用户名: 密码: 验证码:
辽河盆地西部凹陷特超稠油油藏利用水平井方式提高采收率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽河盆地经过近40年勘探开发,已探明稠油地质储量超过10亿吨,动用稠油储量约7.4亿吨,稠油产量已占辽河油田总产量的60%以上。虽然,由于蒸汽吞吐技术及开采工艺的进步,稠油油藏得到了全面开发,但进入高轮次吞吐后周期油气比已接近经济极限,直井单井控制储量低,井况变差,边底水侵入,稳产难度大,特超稠油油藏蒸汽吞吐波及范围小,采出程度低。
     为了有效改善稠油油藏开发效果,提出了利用水平井方式整体调整部署开发稠油油藏的研究项目,重点开展了3个方面的研究:(1)辽河盆地稠油油藏剩余油富集规律研究及水平井油藏工程设计应用实验。利用开发油藏动态测试技术,地球物理测井精细解释技术,动边界、无网格油藏工程计算技术,油藏数值模拟技术,对目标区块开展精细构造描述、储层描述、流体性质分析、已钻井生产状况分析等技术分析,找出稠油油藏高轮次蒸汽吞吐后残余油富集区,建立高轮次蒸气吞吐直井间剩余油饱和度模型,对边、底水和薄层等典型稠油油藏应用水平井技术开展老油田整体部署水平井调整开发方案研究试验。(2)辽河盆地西部凹陷稠油油藏水平井钻井技术研究。针对稠油油藏地层易垮塌、井漏等不稳定特点,从储层分布预测、导眼井优化设计、井眼轨迹优化设计、井身结构优化设计、完井方式优选等方面,对水平井单井地质工程设计精细研究,并现场实时动态跟踪,实现安全钻井。(3)特超稠油油藏水平井水平段注汽工艺技术研究。针对井深、油稠、水平段长等特点,开展了注汽参数优选、注汽方式、隔热方式等研究,提高了注汽隔热效果,实现稠油油藏均匀受气,为提高采收率奠定基础。
     通过上述研究,获得了如下4项认识:(1)特超稠油高轮次吞吐井井筒周围压力较低,而其它区域仍较高;温度在井点附近30-50m有不等提高,其它区域仍为原始温度;含油饱和度在井间基本为原始饱和度的65%;原油粘度在井筒50m附近下降大,以外则基本保持原始水平。(2)构造高部位受底水锥进影响小,井间剩余油较富集;受边底水共同作用,低部位水淹较重,水淹面积连片分布。水平井可有效减缓边底水推进速度,提高油藏动用程度。(3)现场地质导向是水平井成功实施的保证。对地质条件复杂,断层发育,构造起伏大,储层横向变化大的水平井钻井,必须进行地质导向。根据室内建立的水平井在造斜过程中不同井斜角度变化与岩屑迟到时间对应关系解释图版,不同钻具组合方式(螺杆钻进或旋转钻进)对应不同地层岩性、钻时、钻压变化解释图版进行现场实时跟踪,可提高地质跟踪精确度,保证了油层钻遇率。(4)经济评价分析表明,水平井平均单井投资为直井的2.0~2.5倍;平均单井产量是直井的2-4倍;平均单井年操作成本为直井的0.5~0.66倍;在评价期内,平均水平井单井方案财务净现值是直井方案的23.8倍。水平井开发稠油油藏经济可行,且可获得较好经济效益。
     通过本项目攻关研究,取得了4个方面的技术成果:(1)创建了用于提高特超稠油油藏水平井轨迹跟踪精度的现场钻井分析控制技术。根据室内建立的水平井在造斜过程中不同井斜角度变化与岩屑迟到时间对应关系的解释图版,建立了不同钻具组合方式(螺杆钻进或旋转钻进)对应不同地层岩性、钻时、钻压变化的关系图版,在水平井钻进时进行现场实时跟踪,大大提高了水平井井身轨迹跟踪精确度。(2)针对特超稠油油藏松散地层的特点,优化了安全快速钻井的水平井钻具组合,提高了水平段携岩能力,开发了水平井井眼净化的钻井泥浆配方体系。应用水平井专用工具,确保套管与井壁间的线接触力均匀微渐增分布,无峰值突变,最大应力小于极限应力一半的安全钻井技术方案;优化设计轨迹,造斜率形成由上大下小的渐增式轨迹;采用抗高温、阻漏失的适应高温亏空油藏的钻井液体系来保证正常钻进,解决了稳定井眼和油层保护的矛盾,有效的保证钻井安全,提高了钻井速度。(3)研制了“J”型水平井钻井技术,解决了顶水稠油油藏水平井水平段固井的难题。对于顶水稠油油藏水平井造斜段为松散砂砾岩、固井质量差,研究出利用水平轨迹反穿过油藏下部稳定泥岩再进入油层的钻井方式,即“J”型水平井,确保大斜度段固井质量达到提高固井质量的目的。(4)建立了特超稠油油藏直井高轮次蒸汽吞吐后,老油田整体部署水平井调整开发方案的水平井油藏工程设计技术。通过油藏数值模拟,建立实验区地质模型和网格系统;通过基础数据分析和历史拟合,观察压力、温度的波及范围,确定剩余油含油饱和度的变化规律;按照剩余油分布规律,合理选择水平井平面和纵向位置、最佳水平段长度、最优注蒸汽参数等。
After almost 40 years of exploration and development, Liaohe Basin has discovered proved heavy oil in place of over 1 billion tons, produced heavy oil reserves of about 0.74 billion tons, and the heavy oil production of Liaohe Oilfield has accounted for over 60% of its total production. Although heavy oil reservoirs have been put into full-scale development owing to the advances in cyclic steam stimulation technology and production practice, the cyclic oil-steam ratio has been near the economic limit in later cycles of steam stimulation, the reserves controlled by single vertical wells are low, the well conditions deteriorate, edge and bottom water encroaches, stable production is difficult to achieve, steam conformance area for ultra heavy oil is limited, and the recovery percent of reserves is low.
