用户名: 密码: 验证码:
静观2区块高凝油油藏流动单元预测表征及剩余油分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高凝油油藏是一类较为特殊的油藏类型,其驱替过程与一般稀油油藏的区别之一就是要考虑高凝油自身的特性。针对该类型油藏的表征、空间预测、三维地质建模等研究方面还比较薄弱,缺乏系统的研究和深入分析。辽河油田静观2区块是一个典型的高凝油油藏,其原油凝固点高于44℃,平均含蜡量38.34%,属世界少有原油类型。本文以静观2区块高凝油油藏为例,基于地质、岩心、钻井、地震、测井、测试和化验分析等大量基础资料,在层序地层学、沉积学、储层地质学、测井地质学、地质统计学、岩石学、石油开发地质学等理论的指导下,开展针对研究区储集层的高分辨率地层对比、沉积体系与沉积相分析、物性及流动单元预测表征和水驱流线数值模拟及热采模拟的综合研究。研究过程同时将地学数据挖掘中的新概念、新方法和新技术同计算机程序应用相结合,全面准确地对静观2区块储集层未取心井段流动单元进行了预测识别,进而通过指示模拟技术刻画表征了研究区流动单元三维精细地质模型,并在流动单元识别、划分的基础上进行渗透率分单元回归解释,同时将地质模型植入地质体,最终完成了三维定量化地质物性模型,形成了一套针对该类型油藏储层三维定量化地质建模的思路和方法,为下一步该种类型油藏油气勘探和储层预测提供了借鉴依据。通过基于流动单元的流线数值模拟,弄清了静观2区块剩余油同注采流线及流动单元的配伍关系。在上述研究基础上,结合静观2块油藏注冷水开发对储层的伤害实验试验资料及注水井地层带温度场数学模型,对区块最佳地面注水温度进行寻优。同时结合油藏测试资料,通过热采物理模拟研究分析原油的高含蜡、高凝固点特性对原油渗流过程的影响,采用数值模拟方法,研究了不同注水温度对油藏开发效果的影响,并对各开发方案进行了预测。
     论文总共分为8个部分,第一部分主要总结了流动单元的国内外研究现状及发展趋势,同时对目前主流的一些运用在流动单元预测上的地学数据挖掘方法进行了归纳和总结。针对工区储层的认识,总结了工区储集层流动单元的认识上的一些问题。进一步总结归纳了油藏剩余油分布模式、高凝油油藏开发模式以及高凝油油藏剩余油分布规律的研究等一些影响剩余油分布的主要因素以及研究区内剩余油分布研究仍存在的若干问题,同时对文章后续研究内容提出了规划和展望。
     第二个部分应用Cross的旋回性层序地层学分析方法进行了静观2区块高分辨率地层格架的构建,采用地质-地震-测井联合解释的技术手段,划分、识别和对比了不同旋回的时间地层单元。通过岩性垂向序列、测井地层综合响应和地震反射信息,确定静观2区块沙三段时期存在的5个长期基准面旋回组成的层序地层格架,其中SQ5相当于S31地层,在本区多被剥蚀掉;SQ4由3个中期基准面旋回、8个短期基准面旋回组成;SQ3由3个中期基准面旋回、7个短期基准面旋回组成;SQ2由4个中期基准面旋回、4个短期基准面旋回组成,即在沙河街组沉积时期主要发生了3次明显的水进。
     针对静观2区块沉积砂体,研究中首先分析了研究区沉积背景、沉积环境、物源供给以及岩石电性特征,在此基础上,重点进行了沉积体系的划分、识别和沉积模式的分析。
     在资料综合处理,构造、沉积相综合研究以及大量人工制图分析的基础上,建立了静观2区块构造、沉积相三维定量化模型。在构造地质建模中,采用层厚插值面控制窜层难点,最终建立的构造模型保持了小层之间构造特征及构造关系在三维空间上的协调性。沉积微相模型的构建则采用沉积趋势面面控的序贯指示模拟方法来构建,模拟结果较理想。
     第三个部分依据研究靶区油藏地质情况,依据压汞分析资料建立流动层带指标FZI同排驱压力(Pd)的关系,优选同FZI相关性较高的参数同时参与流动单元划分聚类,得到HU#5、HU#6、HU#7及HU#8四类基本方案。
     根据Spearman非参数相关系数法对取心井的测井参数同FZI值进行相关分析,优选测井曲线构建测井频率交会区间,结合贝叶斯推论编写软件计算后验概率基库并对储层未取心井段的流动单元进行预测和回判验证,并同成熟的神经网络模式识别技术判别结果作对比,预测正判率较接近,识别效果好,具有一定推广应用价值。
     流动单元井数据准备完善之后,采用序贯指示模拟对工区储层进行流动单元三维定量化建模,同时分单元分层位拟合变差及概率。最终进一步结合地质理念分动、静态两个方面对工区流动单元预测模型进行验证分析。动态验证过程共总结9口生产井数据,结合井史分析模型合理性;静态验证则主要通过两口井联井剖面上岩性、孔喉半径及流动单元的对应情况来进行分析。
     第四个部分主要构建静观2区块孔隙度、渗透率解释模型,同时将数学模型植入地质体以建立研究区三维定量化物性模拟模型。孔隙度解释模型的回归采用的是二元回归法,回归方程应用效果较好。以沉积相控制为前提,逐层逐相对孔隙度数据进行分析,采用序贯高斯模拟的方法对研究区孔隙度分布进行定量模拟。
     渗透率解释模型的建立则摒弃了传统的预测方法,而是根据储层岩心流动单元的分类,运用指数及幂律关系模型对每类储层分别建立渗透率孔隙度关系式,预测结果整体乐观,最终优选拟合优度较好的关系模型参与渗透率的预测计算,并将数学模型植入地质体。分别从平面和垂向上验证渗透率三维模型的精确性,结果表明,渗透率三维模型的总体分布特征同工区沉积相发育规模吻合,抽稀后的重建剖面信息亦证明模型的可靠性。
     综合分析研究区各种地质资料,运用确定性建模手法构建了储层净毛比模型,为后续数模工作打下基础。
     第五个部分运用油藏工程的方法对工区储层可采储量及最终采收率进行了预测。从总结归纳四种不同的递减模型出发,对比分析了不同模型参数的意义,同时寻优适合静观2块高凝油油藏产量递减规律的模型。
     针对研究区实际开发数据对比计算发现,Li-Horne模型模拟结果小于Arps模型指数模拟计算结果,Correa模型计算结果与数模预测值拟合较好。研究结果表明,Arps模型的运用受限,一般以没有重大措施调整为基础;水驱高凝油含水上升过快则可能导致Li-Horne模型计算结果偏低;同时在工区油藏条件的基础上扩充了Correa模型β值的选值范围,即超出-1≤β≤0的值域范围同样适用,且p值越低,递减规律越接近高凝油油藏递减规律,在同类型油藏当中具有一定推广应用价值。
     第六个部分总结了油藏开发历程及油水两相条件下流线模型的数学模型同时确定了流线的推导过程。最终结合静观2区块地质模型、流体及渗流特征参数、生产数据,运用流线数值模拟器对研究区油水运动规律进行模拟及拟合。
     通过对油藏开发动态分析和基于流动单元的油藏流线数值模拟,较准确地预测了剩余油分布,同时分析了剩余油同水驱注采流线及流动单元的配伍关系,认为油藏经历5次重大调整至今,水驱流线基本覆盖全区,而剩余油主要富集在注入流线波及较差的流动单元片区(层内层间非均质剩余油)、不同类型流动单元的交触位置、注采井网不完善区域(井间滞留区)以及断层边部地区等。
     针对静观2区块开发后期剩余油的复杂分布情况,结合区内注水流线及流动单元同剩余油分布的配伍关系及地质资料进行总结归纳,分别从地质因素、油水互驱因素及开发因素这三个方面总结了影响剩余油分布的主要控制原因。
     第七个部分通过油藏注冷水开发对储层伤害的试验研究、热采物理模拟及热采数值模拟研究,指出了静观2区块部分生产井采收率低下主要是与流体性质有关,生产井和注水井近井地带储层冷伤害严重,油藏流体呈非牛顿流体状态。地层伤害的主要原因是由于注采井井底温度下降导致气体膨胀,从而导致原油中的石蜡结晶、析出沉淀。热物理模拟分别进行了水驱油实验及相渗实验,通过实验发现高凝油油藏水驱油效率明显受原油粘度和实验温度的影响,随着原油粘度的降低和温度的升高,驱替效率逐渐提高;另外驱替效率与岩石本身结构有关,分选差、中值半径小、泥质含量高的岩心,水驱油效率低;随着实验温度的升高,高凝油油藏相渗曲线形态逐渐向右偏移,两相区变宽,等渗点含水饱和度增加,束缚水饱和度升高,残余油饱和度则显著降低:当温度低于析蜡点温度时,相对渗透率曲线随着压力梯度增大向右移动,两相区变宽,增加地层压力梯度可以提高采收率。热物理实验使得工区油藏流体性质认识变得更加清晰,同时实验数据亦为后面热采数值模拟做准备。
