用户名: 密码: 验证码:
基于多尺度几何分析的图像处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多尺度几何分析理论(Multiscale Geometric Analysis, MGA)是近年来在计算调和分析基础上发展起来的一系列分析方法的总称,其目的是通过对图像等高维数据内在的几何结构如轮廓、边缘和纹理等进行高效逼近和描述,从而更有效地检测、表示和处理高维空间数据,从根本上克服了二维小波不能有效捕获信号高维奇异性的缺陷,在图像信号处理领域具有广阔的应用前景。研究多尺度几何分析理论及核心技术并结合图像处理应用给出性能更好的处理算法,具有重要的理论意义和实用价值。本文主要以多尺度几何分析工具Contourlet变换为主线,针对其在若干图像处理应用中的关键技术进行了深入系统的研究。主要研究工作及贡献包括如下内容:
     1.研究并给出了多尺度几何分析能够高效表示和处理图像信息的根本原因。从自然图像的统计规律和人类视觉系统的信息整合机理两方面进行深入分析,探讨了小波分析的自身局限性;而多尺度几何分析所拥有的方向性、多尺度、局部化、各向异性等优良特性使之能够高效捕捉自然图像的高维奇异性,其稀疏表达方式也更加符合人类视觉系统视皮层细胞感受野的处理机制。
     2.系统研究了多尺度几何分析理论的典型工具,包括Beamlet、Brushlet、Bandelet、Ridgelet和Curvelet等,并重点探讨了Contourlet变换和非采样Contourlet变换的基本原理、实现方案、优良特性以及所存在的不足之处,为该领域的应用研究奠定了理论基础。Contourlet继承了多尺度几何分析的优良特性,基函数固定且兼具快速便捷的实现方式和数字处理的友好性,能获得更为优异的图像处理性能。
     3.提出了一种基于Contourlet变换的SAR图像相干斑抑制算法。该算法分析了相干斑的产生机理和统计特性,在此基础上将SAR图像经对数同态变换和Contourlet变换进行处理,设计了尺度自适应阈值在Contourlet变换域进行阈值萎缩;深入研究了平移可变特性的信号处理模型,设计二维循环平移变换去除可能出现的人工效应。仿真结果表明该算法在有效抑制相干斑的同时较好地保持了SAR图像中的边缘结构,其主客观效果均优于传统的空域滤波算法和小波去噪算法。
     4.根据Contourlet系数尺度间内在的树型结构,提出了Contourlet区域方向对比度的概念,并设计了一种基于Contourlet区域特性的图像融合算法。该算法借助于Contourlet的优良特性,在Contourlet变换域综合使用加权平均和选择两种方式实现频域系数的有效融合。为保证融合图像与视觉系统感知相一致,构造并使用了基于区域的融合规则:低频采用加权局部能量,高频采用Contourlet区域方向对比度。通过遥感图像和医学图像的实验结果证明了该算法的有效性。
     5.提出了一种基于非采样Contourlet变换域样本学习的图像超分辨重构框架。针对拥有一幅或多幅低分辨图像以及相同或类似场景的高分辨图像的超分辨重构问题,通过对其降质模型施加约束条件,构造了实用化的图像降质模型;在此基础上算法使用高分辨图像作为参考,利用非采样Contourlet变换所具有的多尺度及平移不变特性构造训练集合,在Contourlet域通过运动估计技术实现最优高频信息的自适应学习与有效整合,重构高分辨率图像。实验结果显示较传统的超分辨重构算法,该算法在图像细部信息的恢复方面有显著提高。
     6.针对图像超分辨重构和视频编码等应用中的关键技术——运动估计进行深入研究,构造了具有方向特性的线性-菱形搜索策略(LDS)和六边形-菱形搜索策略(HDS),在此基础上提出了一种运动矢量场和方向双重自适应搜索算法(MDAS)。算法针对运动矢量场的中心偏置性和时空相关性进行预判,对静止块直接中止搜索,根据运动类型自适应选择搜索起始点和搜索策略。实验结果表明,该算法的搜索速度优于传统快速运动估计算法,且搜索精度非常接近于全搜索法。
Based on computational harmonic analysis, a novel Multiscale Geometric Analysis (MGA) theory was proposed to capture the geometrical structure in visual information efficiently, it can achieve optimal approximation behavior for 2-D piecewise smooth function, thus obtaining highly efficient representation and processing methods. Wavelet is an optimal tool only for 1-D piecewise smooth signals, As a result of a separable extension from 1-D bases, wavelet in 2-D is far from optimal. The disappointing behaviors of wavelets have led to a series of MGA tools. MGA theory and its applications still need further research and development. In this dissertation, the author mainly focuses on the research of Contourlet transform and the key techniques of its applications in image processing. As the latest MGA tool, Contourlet is a“true”two dimensional sparse representation, it provides much better anisotropy, multiresolution, directionality and localization properties for 2-D signals than existing image representation methods. Therefore, Contourlet is more appropriate for various image processing tasks and better performance would be expected. The main research work in the dissertation is as follows:
     1. Detailed analysis is provided for the advantages of MGA from the view of statistics of natural image and the functionality of human vision system. Based on detailed comparison, the intrinsic reasons are given. The advantages of multiscale geometric analysis make it able to capture high dimensional singularities in natural image efficiently, and also consistent with the perception and integration principle of receptive field of visual cortex in human vision system.