     In order to improve the development efficiency of heavy oil reservoirs, a substantial amount of investigations has been conducted for horizontal well drilling technology and application at home and abroad, the research project of adjusting, planning and developing heavy oil reservoirs by using horizontal wells has been proposed, and the study mainly involves 3 aspects:(1) The study of residual oil distribution and the applied experiment of reservoir engineering design with horizontal wells for heavy oil reservoirs in Liaohe Basin. The target zones are technically analyzed in respects of fine structure description, reservoir description, sedimentary facies description, fluid property analysis, and well production conditions by using testing techniques of reservoir performance, fine interpretation of geophysical logging, reservoir engineering calculation with produced boundary and without grid, and numerical simulation. The areas rich in residual oil after many cycles of steam stimulation have been determined, a model of residual oil saturation between vertical wells has been built, and research trials of adjusting development program have been conducted for typical old heavy oil reservoirs with edge and bottom water and thin layers by using horizontal well technology. (2) Study on horizontal well drilling technology for heavy oil reservoirs in the Western Depression of Liaohe Basin. In order to implement scale application of horizontal well technology to heavy oil reservoirs, meticulous study has been conducted for geological engineering design of single horizontal well in respects of reservoir distribution prediction, pilot hole optimization, well path optimization, hole structure optimization and completion optimization in accordance with the uncertainties of formation caving and lost circulation in heavy oil reservoirs. Dynamic tracking has been carried out on site to realized safe drilling. (3) Study on steam injection technique for horizontal section of horizontal wells in ultra heavy oil reservoirs. In accordance with the characteristics of deep well, heavy oil and long horizontal section, the parameters of steam injection are optimized, the methods of steam injection and heat insulation are studied, thus improved steam injection and heat insulation effects, realized even injection in heavy oil reservoirs, and laid basis for improving recovery factor.