     归纳考虑水井中与油层内传质传热的注水井地层带内温度场的数学模型,通过编程计算出不同注水温度下井筒及井筒外地层的深-温交汇图版,从研究结果可以看出,注入水在到达目的层之前,热损影响所占权重较大。到达目的层后,由于受油藏温度影响,井筒温度逐渐回升,筒外地层温度在注入水和油藏本身热能的共同作用下,呈现恢复趋势。注入温度80℃图版反映出注水温度在此温度以上,则可保持井筒及筒外地层温度维持在平均析蜡温度(60℃)以上,而温度超过80℃,油层温度增高效果差别没有太大异常,该现象亦在后面热采数模中得到了验证。继续增高注入温度,势必要增加供热成本,故优选80℃作为地面最佳注水温度,即可在兼顾生产成本限制的同时降低储层冷伤害,以达到增产目的。研究区热采数值模拟对比分析了不同注水温度条件下温度对油藏开采效果、井底压力以及油层吸水能力的影响。同时分析了不同方案油藏温度场同剩余油场的配伍关系,常规水驱条件下含油饱和度平面展布图展示了研究区若干注水井附近的小层注水冷带,伤害储层并影响驱油效率。模拟预测结果同样表明,在优势地面注水温度下,能在兼顾经济效益的同时使油藏温度较长时间维持在析蜡温度以上,对提效增产有利。
     第八个部分则是对整个论文的架构进行全面的总结概括并提出相应建议。
     本文针对辽河油田静观2区块高凝油油藏严重的非均质性导致油藏在开发过程中存在的各种矛盾,展开流动单元细分和流动单元剩余油分布研究,形成了一套较完整的高凝油油藏储层流动单元划分、对比、预测、表征及应用的配套理论和方法技术;在流动单元分类方法、流动单元空间预测表征手段以及流动单元平面分布的评价方法等方面进行了探索;在剩余油流线数值模拟及注采流线同剩余油配伍关系等方面取得了一定进展,对同类型油藏流动单元的预测表征及剩余油分布研究等具有一定的指导意义。
High pour point oil reservior, a kind of special reservoir type, has to be considered its own characteristics, as a significant difference from general thin oil reservoir in its displacement process. While the research about characterization of this reservoir type, spatial prediction, and the3D geological modeling is still relatively weak, there is a lack of systematic studies and deep analyses. Block Jingguan-2of Liaohe Oilfield is a typical high pour point oil reservoir. The freezing point of crude oil is42℃-64℃, and the wax content is37.5%, which is of the world's rare type. This paper takes Block Jingguan-2high pour point reservoir as an example and launches a series of researches such as the high resolution stratigraphic correlation of reservoir in the study area, sedimentary system and sedimentary phase analysis, physical property and characterization of hydraulic unit prediction, and water flooding streamline numerical simulation and the comprehensive research of thermal simulation, which is based on a large amount of basic data about geology, core, drilling, seismic, logging, testing and laboratory analysis, and also under the guidance of the theory about the sequence stratigraphy, sedimentology, reservoir geology, logging geology, geological statistics, petrology, petroleum development geology. During the study process, new concepts, new methods and new technology application in data mining research, combined with the computer programming, has comprehensively and accurately identified non-coring section hydraulic unit of Block Jingguan-2reservoir. Then through the indicator simulation technique, the hydraulic unit of the study area was characterized by the description of3D fine geologic model, and permeability was regressed by unit which based on hydraulic unit recognition and division. Moreover, geological body was planted into geological model, and finally the3D quantitative geological model properties were completed to form a set of reservoir3D quantitative geological modeling ideas and methods of this type of reservoir oil and gas exploration for the next step and also provided a reference for reservoir prediction. Based on the streamline numerical simulation of hydraulic unit, we make clear the compatibility relation between the remaining oil in Block Jingguan-2and the injection-production flow line and hydraulic unit. Above all, combined with water injection development of the static damage experiment test data and injection wells formation temperature field mathematical model of reservoir in Block Jingguan-2reservoir, this study searched for the best ground water temperature of the block; combined with reservoir test data and analysis the high wax content and high solidifying point of crude oil simulation on the characteristics of the impact on crude oil seepage process, this study focused on the effects of water temperature on the reservoir development and made the prediction of each development plan by using the numerical simulation method.
