崔明珍,纪云晶,董辛尧,等.稀土硝酸盐的慢性毒性及致癌性试验[J].中国稀土学报, 1987,5 (2): 67~71
    [263]卢国埕,高兆华,孟玉秀等.我国不同类型稀土矿区环境卫生学调查:矿区农民自然生活环境和头发中稀土水平[J].环境科学,1995,16(4):78~82.
    [264]姬生.重要的战略资源——稀土元素[J].科学咨询(决策管理),2007,8:77.
    [265]刘余九.中国稀土产业现状及发展的主要任务[J].中国稀土学报,2007,25(3):257~263.
    [266]颜世宏,李宗安,赵斌,等.我国稀土金属产业现状及发展前景[J].稀土,2005, 26(2): 8.
    [267]国土资源部矿产管理司.中国矿产资源主要矿种开发利用水平与建议[M].北京:冶金工业出版社, 2002.
    [268]刘玉,杨利国,陈祖义,等.稀土在动物上的应用及其生物学效应研究进展[J].动物科学与动物医学,2000,17(4):19~21.
    [269]陆荣莉,马晓东,巩宝珍,等.山东省地方氟病分布与地质环境关系探讨[C].山东省地质学会.地质与可持续发展,华东六省一市地学科技论坛文集,2003:158~161.
    [270]张新平,徐金欣,邢宝石,等.山东省高密市高氟区现状及高氟地下水形成机制探讨[J].山东国土资源,2007,23(10):22~24.
    [271]冯超臣,黄文峰.鲁西南平原高氟地下水水文地球化学特征[J].山东国土资源,2005,21(5):39 42.
    [272]鲁孟胜,吴恩江,李明建.鲁西南浅层高氟地下水成因的水文地球化学研究[J].煤田地质与勘探,2001,29(5):39 41.
    [273]孙殿军,陈志,李忠之,等.山东省改水降氟考察报告[J].中国地方病学杂志,2001,20(2):134~136.
    [274]晏维,肖邦忠,陈静,等.除氟降氟技术措施推广应用示范研究基线调查结果分析[J].热带医学杂志,2008,9(9):941~945.
    [275]李彩霞.山东省高密地区高氟地下水的成因浅析[J].山东国土资源,2007,23(8):8~11.
    [276]李彩霞,于兆安,吴衍华,等.山东高密地区高F区水文地球化学特征[J].地质通报,2008,27(5):688~699.
    [277] Rubel J.F., Shupe I., Peterson J.L., et al. The Removal of excess fluoride from drinkingwater by the activated alumina method[J].Paragon Press, Salt Lake City, 1983:345.
    [278] Yang M., Takayuki H., Nobuyuki H., et al. Fluoride removal in a fixed bed packed withgranular calcite[J].Water Research,1999(33):3395~3402.
    [279] Mahramanlioglu M., Kizilcikli I., Bicer I.O.. Adsorption of fluoride from aqueous solutionby acid treated spent bleaching earth[J].Journal of Fluorine Chemistry,2002(15):41~47.
    [280] Bhargava D.S., Killedar D.J.. Fluoride adsorption on fishbone charcoal through a movingmedia adsorber[J].Water Research,1992(26):781~788.
    [281] Cengeloyuansuglu Y., Kir E., Ersoz M.. Removal of fluoride from aqueous solution by usingred mud[J].Separation and Purification Technology,2002(28):81~86.
    [282] Gupta V.K., Ali I., Saini V.K.. Defluoridation of wastewaters using waste carbon slurry[J].Water Research.2007(41):3307~3316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700