     The following 4 cognitions have been acquired through the studies above:(1) Except the low pressure around wells experienced many cycles of steam stimulation, the other areas in ultra heavy oil reservoirs still maintain at initial pressure; the temperature increases differently at 30~50m from the well, and most of the rest part still keeps at original reservoir temperature; oil saturation between wells is basically about 65% of the initial saturation; oil viscosity reduces a lot at about 50m to around wellbore, and keeps almost at the original level beyond; (2) the structural high is less affected by bottom water coning and has rich remaining oil; the structure low is severely watered out as affected by both edge and bottom water. Horizontal well can effectively slow down the speed of edge and bottom water advancing, and improve the producing degree of reservoirs. (3) Geosteering is a guarantee for successful drilling of horizontal wells. For drilling in reservoirs with complex geological conditions, developed faults, big structural relief and drastic lateral change of reservoirs, geosteering must be applied. Geosteering performs real time follow-up according to the interpretation chart of the corresponding relationship between deviation angles and cutting lag time during build-up process, as well as the interpretation chart of the correspondence between different drilling assembly (screw drilling or rotary drilling) and lithology, rig time and drill pressure in different formations. It improves the accuracy of geologic tracking and ensures reservoir encountering rate. (4) The result of economic evaluation analysis indicates that, the average single horizontal well investment is 2.0-2.5 times of that of the vertical well; the average single well production is 2-4 times of that of the vertical; the average annual operation cost of single horizontal well is 0.5-0.66 time of that of the vertical; within the evaluation period, the average net present value of single horizontal wells is 23.8 times of that of the vertical. Horizontal well is an economic way for developing heavy oil reservoirs and can achieve better economic benefits.
     This research study has obtained technical achievements in 4 aspects:(1) Drilling analysis and control technology for improving well path accuracy in ultra heavy oil reservoirs. The relationship chart of different drilling assembly (screw drilling or rotary drilling) corresponding to lithology, rig time and drill pressure in different formations has been established according to lab established interpretation chart of the corresponding relationship between deviation angles and cutting lag time during build-up process. Real time tracking has been conducted during horizontal well drilling, and the accuracy of well path tracking has been greatly improved. (2) Horizontal well drilling assembly has been optimized in accordance with the features of unconsolidated ultra heavy oil reservoirs for safe and fast drilling, the capacity of cutting-carrying in horizontal section has been improved, and the drilling fluid system of hole cleaning has been developed for horizontal well. Special tools for horizontal well has been use to ensure that the lineal contact force between casing and sidewall distributes in a uniformly, slightly and gradually increasing pattern without abrupt change of peak value, and the maximum stress is less than half of the limit stress. Well path design is optimized to form gradual building up; the drilling fluid system of high temperature resistance and lost circulation prevention suitable to high temperature voided reservoirs has been used to solve the problem between hole stability and reservoir protection, thus ensured safe drilling and improved drilling speed. (3) J-shape horizontal well drilling technology has been developed for the problem of horizontal section cementation in heavy oil reservoirs with top water. For heavy oil reservoirs with top water, where the build-up section is unconsolidated glutenite and cementing quality is poor, a drilling method of reverse drilling from the stable mudstone below to enter the reservoir has been developed, i.e., J-shape horizontal well, thus improved cementing quality in highly deviated section. (4) The technology of ultra heavy oil reservoir engineering with horizontal wells has been developed for overall adjustment of old oilfield development after many cycles of steam stimulation. Geological model and grid system are constructed for pilot area through numerical simulation; the conformances of pressure and temperature are observed through basic data analysis and history match; the distribution of residual oil saturation is determined; and the lateral and vertical location of horizontal well, the optimum length of horizontal section, the optimum steam injection parameters are selected according to residual oil distribution.
引文
[1]于连东.世界稠油资源的分布及其开采技术的现状和展望.特种油气藏,2001,8(2):98~101
    [2]顿铁军,等.中国稠油油藏.西安:西北大学出版社.1996
    [3]廖泽文等.油藏开发中沥青质的研究进展.科学通报,1999,44(19):201 8-2024.