     This paper is divided into8parts. The first part mainly summarized the domestic and international research status and the development trend of the hydraulic unit, and concluded the geological data mining method which was applied for hydraulic unit prediction as a main trend. According to the understanding of the reservoir, this paper summarized some cognitive problems of reservoir hydraulic units; and further concluded the residual oil distribution mode, distribution law and development mode of high pour point oil, which were the main factors that influenced the residual oil distribution; also introduced some existing problems about residual oil distribution research; then put further research content plans and prospects forward.
     The second part applied the analysis method of Cross the cyclicity of sequence stratigraphy for the high resolution statigraphic framework in Block Jingguan-2and divided, identified and compared different cycle time stratigraphic unit by the means of the geological-seismic-logging joint interpretation technology. Through the vertical sequence, lithology stratigraphy and logging response, and seismic information, this part confirmed that sequence stratigraphic framework was consisted by5long-term base level cycles of Block Jingguan-2in three periods, among them, SQ5was equivalent of S31stratum which was eroding in this block; SQ4was composed by3medium-term base level cycles and8short-term base level cycles; SQ3was composed by3medium-term base level cycles and7short-term base level cycles; SQ2was composed by4medium-term base level cycles and4short-term base level cycles. Those are3mainly obvious water effects during the deposition period of Shahe Street Group.
     According to the sedimentary sand body of Block Jingguan-2, this study first analyzed the supply of sedimentary background, sedimentary environment, source and electric character of rocks. On this basis, we focused on the analysis of classification, recognition of depositional system and depositional model.
     In data processing, based on sedimentary and tectonic phase comprehensive research and amount of artificial drawing, this part set a contemplation of three-dimensional quantitative model of structure and sedimentary phases of Block Jing-2. In the tectonic geological modeling, we used the thickness of interpolation surface to control the interzone difficulties, and the final established structure model which was kept structure characteristics and relationships of each layer in the3D space coordination. The sedimentary microphase model was constructed by sequential deposition trend surface control which could indicate the simulation method to simulate an ideal result.
     The third part, in terms of the reservoir geology of research target and the mercury intrusion analytic data, made a relationship between the index FZI of flow zone and the displacement pressure (Pd), and optimized parameters which had higher correlation with FZI and involved into the classification and clustering at the same time, to obtain4basic scheme:HU#5, HU#6, HU#7and HU#8.
     According to the Spearman non-parametric correlation coefficient method, this part made the coring well logging parameters associated with FZI values for correlation analysis and selected2kinds of logging curve to build log frequency range. Combined with Bayesian inference written software, the reservoir non-hydraulic unit coring wells was well predicted and verified. Then the result compared with the recognition technology and discriminant results of mature neural network pattern, and presented the closed prediction hit ratio, which had certain application values.
     After the hydraulic unit well data was prepared, this study simulated the hydraulic unit3D quantitative modeling of reservoir by using sequential indicator and matched the deviation and probability for every unit layer. At last combined with geological method, we did the validation analysis of the outward hydraulic unit model in the two aspects of dynamic and static geological concepts. In the dynamic verification process, this paper summarized9production wells data combined with lateral analysis model of rationality; static verification was analyzed through2wells and well profiles on the lithology, pore throat radius and the corresponding conditions of hydraulic units.
     The fourth part mainly built the porosity, permeability interpretation model of Block Jingguan-2, and at the same time presented the mathematical model which implanted geologic body to establish3D simulation model of quantitative compound in the study area. Porosity interpretation model was regressed by the binary regression method, and the effect of the regression equation application was good. On the premise of sedimentary phase control, the paper analyzed the porosity data of every layer and every phase, and adopted the method of sequential Gaussian simulation to simulate the porosity distribution quantitatively in the study area.
     Permeability interpretation model abandoned the traditional prediction methods, but the index and power law relationship model was applied to establish the permeability-porosity relation for each type of reservoir by using the reservoir core hydraulic unit classification. The result was overall optimistic and showed that the best matching relationship model was participated in the calculation with the prediction of permeability and the geological body was planted into the mathematical model. This part verified the permeability precision of the3D model respectively from the plane and vertical. The results showed that the overall distribution characteristics of the permeability3D model was identical to the development scale of sedimentary phase and the information of the reconstructed profiles also proved the reliability of the model.