     2. A systematical research of the development and common analysis tools are given firstly, including Ridgelet, Curvelet, Beamlet, Bandelet, etc. For Contourlet transform and its novel extension—Nonsubsampled Contourlet Transform, we provide a detailed analysis to its basic principles, implementation schemes, advantages and disadvantages, which can be seen as the foundation of following image processing applications.
     3. Based on the speckle noise modeling for SAR image, a new speckle reduction algorithm using Contourlet transform is proposed. Logarithmic transform is first performed to convert the original multiplicative speckle noise into additive noise. For noise can be effectively separated from real image signal in Contourlet transform domain, a Contourlet based hard thresholding algorithm is then applied. Monte-Carlo method is adopted to estimate the statistics of Contourlet coefficients for speckle noise, thus determining the optimal threshold set. The cycle-spinning technique is utilized to suppress the Gibbs effect. Experimental results show that the proposed Contourlet based algorithm outperforms conventional algorithms in terms of both speckle reduction and edge preservation.
     4. A novel image fusion algorithm based on local statistics in Contourlet domain is proposed. All fusion operations are performed in Contourlet domain. Based on the tree structure among parent and children coefficients in Contourlet domain, the Contourlet contrast measurement is developed. It is proved to be more suitable for human vision system. Other fusion rules like local energy, weighted average and selection are combined with“region”idea for coefficient selection in the low- and high-pass subbands. The final fusion image is obtained by directly applying inverse Contourlet transform to the fused subbands. Extensive fusion experiments have been made on remote sensing images and medical multimodality images, both visual and quantitative analysis show that comparing with conventional image fusion algorithms, the proposed approach can provide a more satisfactory fusion outcome.
     5. An example based super-resolution algorithm for digital image using nonsubsampled Contourlet transform (NSCT) is proposed. The input is one or more low resolution images together with a high resolution still image of similar content. For the good properties of shift-invariance, the nonsubsampled Contourlet is utilized to create the training set of transform coefficient patches from the high resolution still image. Low resolution images are first interpolated to the same spatial resolution as the reference still image. Block based motion estimation is then applied inside the complete training set to find the best matching between interpolated frame and reference still image. According to the correspondence between low frequency and high frequency pairs, the missing high frequency information of the input image can be easily learned from the training set. Finally, an inverse Contourlet transform is applied to recover the super-resolved image. Preliminary experimental results show that the proposed super-resolution algorithm outperforms conventional algorithm both in visual quality and the PSNR value.
     6. Motion estimation (ME) is one of the key techniques in exampled based super resolution and video coding. A novel fast motion estimation algorithm, or the Motion vector field and Direction Adaptive Search technique (MDAS) is proposed. In MDAS, the type of local motion activity and initial search center is first determined according to the motion vector field, different search algorithms are adaptively used according to the motion activity of current block. Two novel search algorithms: Line-Diamond Search (LDS) and Hexagon -Diamond Search (HDS) are proposed, which all have strong directional property, and can obtain faster searching speed. Stop criteria is also set to detect the stationary block, thus terminating current search. Experimental results show that the proposed algorithm provides faster searching speed than other existing fast block-matching algorithm, while the distortion is almost the same as the FS algorithm.
引文
[1]冈萨雷斯,数字图像处理(第二版),电子工业出版社, 2003.
    [2] K.R. Castleman. Digital Image Processing. Prentice-Hall Press, 1996.
    [3]章毓晋.图像工程(上册).清华大学出版社, 2002.