    [4]黄丽,等.油田稠油热采技术综述.国外油藏工程.1997,(1):9~10
    [5]曲玉线.浅薄层稠油油藏开采技术.西北地质,2002,35(2)69~74
    [6]孙超.提高石油采收率方法研究现状.西北地质,2000,33(2):32~37
    [7]顿铁军.中国稠油能源的开发与展望.西北地质,1995,16(1):32~35
    [8]刘文章著,稠油油藏注蒸汽热采工程,北京:石油工业出版社,1997
    [9]顿铁军,等.辽河稠油研究进展.西安:西安地图出版社,2000
    [10]张方礼等.辽河油田勘探开发研究院优秀论文集(2005年).北京:石油工业出版社
    [11]张锐.稠油热采技术.北京:石油工业出版社,1999,471~484
    [12]万仁溥.水平井开采技术.北京:石油工业出版社.1995
    [13]C. SHEN. Numerical Investigation of SAGD Process Using a Single Horizontal Well. The Journal of Canadian petroleum technology.2000
    [14]R.M. BUTLER, Q. JIANG. Improved Recovery of Heavy Oil by Vapex with Widely Spaced HorizontalInjectors and Producers. The Journal of Canadian petroleum technology.2000
    [15]张绍槐.现代导向钻进技术的新进展及发展方向.石油学报,2003,24(3):82~89
    [16]万仁溥.中国不同类型油藏水平井开采技术.北京:石油工业出版社
    [17]苏义脑.水平井井眼轨道控制.北京:石油工业出版社
    [18]王家宏等.中国水平井应用实例分析.北京:石油工业出版社
    [19]窦宏恩.稠油热采应用SAGD技术的探讨.石油科技论坛,2003(4):50~53
    [20]顾国兴.单家寺油田单6东超稠油开采配套工艺技术.油气地质与采收率,2003,10(4):73~74
    [21]董本京,穆龙新.国内外稠油冷采技术现状及发展趋势.钻采工艺,2002,11(4):18~21
    [22]杜殿发,姚军.边水稠油油藏水驱后蒸汽吞吐方案设计.石油大学学报(自然科学版),2000,24(2):44~46
    [23]张宏民,等.稠油油藏热活性水驱数值模拟.新疆石油地质,2002,23(1):52~55
    [24]崔波,等.高粘度稠油开采方法的现状和研究进展.石油化工和技术经济,2000,16(6):5~11
    [25]吴应凯.石晓兵.低压易漏地层防漏堵漏机理探讨及现场应用.天然气工业,2004,24(3):81~83
    [26]谢俊、张金亮,《剩余油描述与预测》,石油工业出版社,2003
    [27]张立平,纪哲,付广群.多分支井的技术展望.国外油田工程,2001,11:36~37
    [28]郑毅,黄伟和,鲜保安.国外分支井技术发展综述.石油钻探技术,1997,25(4):52~ 55
    [29]陈德坦,等.水平井采油技术译文集.东营:石油大学出版社,1992
    [30]刘文章.稠油注蒸汽热采工程.北京:石油工业出版社,1997
    [31]张怀文,雍开忠.水平井稠油热采工艺技术调查.新疆石油管理局油田工艺研究所.1991
    [32]Joshi S. D,张朝琛译.水平井热采工艺述评.稠油蒸汽驱,1990,1~19
    [33]张锐,薄启亮,刘尚奇.稠油开采技术的应用及发展.21世纪石油石化科技展望论文集,1999,294~313
    [34]王国清,何艳青.国外油田开发技术新进展.1998年世界石油科技综述,1999,66~84
    [35]金静芷译,程素贞校.火烧油层采油九十年—火烧油层历史的回顾和地质环境对项目效果影响的评论.第七届重油及沥青砂国际会议论文集,1998,124:11~19
    [36]刘文章.中国稠油热采现状及发展前景.第七届重油及沥青砂国际会议论文集,1998,198:161~171
    [37]王晓冬,刘慈群.水平井产量递减曲线及应用.石油勘探与开发,1996,23(4):54~57
    [38]Joshi S D. Augmentation of well productivity using slant and horizontal[J]. SPE15375,1988