     In the fifth part, the method of reservoir engineering was applied to predict the reservoir recoverable reserves and the ultimate recovery. To begin with the summary of4kinds of different regressive models, this paper contrasted the meaning of different model parameters, and searched for the best model for Block Jingguan-2to express the declining production of high pour point oil reservoir.
     The data calculation and comparison of the actual development in the study area presented that the simulation results of Li-Home model was less than that of the Arps index model and the calculation results of Correa model matched the predicted values of mathematical model well. The results showed that the limited use of Arps model was not generally based on the adjustment of significant measures; too fast rise of the water content in the high pour point oil through water flooding might lead to the lower calculation results of Li-Home model; the β value range of Correa model was expanded with the condition of the work area reservoir, that was the same reliability beyond the range-1<(3<0, and as β value went lower, the declining law was more closed to the law of high pour point reservoir.
     The sixth part summarized the mathematical model of hydraulic unit under the condition of the reservoir development course and oil-water two phase. Then combined with the geological model of Block Jingguan-2, fluid and percolation characteristic parameters and production data, this part used the streamline numerical simulator to simulate and match the oil-water movement law.
     Through dynamic analysis of reservoir development and streamline numerical simulation based on hydraulic units of reservoir, this paper accurately predicted the residual oil distribution, at the same time analyzed the compatibility relation between residual oil and water driven injection-production flow line and mobile cell. The reservoir was thought to go through five major adjustments till now. And the water flooding streamline basically covered the entire area, while the residual oil enriched mainly in injection streamline waves and the poor hydraulic unit area (anisotropic residual oil in inner layers and interior layers), contact position of different hydraulic units, imperfect spacing area of injection-production well (interwell retention area) and the fault edge region.
     Combined with the compatibility relation between water injection flow and hydraulic unit and residual oil distribution, and geological data, this part summarized the complex distribution of residual oil after developing the Block Jingguan-2, respectively from these three aspects:the geological factors, factors of oil and water alternating flooding and development factors, to summarize the main control factors of residual oil distribution.
     After doing some researches about the reservoir damaged by injection development, thermal physical simulation and thermal numerical simulation research, the seventh part pointed out that the low recovery of some production wells in Block Jingguan-2was mainly related to fluid properties, and production and injection wells near the wellbore reservoir were damaged seriously, and showed that the fluid had non-Newtonian fluid properties. The reason of the stratum damage was because the bottom temperature of the injection-production well dropped, then leading the gas expansion, paraffin wax crystallization and precipitation. The water flooding experiments and phase permeability experiments were carried out respectively during the thermal physical simulation, and the result showed that the water displacement efficiency of high pour point oil reservoir was affected by viscosity of crude oil and experimental temperature; with the loss of the crude oil viscosity and temperature rise, displacement efficiency gradually improved; displacement efficiency was related to rock structure itself, that with small poor sorting, median radius and high shale content of the core, the water displacement efficiency was low; with the increase of experimental temperature, relative permeability curve shape of high pour-point oil reservoir gradually offset to the right, and two phase zone got width, such as water saturation of isotonic points increased and irreducible water saturation increased, while residual oil saturation was significantly reduced; and when the temperature went below the temperature of wax precipitation point, the relative permeability curve moved right as the pressure gradient increased, two phase zone got widened, and the recovery efficiency improved. Thermal physics experiments made the understanding of reservoir fluid properties in the work area clearer, at the same time the experimental data was well prepared for thermal recovery numerical simulation.
     Under the consideration of the temperature field mathematical model of wells and formation which could transfer the heat and mass in injection wells between oil layers and through different injection temperature programming calculation of the layer deep-intersection chart, the result showed that before the injected water reached the goal layer, the influence of heat loss weight large. After getting to the destination layer, the wellbore temperature, affected by the temperature of the reservoir, rose gradually, and the stratum temperature outside the wellbore presented recovery trend under the common action of the injected water and reservoir itself. The chat of injection temperature80℃reflected that above this temperature, the layers could keep the stratum temperature at the average wax temperature (60℃), while beyond80℃, it was not that different from the temperature increasing effect of the reservoir, which was also verified in the thermal recovery mathematical model. The heating costs must be increased if we continued to increase injection temperature, therefore80℃was selected to be the best temperature for ground water injection, which both took the production cost into account and reduced the reservoir cold damage to achieve the purpose to increase the production. Thermal recovery model analyzed the reservoir development effect of different injection water temperature, the influence of bottom pressure and reservoir water absorption capacity, and analyzed the compatibility relations between different types of reservoir temperature field and residual oil field. The plane distribution of oil saturation layout reflected that the small layer water injection, under the condition of conventional water flooding, damaged the reservoir by affecting oil displacement efficiency. Simulation results also showed that under the water injection temperature of dominant ground, considering both economic benefits and the longer soaking time of reservoir temperature, it was favorable to enhance the efficiency and increase the production.
     The eighth part conducted a comprehensive summary for the whole paper framework.
     While the high pour point oil reservoir of Block Jingguan-2in Liaohe Oilfield existed serious heterogeneity which led to some problems during the development process of the reservoir, this paper conducted the residual oil distribution researches of hydraulic unit subdivision and hydraulic units, and formed a integrated set of theory and method which could apply for the hydraulic unit division, correlation, prediction, characterization and application of high pour point oil reservoir; it also explored the multiple classification methods of hydraulic unit space forecast and evaluation method of plane distribution; it made some progress in residual oil streamline simulation and the compatibility relation between injection-production flow line and residual oil, which had important guiding significance in the same type of reservoir exploration.
引文
[1]李阳,刘建民.流动单元研究的原理和方法[M].北京:地质出版社,2005.
    [2]张尚峰.高分辨率层序地层学理论与实践[M].北京:石油工业出版社,2007.