    [4] F.G. Meyer, R. R. Coifman. Brushlets: a tool for directional image analysis and image compression. Applied and Computational Harmonic Analysis, Vol.4, pp.147-187, 1997.
    [5] F.G. Meyer, R. R. Coifman. Directional image compression with brushlets. Inter. Symp. on Time-Freq. and Time-Scale Analysis, pp.189-192,1996.
    [6] D.L. Donoho. Wedgelets: nearly minimax estimation of edges. Ann. Statist, Vol.27, No.3, pp.859-897, 1999.
    [7] D.L. Donoho, X. Huo. Beamlet pyramids: a new form of multiresolution analysis. Proceedings of SPIE, Vol.4119, 2000.
    [8] D. L. Donoho, X. M. Huo. Beamlets and multiscale image analysis. in Multiscale and multiresolution methods, Lecture Notes in Computational Science and Engineering, Vol.20, pp. 149-196, 2001.
    [9] E.J. Candès. Ridgelets: Theory and applications. Ph.D. dissertation, Dept. Statistics, Stanford Univ., 1998.
    [10] E.J. Candès. Monoscale ridgelets for the representation of images with edges. Technical report, Stanford Univ.,1999.
    [11] D.L. Donoho. Orthonormal ridgelets and linear singularities. SIAM, Math Anal., Vol.31, No.5, pp.1062-1099, 2000.
    [12] E. Candès, D. Donoho. Curvelets - A Surprisingly Effective Non-adaptive Representation for Objects with Edges, Curves and Surfaces, Vanderbilt University Press, 1999.
    [13] J.L. Starck, E.J. Candès, D.L. Donoho. The Curvelet Transform for Image Denoising. IEEE Trans. on Image Proc., Vol.32, Nol.11, pp.670-684, 2002.
    [14] E.L. Pennec, S. Mallat. Bandelet representations for image compression. IEEE International Conference on Image Processing, Vol.1, pp.12-14, 2001.
    [15] E.L. Pennec, S. Mallat. Image compression with geometrical wavelet. IEEE International Conf. on Signal Proc., Canada, No.9. pp.661-664, 2000.
    [16] M.N. Do, M. Vetterli. Contourlets. Beyond Wavelets, Academic Press, 2003.
    [17] M.N. Do, M. Vetterli. Contourlets: a directional multiresolution image representation. Inter. Conf. on Image Proc., Vol.1, pp.357 -360, 2002.
    [18]冯象初,宋国乡.数值泛函与小波理论,西安电子科技大学出版社, 2003.
    [19] I. Daubechies. Orthonormal bases of compactly supported wavelets. Commun.on Pure and Applied Mathematics., Vol.41, No.7, pp.909-996, 1988.
    [20] I. Daubechies. Ten Lectures on Wavelets. CBMS Conference Series in Applied Mathematics, SIAM, Philadelphia, 1992.
    [21] C.K. Chui, J.Z. Wang. A general framework for compactly supported splines and wavelets. CAT Report#219, Texas A&M University, 1990
    [22] S. Mallat. Multifrequency channel decomposition of images and wavelets. IEEE Trans. ASSP., Vol.37, No.12, pp.2091-2110, 1989.
    [23] S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. PAMI, Vol.11, No.7, pp.674-693, 1989.
    [24] W. Sweldens. The lifting scheme: A custom-design construction of biothogonal wavelets. Appl. Comut. Hamon. Appl., Vol.3, No.2, pp.186-200, 1996.
    [25] W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., Vol.29, No.2, pp.511-546, 1997.
    [26] T.N. Goodman, S.L. Lee. Wavelet wandering subspaces. Trans. Amer. Math. Soc., Vol.338, No.2, pp.639-654, 1993.
    [27] T. N. Goodman, S.L. Lee. Wavelets of multiplicity. Trans. Amer. Math. Soc., Vol.342, No.1, pp.307-324, 1994.
    [28] J. S. Geronimo, D. P. Hardin, P. R. Massopust. Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory, Vol.78, No.3, pp.373-401, 1994.
    [29] G. Donovan, J. S. Geronimo, D. Hardin, P. Massopust. Construction of orthogonal wavelets using fractal interpolation function. SIAM J. Math. Anal., Vol.27, pp.1158-1192, 1996.
    [30] X.G. Xia, J.S. Geronimo. Design of prefilters for discrete multiwavelet transforms. IEEE Trans. on SP, Vol.44, No.1, pp.25-35, 1996.