    [39]王卫红,李鋈.分支水平井产能研究.石油钻采工艺,1997,19(4):53~57
    [40]程林松,李春兰,郎兆新,张丽华.分支水平井产能的研究.石油学报,1995,16(2):49~55
    [41]黄世军,程林松.复杂结构井变质量管流与地层渗流耦合模型.中国科学技术大学学报,2004,34(增刊):19~25
    [42]孔祥言,徐献芝,卢德唐.分支水平井的样板曲线和试井分析.石油学报,1997,18(3):98~140
    [43]Kuchuk F J, et al. Pressure—transient behavior of horizontal wells with and without gap cap or aquifer[J]. SPE17413,1987
    [44]Gringarten, AC, Ramey HJJr. An approximate te conductivity solution for a partially penetrating fine—source well [J]. SPEJ, April,1975
    [45]王晓冬,刘慈群.分支水平井三维不定常渗流研究.石油大学学报.1997,21(2):43~49
    [46]Erdal Ozkan, et al. Horizontal—well pressure analysis[J]. SPE16378,1989
    [47]黄世军,程林松,李秀生,雷小强.多分支水平井压力系统分析模型.石油学报,2003,24(6):81~86
    [48]Orkisewki J. Predicting two—phase pressure drops in vertical pipe[J]. JPT,1967, (6):829~ 838
    [49]吴淑红,沈德煌,李春涛,等.热采井筒变质量流与渗流耦合的数值模型.中国科学技术大学学报,2004,34(增刊):32~38
    [50]Stone T W. A comprehensive in horizontal wells and its effect on their production performance[C]. SPE19824,1990
    [51]张绍槐,张洁.21世纪中国钻井技术发展与创新.石油学报,2001,22(6):63~68
    [52]张金亮,《油藏地质与油藏表征》,西安地图出版社,2002
    [53]李琪,徐英卓.基于数据仓库的钻井工程智能决策支持系统研究.石油学报,2003,24(4):77~80
    [54]Monition B A, Hatchet J M D. Improvements in MWD telemetry:"Right data at the right time". SPE 25356,1993,337-346
    [55]Finger J T, Manure A J, Knudsen S D, et al.Development of a system for diagnostic—while—drilling(DWD). SPE/IADC 79884,2003,1-9
    [56]Michael J, David R H, Darrell C H, et al.Telemetry drill pipe:enabling technology for the down hole internet[R]. SPE79885.2003:1~10
    [57]Paul Laurie, Philip Head, Jackie E S. Smart drilling with electric dill string[R]. SPE/IADC 79886,2003:1-13
    [58]Heisting G, Santo J, McPherson J D. Down hole diagnosis of drilling dynamo ices data provides new level drilling process control tO driller[R]. SPE 49206,1998:649~658
    [59]GlandtCA. Electricpreheatinginlow—injective ity tarsanddeposits. SPE/DOE24165