    [3]魏斌,郑浚茂.高含水油田剩余油分布研究——以辽河油田欢26断块为例[M].北京:地质出版社,2002.
    [4]林承焰,李江南,董春梅,等.油藏仿真模型与剩余油预测[M].北京:石油工业出版社,2009.
    [5]Amafule J O, Altunbay M, Laboratories C, et al. Enhanced reservoir description:Using core and log data to identify hydraulic(hydraulic) units and predict permeability in uncored intervals/wells[R]. SPE 26436,1993.
    [6]Abbaszadeh M, Fujii H, Fujimoto F. Permeability prediction by hydraulic hydraulic units------theory and applications[J]. SPE Formation Evaluation,1996,11(4):263-271.
    [7]Rodriguez A, Maraven S A. Facies modeling and the hydraulic unit concept as a sedimentological tool in reservoir description:A case study[R]. SPE 18154,1988.
    [8]Guangming T, Baker H I, Ogbe D O, et al. Use of hydraulic units as a tool for reservoir description:A case study[J]. SPE Formation Evaluation,1995,10(2):122-128.
    [9]Barclay S A, Worden R H, Parnell J, et al. Assessment of fluid contacts and compartmentalization in sandstone reservoirs using fluid inclusions:An example from the Magnus oil field, north sea[J]. AAPG Bulletin,2000,84(4):489-504.
    [10]Aguilera R. Incorporating capillary pressure, pore throat aperture radii, height above free-water table, and Winland r35 values on Pickett plots[J]. AAPG Bulletin,2002,86(4): 605-624.
    [11]Orodu O D, Tang Z H, Fei Q. Hydraulic(Hydraulic) unit determination and permeability prediction:A case study of Block Shen-95, Liaohe oilfield, north-east China[J]. Journal of Applied Sciences,2009,9(10):1801-1816.
    [12]高伟,王允诚,刘宏.流动单元划分方法的讨论与研究[J].西南石油大学学报(自然科学版),2009,31(6):37-40.
    [13]袁新涛,彭仕宓,林承焰,等.分流动单元精确求取储层渗透率的方法[J].石油学报,2005,26(6):78-81.
    [14]蒋平,吕明胜,王国亭.基于储层构型的流动单元划分——以扶余油田东5-9区块扶杨油层为例[J].石油实验室地质,2013,35(2):213-219.
    [15]宋宁,刘振,张剑风,等.基于流动单元分类的非均质砂岩储集层渗透率预测[J].科技导报,2013,31(2):68-71.
    [16]郭笑锴,冯建设,郭煜锴,等.流动单元法求取储层渗透率[J].勘探开发,2013,2: 159-160.
    [17]姚光庆,马正,赵彦超.储层描述尺度与储层地质模型分级[J].石油实验地质,1994,16(4):403-408.
    [18]姚光庆,马正,赵彦超,等.浅水三角洲分流河道砂体储层特征[J].石油学报,1995,16(1):24-31.
    [19]姚光庆,李联五,孙尚如.砂岩储层构成定量化分析研究思路与方法[J].地质科技情报,2001,20(1):35-38.
    [20]裘怿楠,陈子琪.油藏描述[M].北京:石油工业出版社,1996.
    [21]裘怿楠,贾爱林.储层地质模型10年[J].石油学报,2000,21(4):101-104.
    [22]焦养泉,李思田.陆相盆地露头储层地质建模研究与概念体系[J].石油实验地质,1998,20(10):346-353.
    [23]焦养泉,李思田,李祯,等.碎屑岩储层物性非均质性的层次结构[J].石油与天然气地质,1998,19(2):89-92.
    [24]穆龙新.油藏描述技术的一些发展动向[J].石油勘探与开发,1999,26(6):42-46.
    [25]穆龙新.油藏描述的阶段性及特点[J].石油学报,2000,21(5):103-108.
    [26]穆龙新,贾爱林,陈亮.储层精细研究方法[M].北京:石油工业出版社,2000.
    [27]穆龙新,贾爱林.扇三角洲沉积储层模式及预测方法研究[M].北京:石油工业出版社,2003.
    [28]刘吉余,王建东,吕靖.流动单元特征及其成因分类[J].石油实验地质,2002,24(4):381-384.
    [29]王建东,刘吉余,于润涛,等.层次分析法在储层评价中的应用[J].大庆石油学院学报,2003,27(3):12-14.
    [30]张继春,彭仕宓,穆立华,等.流动单元思维动态演化仿真模型研究[J].石油学报,2005,26(1):69-73.
    [31]朱文春,李树庆,邱红,等.唐家河油田三断块储集层参数四维模型的建立[J].新疆石油地质,2008,29(6):737-739.
    [32]刘泽荣,信荃麟,王伟峰,等.油藏描述原理与方法技术[M].北京:石油工业出版社,1993.
    [33]裘怿楠.油气储集层评价技术[M].北京:石油工业出版社,1994.
    [34]吴胜和,熊琦华.油气储集层地质学[M].北京:石油工业出版社,1998.
    [35]李阳.河道砂储集层非均质模型[M].北京:科学出版社,2001.
    [36]韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5):34-37.
    [37]韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究[J].石油学报,2007,28(2):73-78.
    [38]韩大匡.关于高含水油田二次开发理念、对策和技术路线的探讨[J].石油勘探与开发,2010,37(5):583-591.
    [39]俞启泰.注水油藏大尺度未波及剩余油的三大富集区[J].石油学报,2000,21(2):101-104.
    [40]俞启泰.注水油藏“大尺度”未波及剩余油开采技术[J].新疆石油地质,2002,23(2): 134-138.
    [41]任瑛,梁金国.稠油与高凝油热力开采问题的理论与实践[M].北京:石油工业出版社,2000.
    [42]张崇刚,朱静.注水对沈84-安12油田高凝油藏冷伤害浅析[J].油气井测试,2001,10(4):55-57.