    [31] Q. Jiang. On the design of multifilter bands and orthonormal multiwavelet banks. IEEE Trans. SP., Vol.46, No.12, pp.3292-3302, 1998.
    [32] Q. Jiang. Orthogonal multiwavelets with optimum time-frequency resolution. IEEE Trans. SP., Vol.46, No.4, pp.830-844, 1998.
    [33] D.L. Donoho. Data Compression and Harmonic Analysis. IEEE Trans. Information Theory, Vol.44, No.6, pp.2435-2476, 1998.
    [34] E.J. Candès, D.L. Donoho. New Tight Frames of Curvelets and Optimal Representations of Objects with Smooth Singularities. Department of Statistics, Stanford University,2002.
    [35] R.R. Coifman, M.V. Wickerhauser. Adapted waveform analysis as a tool for modeling, feature extraction and denoising. Optical Engineering, Vol.33, No.7, pp.2170-2174, 1994.
    [36] E.P Simoncelli, W.T. Freeman, D.J. Heeger. Shiftable multi-scale transforms.IEEE Trans. Information Theory, Vol.38, No.2, pp.587-607, 1992.
    [37] W.T. Freeman, E.P. Simoncelli, E.H. Adelson. The design and use of steerable filters. IEEE Trans. Pat. Anal. Mach. Intell., Vol.13, No.9, pp.891-906, 1991.
    [38] N. Kingsbury. Complex wavelets and filtering for shift invariant analysis signals. J. of Appl Comput Harmonic Anal., Vol.10, No.3, pp.234-253, 2001.
    [39] M. Livingstone. Art illusion and the visual system. Scientific American, Vol.258, No.1, pp.78-86, 1988.
    [40] J. Leowenstein, J.F. Rizzo. Novel retinal adhesive used to attach electrode array to retina. Ophthalmology and Vision Science, Vol. 40, p. S733, 1999.
    [41]郭雷,郭宝龙.视觉神经系统与分布式推理理论.西安电子科技大学出版社, 1995.
    [42] R.A. Normann, E.M. Maynard, P.J. Rousche. A neural interface for a cortical vision prosthesis. Vision Research, Vol.39, pp.2577-2587, 1999.
    [43]郭宝龙,郭雷.利用神经网络区分图形与背景.科学通报, Vol.39, No.10, pp.1805-1808, 1994.
    [44] D.H. Hubel, T.N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, Vol.160, No.4 pp.106-154, 1962.
    [45] B.A. Olshausen, D.J. Field. Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature, No.381, pp.607-609, 1996.
    [46] E.J. Candès, D.L. Donoho. Curvelets, Multiresolution Representation and Scaling Laws. Proc. of SPIE, Vol.4119, pp.1-12, 2000.
    [47] Y. Lu, M.N. Do. CRISP: a critically sampled directional multiresolution image representation. Conference on Wavelet Applications in Signal and Image Processing X, Vol.1, pp.584-593, San Diego, USA, Aug. 2003.
    [48] N. Kachouie, P.W Fieguth. Bayes shrink ridgelets for image denoising. ICIAR (1) 2004. Springer pp.163-170, 2004.
    [49] B.B. Saevarsson, J.R. Sveinsson, J.A. Benediktsson. Combined wavelet and curvelet denoising of SAR images. Geoscience and Remote Sensing Symposium 2004, Vol.6, pp.4235-4238, 2004.
    [50] E. Ramin, R. Hayder. Image denoising using translation-invariant Contourlet transform. International Conference on Acoustics, Speech and Signal Processing, Vol.4, pp.557-560, 2005.
    [51] M.N. Do, M. Vetterli. The finite Ridgelet Transform for Image Representation. IEEE Trans. on Image Processing, Vol.12, No.1, pp.16-28, 2002.
    [52] L. Granai, F. Moschetti, P. Vandergheynst. Ridgelet Transform Applied to Motion Compensated Images. Research Report, EPFL Swiss Federal Institute ofTechnology, Switzerland.
    [53] G. Meyer, R.R. Coifman. Brushlets: A tool for directional image analysis and image compression. J. of ACHA, No.5, pp.147-187, 1997.
    [54]孙文方,赵亦工,宋蓓蓓.基于第二代Bandelets变换的静止图像压缩.西安交通大学学报,Vol.40, No.8, pp.950-954, 2006.
    [55]金炜,潘英俊,魏彪,冯鹏.一种基于Contourlet的无表零树图像编码算法.电子与信息学报; No.11, 2006.