    [60]Kism anKEetaI. A new com bus tionprocessutiliz—inghorizontal well sandgravity drainage. jcPT,1994,33(3)
    [61]LauECetaI_COS Hper for mance and economic predicions for six field typesin westernCanada. SPE 30296
    [62]GreavesMeta.HorizontaI producer well sinin situcom bustion (ISC) processes. JCPT 1993,32(4)
    [63]Greaves Metal. Insitucom bustion (ISC)processu sing horizontal wells jcPT,1996,35(4)
    [64]龚永丰.利用水平井技术开发辽河油田超稠油油藏.油气田地面工程.2007,26(8):13~14
    [65]王宝权,柳文国,李伟.稠油水平井注蒸汽热采时加热深度的确定.跨世纪的中国石油天然气产业.北京:中国社会科学出版社,2000
    [66]孙来喜,伏卫东,董文龙,等.稠油出砂冷采技术的适用条件.石油与天然气地质,2001
    [67]McGee, B. C. W. Ele-dcal Heating with Long Horizontal Wells, tl1e Heat Transfer Problem. SPE37117
    [68]赵立春,孙川生.克拉玛依油田浅层稠油注蒸汽开发经验.第七届重油及沥青砂国际会议论文集,1998,125:22~33
    [69]刘新福,吴官生.出砂冷采技术在稠油和稀油油藏中的应用.石油勘探开发情报,1999,(5):52~59
    [70]杨生榛,喻克全,邹正银等.稠油冷采技术在准噶尔盆地西北缘的应用前景.新疆石油地质,1999,20(6):528~531
    [71]M. B, Dusseault等,李令喜译.利用出砂冷采和蒸汽辅助重力驱油方法开采稠油,国外油田工程,1999,(3):10~11
    [72]Zamrneril]i A M. Simrlatlon stnJy of horizontel, high—angle, and vetrial wells eastern devonian shale, paper SPE 18998
    [73]胡月亭.对差额投资内部收益率(AIRR)评价方法的再认识.经济科学,1995,(2)
    [74]胡月亭.对差额投资内部收益率用于方案优选存在问题的质疑.技术经挤,1994.(3)
    [75]胡月亭.论建设项目最优投贷规模设计.北京大学学报(哲社版),1995.(4)
    [76]胡月亭,周熠辉.水平井钻井费用预测方法的研究.钻采工艺.1994,17(4):1~4
    [77]傅家骧,仝允恒著.工业技术经挤学.北京:请华大学出版社、1992
    [78]胡月亭.寿命期不等的互斥型非再生性资源开发项目评价方法的研究。工业技术经济.1994,(2)
    [79]刘斌.计算稠油油藏蒸汽吞吐阶段可采储量的方法.河南石油.1994,8(1):43~45
    [80]刘斌.曙1—7—5块蒸汽驱开发的初步认识.石油勘探与开发.1995.22(3):91~93
    [81]陈钦霄,等.油田开发设计与分析基础.北京:石油工业出版社,1984
    [82]陈元千.校正水驱曲线的方法.油气藏工程计算方法(续篇).北京:石油工业出版社,1991
    [83]郑颖.水平井在具有气顶的普通稠油油藏开发中的应用——以孤东油田四区为例.断块油气田.2006.13(1):50~52
    [84]高成.水平井在杜84断块超稠油开发中的优势研究.特种油气藏.2002.9(6):45~47
    [85]郭建国,乔晶.水平井开发杜84块馆陶超稠油藏方案优化及应用.钻采工艺.2005.28(3):43~46
    [86]范子菲,等.水平井水平段最优长度设计方法研究.石油学报,1997,18(1):55~56
    [87]周全兴.中曲率水平井钻井技术.北京:科学出版社.2002
    [88]周全兴,汪友松,乔忠民,等.辽河稠油水平井井身结构设计方法.石油钻采工艺,1995,17(1):7~12
    [89]邢玉忠,郑丽辉,曲军,等.水平井技术在新海27块稠油底水油藏开发中的应用.钻采工艺,2006,29(5),13~14.