    [43]高明,宋考平,吴家文,等.高凝油油藏注水开发方式研究[J].西南石油大学学报(自然科学版),2010,32(2):93-96.
    [44]姚凯,姜汉桥,党龙梅,等.高凝油油藏冷伤害机制[J].中国石油大学学报(自然科学版),2009,33(3):95-98.
    [45]姚为英.高凝油油藏注普通冷水开采的可行性[J].大庆石油学院学报,2007,31(4):41-47.
    [46]Thuc P D, Bich H V, Son T C, et al. The problem in transportation of high waxy crude oils through submarine pipelines at JV Vietsovpetro Oil Fields, Offshore Vietnam[J]. Journal of Canadian Petroleum Technology,2003,42(6):147-162.
    [47]陈涛平,刘继军.高凝油热水驱提高采收率实验[J].大庆石油学院学报,2008,32(4):45-48.
    [48]周炜,唐仲华,温静,等.有效改善高凝油油藏注水开发效果——以辽河盆地大民屯凹陷沈95块为例[J].石油与天然气地质,2010,32(2):260-264.
    [49]Shaoul J R, Ross M J, Spitzer W J, et al. Hydraulic fracturing with heated fluids brings success in high-pour-point waxy-oil reservoir in India[J]. SPE Production & Operations, 2009,24(1):96-106.
    [50]Wenger L M, Davis C L, Isaksen G H. Multiple controls on petroleum biodegradation and impact on oil quality[J]. SPE Reservoir Evaluation & Engineering,2002,5(5):375-383.
    [51]姚传进,雷光伦,吴川,等.注热水开发潍北高凝油藏[J].油气田地面工程,2011,30(2):14-17.
    [52]夏国朝.枣园复杂断块低流度油藏特征及稳产措施研究[D].中国地质大学(北京)博士学位论文,2010.
    [53]李菊花,凌建军.热水驱开采高凝油数模研究[J].特种油气藏,2000,7(2):25-27.
    [54]韩小峰.沈84-安12块高凝油三次采油提高采收率技术研究[D].大庆石油学院硕士学位论文,2009.
    [55]王树霞,卢祥国,王荣键,等.沈84-安12块调剖剂与驱油剂配伍性实验研究[J].2009,16(4):74-78.
    [56]张海红.沈84-安12块二元复合驱油技术实验研究[D].大庆石油学院硕士学位论文,2010.
    [57]陈丽.沈84-安12块化学驱挖潜剩余油数值模拟研究[D].东北石油大学硕士学位论文,2012.
    [58]刘明.静安堡油田沈84-安12块二次开发深部调驱试验方案[J].东北石油大学硕士学位论文,2011.
    [59]孟强.曹台潜山裂缝性高凝油藏注蒸汽及注热水开采适应性研究[D].大庆石油学院硕士学位论文,2009.
    [60]王霞.高凝油藏热采方式研究[D].中国石油大学(华东)硕十学位论文,2008.
    [61]孙海雷,柳成志,李明辉,等.高分辨率层序地层学在辽河油田大民屯凹陷油田精细开发中的应用[J].现代地质,2009,23(5):981-986.
    [62]魏福芹.大民屯凹陷沈84-安12块储层特征研究[D].大庆石油学院硕士学位论文,2011.
    [63]周学金.沈84-安12块特高含水期提液技术研究与应用[J].石油地质与工程,2012,26(2):116-117.
    [64]李晓峰.沈84-安12块沙三段油层剩余油分布研究[D].大庆石油学院硕士学位论文,2008.
    [65]郑浩.辽河油田沈84-安12块剩余油分布研究[D].大庆石油学院硕士学位论文,2008.
    [66]郑浩,阚立岩,马春华.沈84-安12断块高含水期开发效果评价[J].断块油气田,2008,15(4):60-62.
    [67]李军辉,柳成志,卢双舫.复杂断块储层非均质性研究以辽河油田沈84-安12块Es33段为例[J].吉林大学学报(地球科学版),2008,38(5):757-764.
    [68]Bickel P, Diggle P, Fienberg S E, et al. Springer Series in Statistics[M]. Berlin: Springer-Verlag,2004.
    [69]Leonard T, Hsu J S J. Bayesian methods:An analysis for statisticians and interdisciplinary researchers[M]. London:Cambridge University Press,2005.
    [70]石广仁.地学数据挖掘与知识发现[M].北京:石油工业出版社,2012.
    [71]朱慧明,韩玉启.贝叶斯多元统计推断理论[M].北京:科学出版社,2006.
    [72]向东进,李宏伟,刘小雅.实用多元统计分析[M].武汉:中国地质大学出版社,2005.
    [73]陈军.火山碎屑岩岩性的测井识别方法研究[D].吉林大学硕十学位论文,2008.
    [74]Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation[M]. Cambridge:MIT Press,1986.
    [75]Hecht-Nielsen R. Theory of the backpropagation neural network[R]. Washington: International Joint Conference,1989.
    [76]宋子齐,谭成仟,吴少波,等.利用测井技术进行沈84块油藏描述研究[R].盘锦:辽河石油勘探局,1998.
    [77]Bateman R M, Wheatley C L, Baldwin J L. Application of a neural network to the problem of mineral identification from well logs[J]. The Log Analyst,1990,31(5):279-293.
    [78]Dereak H. Comparative study of back-propagation neural network and statistical pattern recognition techniques in identifying sandstone lithofacies[R]. College Station:Texas A&M University,1990.
    [79]石广仁.地学中的计算机应用新技术[M].北京:石油工业出版社,1999.
    [80]Guler L, Ubeyli E D. Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network[J]. Computers in Biology and Medicine,2011,33(4): 333-343.
    [81]Shi G R, Zhou X X, Zhang G Y, et al. The use of artificial neural network analysis and multiple regression for trap quality evaluation:a case study of the Northern Kuqa Depression of Tarim Basin in western China[J]. Marine and Petroleum Geology,2004,21(3): 411-420.