    [56]焦李成,谭山,图像的多尺度几何分析:回顾和展望,电子学报,Vol.31, No 12, pp: 1976-1981, 2003.
    [57]李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究.光学学报, Vol.26, No.5, pp.657-662, 2006.
    [58]张强,郭宝龙.应用第二代Curvelet变换的遥感图像融合.光学精密工程, Vol.15, No.7, pp.1130-1136, 2007.
    [59]倪伟,郭宝龙,杨镠.基于Contourlet区域对比度的遥感图像融合算法.宇航学报, Vol.28, No.2, pp.364-369, 2007.
    [60]杨镠,郭宝龙,倪伟.基于区域特性的Contourlet域多聚焦图像融合算法.西安交通大学学报, Vol.41, No.4, pp.448-452, 2007.
    [61]尚晓清.多尺度分析在图像处理中的应用研究[博士论文].西安电子科技大学, 2005.
    [62]沙宇恒,丛琳,侯彪,焦李成.基于方向纹理信息的图像融合.电子与信息学报, Vol.29, No.3, pp.593-597, 2007.
    [63] M.B. Wakin, J.K. Romberg. Wavelet-domain Approximation and Compression of Piecewise Smooth Images. IEEE Trans. on Image Processing. No.11, 2004.
    [64] M. Wakin, J. Romberg. Rate-distortion optimized image compression using wedgelets. IEEE Inter. Conf. on Image Processing, Sept. 2002
    [65] H. Malvar. Lapped transforms for ef_cient transform /subband coding. IEEE Trans.Acoustics Speech Signal and Processing, Vol.38, pp.969-978, 1990.
    [66] D. Geiger, A. Gupta, L.A. Costa, J. Vlontzos. Dynamic programming for detecting, tracking and matching deformable contours. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.17, No.3, pp.294–302, 1995.
    [67] J. Rissanen. Modeling by shortest data description. Automatica, Vol.14, pp.465-471, 1983.
    [68] F. Matus, J. Flusser. Image representation via finite Radon transform. IEEE Trans. Pattern Anal. Machine Intell., Vol.15, No.10, pp.996-1006, 1993.
    [69] T.C.Hsung, D.P. Lun, W.C. Siu. The discrete periodic Radon transform, IEEE Trans.Signal Process.Vol.44, No.10, pp.2651-2657, 1996.
    [70] F. Flusser. Image representation via a finite Monoscale ridgelets for the representation of images with edges, Tech. Rep. Dept. Statist., Stanford Univ.,Stanford, 1999.
    [71] M.N. Do, M. Vetterli, Orthonormal finite ridgelet transform for image compression. IEEE Int. Conf. Image Proc., Vol.2, pp.367-370. Sept. 2000.
    [72] D.L. Donoho, M.R. Duncan. Digital curvelet transform: Strategy, implementation and experiment. Tech. Rep., Department of Statistics, Stanford University, 1999.
    [73] M.N. Do, M. Vetterli. Contourlets: a directional multiresolution image representation. Inter. Conf. on Image Proc. 2002, Vol.1, pp.357-360, 2002.
    [74] P. J. Burt, E.H. Adelson. The Laplacian pyramid as acompact image code. IEEE Trans. Communication, Vol.31, No.4, pp.532-540, 1983.
    [75] M.N. Do, M. Vetterli. Framing pyramids. IEEE Trans. Signal Processing, Vol.51, No.9, pp.2329-2342, 2003.
    [76] R.H. Bamberger, M.J. Smith. A filter bank for the directional decomposition of images: Theory and design. IEEE Trans. Signal Processing, Vol.40, No.4, pp.882-893, 1992.
    [77] M. Vetterli. Multidimensional subband coding: Some theory and algorithms. Signal Processing, Vol.6, No.2, pp.97-112, 1984.
    [78] M.N. Do, M. Vetterli. Directional multiscale modeling of images using the Contourlet transform. IEEE Workshop on Statistical Signal Processing 2003, Vol.1, pp.262-265, Sep. 2003.
    [79] E.L. Pennec, S. Mallat. Sparse geometrical image representation with bandelets. IEEE Trans. Image Processing, Vol.14, No.4, pp. 423-438, 2005.
    [80] S. Mallat, W. Wang. Singularity detection and processing with wavelets. IEEE Trans. Information Theory, Vol.38, No.2, pp.617-643, 1992.