    [90]刘峰.水平井技术在超稠油挖潜中的应用.特种油气藏,2005,12(3):58~59
    [91]刘福余.曙一区超稠油开采特征及开发对策.特种油气藏,2002,9(6):3~5
    [92]杨德卿,尤彦彬,赵志宏.曙一区超稠油蒸汽吞吐油层纵向动用程度分析.特种油气藏,2002,9(6):27~30
    [93]田风民.水平井的优化设计及油藏潜力挖掘研究.渤海大学学报(自然科学版),2007,28(3):207~211
    [94]刘文章著,热采稠油油藏开发模式,北京:石油工业出版社,1998
    [95]张厚福,张万选.石油地质学.北京:石油工业出版社,1989.189~213
    [96]徐景达.关于水平井的产能计算—论乔希公式的应用.石油钻采工艺,1991,8(6):33~35
    [97]王家宏,中国水平井应用实例分析.北京:石油工业出版社,2003.145~149
    [98]王觉民,金晓辉.水平井优化设计中油藏地质因素的分析.西安石油学报,1997,12(5): 19~21
    [99]程林松,李春兰.水驱油藏合理水平井段的确定方法.石油学报,1997,18(1):55~58
    [100]陈生.水平井钻井技术.北京:机械工业出版社,1990.36~472
    [101]郑洪印.油藏及油井参数对水平井产能影响.中国海上油气(地质),1991,9(3):23~26
    [102]张宏远.水平井油藏工程基础.油气田开发工程译丛,1991.(8—9):217~219
    [103]第四次国际石油大会论文集.(水平井部分).北京:石油工业出版社,1992.372~415
    [104]陈钦雷,等.油田开发设计与分析基础.北京:石油工业出版社,1982.163~217
    [105]陈元千.水驱曲线的分类、对比与评价,新疆石油地质.1994,8(4):17~19
    [106]俞启泰.两种水驱特征曲线及其应用.大庆石油地质与开发,1997,15(1):18~20
    [107]李宪民,吴光焕,满燕,等.胜利油区超稠油油藏热采开发设计优化研究.油气地质与采收率,2002,9(5):60~64
    [108]司勇.高含水普通稠油油藏二次开发研究.特种油气藏,2007,14(3):59~65
    [109]DREW L J, SCHUENEMEYER J. Petroleum resource appraisal and discovery rate forecasting in partially explored region-an application to the Denver basin. USGS Professional Paper,1980,1138:1~11
    [110]MENELEY R A, CALVEVLEY A E. KENNETH G, et al. Assessment Methodologies: Current status and future direction. AAPG,2004,87(4):535—540
    [111]于连东.世界稠油资源的分布及其开采技术的现状和展望.特种油气藏.2001,8(2):98~104
    [112]董本京,穆龙新.国内外稠油冷采技术现状及发展趋势.钻采工艺,2002,11(4):18~21
    [113]张锐.稠油热采技术.北京:石油工业出版社,1999:471~484
    [114]杜殿发、姚军.边水稠油油藏水驱后蒸汽吞吐方案设计.石油大学学报(自然科学版),2000,24(2):44~46
    [115]Begg S H et al.Characterization of A Complex Fluvial—Deltaic Reservoir for Simulation. SPE28398,1994
    [116]Gregovic R,Chang,C H,Ebrom D and McDonald J A.Detection of a vertically fractured zone using shear waves:Physical model study:62nd Annual Internat.Mtg., Soc.Expl.Geophys., Expanded Abstracts,1992,1355~1358
    [117]Hewett E A.Fractal Distributions of reservoir Heterogeneity and Their Influence on Fluid Transport.SPE 15386.1986
    [118]Li Teng. Fracture signatures on P—wave AVOZ,66th SEG Annual Mtg.Expanded Abstracts,1996,1818~1821
    [119]Mandal B and Lefeuvre F. Fracture evaluation using 3—D propagator matrix method:61st Annual Internat.Mtg.,Soc.Expl.Geophys.,Expanded Abstracts,1991,1628-1632
    [120]Perry,G.T and Warner,W.S. Heating Oil Well by Electricity.U.S.Patent No.45584
    [121]Lewis,J.O. Methods of Increasing the Recover from Oil Sands.Bull.148,Petroleum Technology,USBM(1971)37
    [122]Wolcott,E.R. Methods of Increasing the Yield of Oil Wells.U.S.Patent No.1457479
    [123]Stovall,S.L. Recovery of Oil from Deleted Sands bu\y Means of Dry Steam.Oil Weekly(Aug.13.1934)17~24