    [82]Altiparmak F, Dengiz B, Bulgak A A. Buffer allocation and performance modeling in asynchronous assembly system perations:An artificial neural network metamodeling approach[J]. Applied Soft Computing,2007,7(3):946-956.
    [83]Tabach E E, Lancelot L, Shahrour I, et al. Use of artificial neural network simulation metamodelling to assess groundwater contamination in a road project[J]. Mathematical and Computer Modelling,2007,45(7-8):766-776.
    [84]Choi B, Lee J H, Kim D H. Solving local minima problem with large number of hidden nodes on two-layered feed-forward artificial neural networks[J]. Neurocomputing,2008, 71(16-18):3640-3643.
    [85]Shi G R. Four classifiers used in data mining and knowledge discovery for petroleum exploration and development J]. Advances in Petroleum Exploration and Development, 2011,2(2):12-23.
    [86]陈元千,李璗.现代油藏工程[M].北京:石油工业出版社,2001.
    [87]韩大匡,陈饮雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社,1993.
    [88]陈明月.油藏数值模拟基础[M].东营:石油大学出版社,1988.
    [89]Cross T A. Controls on coal distribution in transgressive-reegressive cycles, Upper Cretaeeous, Estem Interior, U.S.A.[J]. SEPM,1988,42:371-380.
    [90]郑荣才,柯光明,文华国,等.高分辨率层序分析在河流相砂体等时对比中的应用[J].成都理工大学学报:自然科学版,2004,31(6):641-646.
    [91]Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy [J]. Studies in Geology,1987,27:1-10.
    [92]吴胜和,金振奎,黄沧钿,等.储层建模[M].北京:石油工业出版社,1999.
    [93]王家华,张团峰.油气储层随机建模[M].北京:石油工业出版社,2001.
    [94]吴胜和,李宇鹏.储层地质建模的现状与展望[J].海相油气地质,2007,12(3):53-60.
    [95]Amafule J O, Altunbay M, Laboratories C, et al. Enhanced reservoir description:Using core and log data to identify hydraulic(hydraulic) units and predict permeability in uncored intervals/wells[C]//Proceedings of SPE Annual Technical Conference and Exhibition. Houston:SPE,1993:1-16.
    [96]Abbaszadeh M, Fujii H, Fujimoto F. Permeability prediction by hydraulic hydraulic units ——theory and applications[J]. SPE Formation Evaluation,1996,11(4):263-271.
    [97]李伟才,姚光庆,周锋德,等.低渗透油藏不同流动单元并联水驱油[J].石油学报,2011,32(4):658-663.
    [98]尹太举,张昌民,王寿平,等.濮53块流动单元评价[J].石油学报,2005,26(5):85-89.
    [99]Hearn C L, Ebanks W J Jr, Ranganathan V, et al. Geological factors influencing reservoir performance of the hartzog draw field wyoming[J]. J. Pet. Technol,1984,36(9):1335-1344.
    [100]Ebanks W J Jr. Hydraulic unit concept——an integrated approach to reservoir description for engineering projects[J]. AAPG Bulletin,1987,71(5):551-552.
    [101]魏斌,郑浚茂.高含水油田剩余油分布研究——以辽河油田欢26断块为例[M].北京:地质出版社,2002,32-42.
    [102]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003:44-54.
    [103]Zhang J C, Liu L, Song K P. Neural approach for calculating permeability of porous medium[J]. Chinese Physics Letters,2006,23(4):1009-1011.
    [104]刘思峰,郭天榜.灰色系统理论及其应用[M].北京:科学技术出版社,1999:26-29.
    [105]关振良,姜红霞,谢丛姣.海上油井井间流动单元预测方法[J].海洋石油,2001,110:30-34.
    [106]邱苏林,王丽珍.基于Ward's方法的k-平均优化算法及其应用[J].计算机工程与应用,2008,44(31):169-172.
    [107]赵骅,朱莉华,刘丹.Ward系统聚类法在多变量分层抽样技术中的运用[J].统计与决策,2006,227:67-68.
    [108]Martin A J, Solomon S T, Hartmann D J. Characterization of petrophysical hydraulic units in carbonate reservoirs[J]. AAPG Bulletin,1997,81:734-759.
    [109]严科,杨少春,任怀强.基于油藏开发动态的储层四维模型的建立[J].中国石油大学学报(自然科学版),2010,34(1):12-17.
    [110]陈烨菲,彭仕宓,宋桂茹.流动单元的井间预测及剩余油分布规律研究[J].石油学报,2003,24(3):74-77.
    [111]Martin A J, Solomon S T, Hartmann D J. Characterization of petrophysical hydraulic units in carbonate reservoirs. AAPG Bulletin,1997,81:734-759.
    [112]郭燕华,熊琦华,吴胜和,等.陆相储层流动单元的研究方法[J].石油大学学报(自然科学版),1999,23(6):13-17.
    [113]雍世和,张超谟.测井数据处理与综合解释[M].东营:中国石油大学出版社,2008.
    [114]杨胜来.油层物理学[M].北京:石油工业出版社,2007.
    [115]丁次乾.矿场地球物理[M].东营:中国石油大学出版社,2002.
    [116]何希鹏,朱振道.天然气储层孔隙度测井解释方法研究[J].江汉石油职工大学学报,2004,17(2):34-35.
    [117]杨东全.岩石波速和孔隙度泥质含量之间的关系研究[J].北京大学学报(自然科学版),2012,37(3):379-384.
    [118]余敏.利用岩心资料建立大池干嘉二储层的孔隙度解释模型及图版[J].西南石油学院学报,1993,15(4):11-15.
    [119]刘芬霞,程启荣,原海涵.低孔低渗储层测井解释方法研究[J].高校地质学报,1996,2(1):65-74.