    [81] D.L. Donoho, I.M. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, Vol.81, pp :425-455, 1994.
    [82] D.L. Donoho, I.M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage, Journal of American. stat. Ass., Vol.90, pp.1200-1224, 1995.
    [83] S.G. Chang, B. Yu, M. Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. Image Processing, Vol.9, No.9, pp.1522-1531, 2000.
    [84] M. Mihcak, I. Kozintsev, K. Ramchandran. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters, Vol.37, No.6, pp.300-303, 1999.
    [85] L. Sender, I.W. Selesnick. Bivariate shrinkage function for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing, Vol.50, No.11, pp.2744-2756, 2002.
    [86] D.L. Donoho. Denoising by soft-threshoding. IEEE Trans. Information Theory,Vol.34, No.2, pp.1245-1234, 1995.
    [87] M.S. Crouse, R.D. Nowak. Wavelet-based image denoising using hidden markov models. IEEE Trans. Signal Proc., Vol.46, No.4, pp.886-902, 1998.
    [88] L.K. Shark, C. Yu. Denoising by optimal fuzzy thresholding in wavelet domain. Electronics Letters, Vol.36, No.6, pp.581-582, 2000.
    [89] J. Liu, P. Moulin. Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients. IEEE Trans. on Image Processing. Vol.10, No.10, pp.1647-1658, 2001.
    [90] Y. Xu, J.B. Weaver. Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Trans. IP, Vol.3, No.6, pp.747-757, 1994.
    [91]丁鹭飞.雷达原理.西安电子科技大学出版社, 1984.
    [92]张澄波.综合孔径雷达原理、系统分析与应用.科学出版社, 1989.
    [93]保铮,邢孟道,王彤.雷达成像技术.电子工业出版社, 2005.
    [94]刘永坦.雷达成像技术.哈尔滨工业大学出版社, 1999.
    [95] J.S. Lee, M. R. Grunes, S. A. Mango. Speckle reduction in multi-frequency and multi-polarization SAR imagery. IEEE Trans. GE, pp. 535-544, 1991.
    [96] J.S. Lee. Speckle Analysis and Smoothing of Synthetic Aperture Radar Images. Computer Graphics and Image Processing, Vol.17, pp.24-32, 1981.
    [97] V.S. Frost, J.A. Stiles. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. PAMI, Vol.4, No.2, pp.157-166, 1982.
    [98] D.T. Kuan, A.A. Sawchuk. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. PAMI, Vol.7, No.2, pp.165-177, 1985.
    [99] A. Lopes, R. Touzi. Adaptive speckle filters and science heterogeneity. IEEE Trans. Geosci. Remote Sensing, Vol.28, No.6, pp. 992-1000, 1990.
    [100] J.W. Goodman. Some fundamental properties of speckle. Opt. Soc. Am., Vol.66, No.11, pp.145-115, 1976.
    [101] X. Hua, L.E. Pierce, F.T. Ulaby. Despeckling SAR images using a low-complexity wavelet denoising process. Geoscience and Remote Sensing Symposium, Vol.1, pp.321-324, 2002.
    [102] Y.J. Yu, S.T. Acton. Speckle Reducing Anisotropic Diffusion. IEEE trans. on image processing, Vol.11, No.11, pp. 569-576, 2002.
    [103] E. Waltz, J. Linas. Multisensor Data Fusion. Boston: Artech House, 1990.
    [104]何友,王国宏.多传感器信息融合及应用.电子工业出版社, 2000.
    [105] D.L. Hall. Mathematical Techniques in Multisensor Data Fusion. Artech House, 1992.
    [106]康耀红.数据融合理论与应用.西安电子科技大学出版社,1997.
    [107] C. Pohl. Multisensor image fusion in remote sensing: concepts, methods andapplications. Inter. J. of Remote Sensing, Vol.19, No.5, pp.823-854, 1998.
    [108]毛士艺,赵巍.多传感器图像融合技术综述.北京航空航天大学学报, Vol.28, No.5, pp.512-518, 2002.
    [109] David L. Hall, James Linas. An introduction to multisensor data fusion. Proc. of the IEEE, Vol.85, No.1, pp.6-23, 1997.
    [110]李晖晖.多传感器图像融合算法研究[博士论文].西北工业大学.2006
    [111] W.J. Carper, T.M. Lillesand. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sensing, Vol.56, No.5, pp.459-467, 1990.