    [124]Young,B.M. Clay Stabilization Agents—Their Effectiveness in High Temperature Steam.JPT,1980,32(12)
    [125]胡月亭,周熠辉.水平井与直井的经济效益对比评价.石油学报.1997,18(4):117~121
    [126]O.G.Benge,Mobil E&P Technical Center,Anew Technigue for Evaluating Field Cement Mixing.IADC/SPE 27522 Dalas,Texas 1994
    [127]Low Permelity Reservuire Development Using Heriyontal Wells,SPE/DOE 16406 May 18 1987,Demce
    [128]H.Rasmussen, Nearhore and alluvial facies in the Sant Llorencdel, Munt depositional system:recognition and development, Sedimentary Geology 138 (2000)
    [129]J.E.McCallum, A.H.F.Roberson, Sedimentology of two fan-dalta systems in the Pliocene-Pleistocene of the Mesaoria Basin, Cyprus, Sedimentary Geology 98(1995)
    [130]Jun Tanaka, Wata.ru Maejima, Fan-delta sedimentation on the basin margin slope of the Cretaceous, strike-slip Izumi Basin, southwestern Japan, Sedimentary Geology 98(1995)
    [131]High-resolution sequence stratigraphic analysis of the St. Peter sandstone and Glenwood formation (middle Ordovician), Michigan basin, U. S. A. AAPG
    [132]John T. Wells, Christopher A. Scholz and Michael J. Soreghan. Processes of Sedimentation on a Lacustrine Border-Fault Margin:Interpretation of Cores From Lake Malawi, East Africa. Journal of Sedimentary Research,1999, Vol.69, No.4
    [133]Hunt J M.1990. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin,74:1~12
    [134]Dorrik A.V.Stow, Neil E.Braakenburg, Costas Xenophontos, The Pissouri Basin fan-delta complex, southwestern Cyprus, Sedimentary Geology 98 (1995) 245~262
    [135]Einar Alasaker, Roy H.Gabrielsen, Eduardo Roca, The significance of the fracture pattern of the Late-Eocene Montserrat fan-delta, Catalan Coastal Ranges(NE Spain), Tectonophysics 266(1996)
    [136]易发新,喻晨,等.鱼刺分支水平井在稠油油藏中的应用.石油勘探与开发,2008,35(4):487~491
    [137]刘新,安飞,译.国外水平井钻井技术的成本与效益.石油知识,2006,5:16~18
    [138]许国民,王卫东,等.水平井技术在老区剩余油挖潜中的应用.特种油气藏,2007, 14(6):80~82.
    [139]孟立新,任宝生.稠油底水油藏地质研究及水平井调整实践.西南石油学院学报,2006,28(1):35~38.
    [140]文光耀.应用精细油藏数值模拟技术研究真武油田真11断块剩余油分布.江苏石油勘探与开发,1996(7)。
    [141]蒋传新.精细油藏地质研究提高水平井开发效果.石油工程学会2001年度技术文集,北京:石油工业出版社,2002.200~204.
    [142]孙焕泉.胜利油田不同类型油藏水驱采收率潜力分析.油气采收率技术,2000,7(1):33~37.
    [143]李建成.朱业耘.柳颖.鲁政权.锦27—平1稠油水平井钻井液、完井液研究.特种油气藏,2003,10(3):70~71.
    [144]刘尚奇,许心伟,张锐,稠油油藏水平井热采应用研究,石油勘探与开发,1996年02期.
    [145]倪学锋,程松林,水平井蒸汽吞吐热采过程中水平段加热范围应用计算模型,石油勘探与开发,2005年05期
    [146]凌建军,实用稠油热采工程,石油工业出版社,1996
    [147]H.K.范.波伦,提高原油采收率的原理,石油工业出版社,1983
    [148]O.G.Benge,Mobil E&P Technical Center,Anew Technigue for Evaluating Field Cement Mixing.IADC/SPE 27522 Dalas,Texas 1994
    [149]M K Verma et al. Evaluation of Residual Oil Saturation After Waterflood in a Carbonatr Reservoir.SPE21371,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700