    [120]孙国红,吕晶,窦凤华.喇萨杏油层有效孔隙度与原始含油饱和度精细解释[J].大庆石油地质与开发,2006,25(4):102-104.
    [121]赵彦锋,孙志英,陈杰.Kriging插值和序贯高斯条件模拟算法的对比分析[J].地球信息科学学报,2010,12(6):767-776.
    [122]韩兵.序贯高斯模拟法在鄂尔多斯盆地储层预测的应用[J].石油地质与工程,2011,25(4):45-51.
    [123]Jennings Jr J W, Lucia F J. Predicting permeability from well logs in carbonates with a link to geology for interwell permeability mapping[J]. SPE Reservoir Evaluation & Engineering, 2003,6(4):215-225.
    [124]Bryant S, Cade C, Mellor D. Permeability prediction from geologic models[J]. The American Association of Petroleum Geologists,1993,77(8):1338-1350.
    [125]Mathisen T, Lee S H, Datta-Gupta A. Improved permeability estimates in carbonate reservoirs using electrofacies characterization:A case study of the north Robertson unit, West Texas[J]. SPE Reservoir Evaluation & Engineering,2003,6(3):176-184.
    [126]Wiener J, Rogers J A, Rogers J R, et al. Predicting carbonate permeabilities from wireline logs using a back-propagation network[C]//Proceedings of the 61st SEG meeting. Houston: SEG,1991:285-288.
    [127]焦翠华,徐朝晖.基于流动单元指数的渗透率预测方法[J].测井技术,2006,30(4):317-319.
    [128]谢文彦,李晓光,陈振岩,等.辽河油区稠油及高凝油勘探开发技术综述[J].石油学报,2007,28(4):145-150.
    [129]刘翔鹗.高凝油油藏开发模式[M].北京:石油工业出版社,1997.
    [130]Arps J J. Analysis of decline curves[J]. Trans. AIME,1945,160:228-247.
    [131]Li K W, Home N R. A decline curve analysis model based on fluid hydraulic mechanisms[C]//SPE Pacific Section Joint Meeting, California,2003:19-24.
    [132]Correa A C. Forecasting oil production in waterflooded reservoirs[C]//SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires,2007.
    [133]俞启泰,陈素珍,李文兴.水驱油田的Arps递减规律[J].新疆石油地质,1998,19(2):150-153.
    [134]俞启泰.一种广义水驱特征曲线[J].石油勘探与开发,1998,25(5):48-50.
    [135]李传亮,孔祥言,许广明.产量递减规律的诊断方法[J].石油钻采工艺,1998,20(6):68-70.
    [136]Li K W, Horne N R. Extracting capillary pressure from spontaneous imbibition data in oil-water-rock-systems[C]//SPE Asia Pacific Oil&Gas Conference and Exhibition, Jakarta, 2003:1-8.
    [137]Li K W, Home N R. Comparison and verification of production prediction models[J]. Journal of Petroleum Science and Engineering,2007,55:213-220.
    [138]Arps J J. Estimation of primary oil reserves[J]. Trans. AIME,1956,207:182-191.
    [139]张虎俊.油气田产量双曲递减方程建立的新方法[J].新疆石油地质,1996,17(4):370-375.
    [140]Baker R O, Spenceley N K, Guo B, et al. Using an analytical model to characterize naturally fractured reservoirs[C]//SPE Improved Oil Recovery Symposium, Tulsa,1998.
    [141]王俊魁.油田产量递减规律的研究[J].大庆油田,1982,1(1):37-47.
    [142]Sochi, Taha. Hydraulic of non-newtonian fluids in porous media[J]. Journal of Polymer Science,2010,48(23):2437-2467.
    [143]Agbi B, Ng M C. A numerical solution to two-parameter representation of production decline curve analysis[C]//SPE Petroleum Industry Applications of Microcomputers, Montgomery,1987.
    [144]刘慧卿.油藏数值模拟方法专题[M].东营:石油大学出版社,2001:20-25.
    [145]Datta-Gupta A., King M J. A semianalytic approach to tracer folw modeling in heterogeneous permeable media[J]. Advance in Water Resources,1995,18:9-21.
    [146]Batycky R P, Martin J B, Marco R T. A 3D field scale streamline simulator with gravity and changing well conditions[R]. SPE 36726,1996.
    [147]于金彪,杨耀忠,戴涛,等.油藏地质建模与数值模拟一体化应用技术[J].油气地质与采收率.2009,16(05):72-75.
    [148]Shahab G. Predictive and production analysis methods for the unconventional gas reservoirs[D]. Master dissertation of Calgary university,2007.
    [149]于金彪.基于油藏数值模拟研究的地质模型质量评价方法[J].油气地质与采收率,2005,12(2):49-51.
    [150]姚凯,姜汉桥,党龙梅,等.高凝油油藏冷伤害机制[J].中国石油大学学报(自然科学版),2009,33(3):95-98.
    [151]田乃林,冯积累,任瑛,等.早期注冷水开发对高含蜡高凝固点油藏的冷伤害[J].石油大学学报(自然科学版),1997,21(1):42-45.
    [152]冯恩民,闫桂峰,胡志荣,等.注水井地层带温度场数值模拟及优化[J].石油学报,1996,17(1):96-102.
    [153]彭轩,刘蜀知,蔡长宇,等.高凝油油藏自生热压裂井筒温度场计算模型[J].石油学报,2003,24(4):69-76.
    [154]姚传进,雷光伦,蒋宝云,等.高凝油井筒温度场计算及流态转变分析[J].石油钻采工艺,2011,33(3):42-46.
    [155]刘慧卿,范玉平,赵东伟,等.热力采油技术原理与方法[M].山东东营:石油大学出版社,2000.
    [156]赵刚,马远乐.高凝油藏热采数值模拟研究[J].特种油气藏,1995,2(4):16-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700