    [112] J.R. Harris. IHS Transform for the integration of radar imagery with other remotely sensed data. Photogammetric Engineering and Remote Sensing, No.12, pp.1631-1641, 1990.
    [113] P.S. Chavez, S.C. Sides. Comparison of Three Difference Methods to Merge Multiresolution and Multispectral Data: Landsat TM and SPOT Panchromatic. Photogramm.Eng.Remote Sensing, Vol.57, No.7, pp.295-343, 1991.
    [114] P.J. Burt, E.H. Adelson. The Laplacian pyramid as a compact image code. IEEE Trans. on Communications, Vol.31, No.4, pp.532-540, 1983.
    [115] A. Toet, L.J. Ruyven. J.M.Valeton, Merging themal and visual images by a contrast pyramid, Optical Engineering,Vol.28, No.7, pp.789-792, 1989.
    [116] P.J. Burt. A gradient Pyramid basis for pattern-selective image fusion. Society for Information Display Digest of Technical Papers, No.16, pp.467-470, 1985.
    [117]张新曼,韩九强.基于视觉特性的多尺度对比度塔图像融合及性能评价.西安交通大学学报, Vol.38, No.4, pp.380-383, 2004.
    [118] H. Li, B.S. Manjunath,. Multisensor Image Fusion Using the Wavelet Transform. Graphical Models and Im. Proc., Vol.57, No.3, pp.235-245, 1995.
    [119] X. Jiang, L. Zhou. Multispectral image fusion using wavelet transform. Proceedings of SPIE, Vol.2898, pp.35-42, 1996.
    [120] Z. Zhang, R. S. Blum. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE, Vol.2987, No.8, pp.1315-1326, 1999.
    [121]晃锐,张科,李言俊.一种基于小波变换的图像融合算法.电子学报, Vol.32, No.5, pp.750-753, 2004.
    [122] P.A. Van, E.D. Pol. Medical image matching–a review with classification. IEEE Engineering in Medicine and Biology, Vol.3, pp.26-38, 1993.
    [123] H. H. Wang, J. X. Peng. Fusion algorithm for multisensor images based on the discrete multiwavelet transform. IEE Proceedings of Vision, Image and Signal Processing, Vol.149, No.5, pp.1243-1246, 2002.
    [124] M. Unser. Texture classification and segmentation using wavelet frames. IEEETrans. On Image Processing, Vol.11, No.4, pp.1549-1560, 1995.
    [125] C.V. Kropas. Image fusion using auto associative associative neural networks. Ph.D dissertation, Airforce Institute of Technology, 1999.
    [126] A.H. Dekker, D. Bosden. Resolution: a survey. Journal of the Optical Society of America, Vol.14, No.3, pp.547-557, 1997.
    [127] S.C. Park, M.K. Park. Super-resolution image reconstruction: a technical review. IEEE Signal Processing Magazine, Vol.23, No.5, pp.21-36, 2003.
    [128] D. Capel. Image mosaicing and super-resolution. Springer, 2004.
    [129] S. Borman, R.L. Stevenson. Super-resolution from image sequences–a review. Midwest Symp. Circuits and Systems, pp.374-378, 1999.
    [130] B. Zhukov, D.Oertel, P. Strobl. Fusion of airborne hyperspectral images. Proc. of SPIE, Vol.2758, pp.148-159, 1996.
    [131] Goodman. Introduction to Fourier Optics. McGrawHill, N.Y., 1968.
    [132] R.Y. Tsai, T.S. Huang. Multiple frame image restoration and registration. Adv. in computer vision and image processing. JAI Press Inc., pp.317-339, 1984.
    [133] T.Q. Pham, L.J. Vliet. Resolution enhancement of low quality videos using a high-resolution frame, 18th Annual Symposium Electr. Imag., vol. 6077, 2006.
    [134] Z. Jiang, T.T. Wong, H. Bao. Practical super-resolution from dynamic video sequences. IEEE Conf. on Comp. Vis. Pat. Recog., Vol. 1, pp.549-554, 2003.
    [135] S. Chaudhuri. Super-resolution imaging. Norwell, MA: Kluwer, 2001.
    [136] C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal, Vol.27, 379-429, 623-656, 1948.
    [137] J.A. Parker, R. V. Kenyon. Comparison of interpolating methods for image resampling. IEEE Trans. on Medical Imaging. Vol.2, No.1, pp.31-39, 1983.
    [138] P. Thevenaz, T. Blu, M. Unser. Image interpolation and resampling, Handbook of Medical Imag., Proc. and Anal., Academic Press, 2000.
    [139] S.K. Park, R.A. Schowengerdt. Image reconstruction by parametric cubic convolution. Graphical Mod. Image Proc., Vol.23, No.3, pp.258-272, 1983.
    [140] R.G. Keys. Cubic convolution interpolation for digital image processing. IEEE Trans. on Acous., Speech and Sig. Proc., Vol.29, No.6, pp.1153-1160, 1981.
    [141] M. Unser, A. Aldroubi. B-spline signal processing: Part II—Efficient design and applications. IEEE Trans. on Sig. Proc., Vol.41, No.2, pp.834-848, 1993.
    [142] T. Lehmann, C. Gonner. Survey: Interpolation Methods in Medical Image Processing. IEEE Trans. on Med. Imag., Vol. 18, No. 11, pp.1049-1075, 1999.
    [143] K. Jensen, D. Anastassiou. Spatial resolution enhancement of image using nonlinear interpolation. International Conference on Aeoustics, Speech and Signal Processing, Vol.4, pp.2045-2048, 1990.
    [144] B.B. Mandelbro. The Fractal Geometry of Nature, San Francisco Press, 1982.
    [145] A.P. Pentland. Fractal based description of nature scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.6, No.6, pp.661-674, 1984.
    [146] J. Allebach, W. Ping. Edge-directed Interpolation. International Conf. on Image Processing, Vol.3, pp.707-710, 1996.
    [147] L. Xin, M.T. Orchard. New Edge directed interpolation. IEEE Trans. on Image Processing, Vol.10, No.10, pp.1521-1527.
    [148] D.D. Muresan. Adaptively Quadratic Image Interpolation. IEEE Trans. on Image Processing, No.5, pp.690-698, 2004.
    [149] N. Nguyen, P. Milanfar. An efficient wavelet-based algorithm for image super-resolution. Inter. Conf. on Image Processing, No.2, pp.351–354, 2000,
    [150]刘卜,屈有山.小波双线性插值迭代算法应用于光学遥感图像.光子学报, Vol.35, No.3, pp.468-473, 2006.
    [151]石峻,郭宝龙.一种新的图像插值方案—子带插值.西安电子科技大学学报, Vol.25, No.5, pp.684-688, 1998.
    [152]朱长青,王倩,陈虹.基于多进制小波变换的图像放大算法.中国图象图形学报, Vol.7, No.3, pp.261-266, 2002.
    [153]田金文,苏康,柳健.基于小波分解与分形内插相结合的地形数据压缩方法.宇航学报, Vol.19, No.4, pp.1-7, 1998.
    [154] S. Borman, R. Stevenson. Spatial resolution enhancement of low-resolution image sequences. Tech. Rep. University of NotreDame, 1998.
    [155] M. Irani, S. Peleg. Improving resolution by image registration. CVGIP: Graphical Models and Image Proc., Vol.53, No.5, pp.231–239, 1991.
    [156] H. Stark, P. Oskoui. High resolution image recovery from image-plane arrays, using convex projections. J. Opt. Soc. Am. A, No.6, pp.1715–1726, 1989.
    [157] A.J. Patti, M.I. Sezan. Super-resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Processing, Vol.6, No.8, pp.1064-1076, 1997.
    [158] M.C. Hong, M.G. Kang, A.K. Katsaggelos. A regularized multichannel estoration approach for globally optimal high resolution video sequence. SPIE VCIP, vol. 3024, pp.1306–1317, 1997.
    [159] R.C. Hardie, K.J. Barnard. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans. Image Processing, Vol.6, No.12, pp.1621–1633, 1997.
    [160] M. Elad, A. Feuer. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Processing, Vol.6, No.12, pp.1646–1658, 1997.
    [161] M. Elad, A. Feuer. Super-resolution reconstruction of image sequences. IEEE Trans. On PAMI, Vol. 21, No.9, pp.817-834, 1999.
    [162] W.T. Freeman, T.R. Jones, E.C. Pasztor. Example-based super-resolution. IEEE. Computer Graphics and Applications, Vol.22, pp.56-65, 2002.
    [163] H. Chang, D.Y. Yeung. Super-resolution through neighbor embedding. IEEE Conf. on Comp. Vision Pat. Recog., Vol.1, pp.275–282, 2004.
    [164] P.J. Burt, E.H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans. Communications, Vol.31, No.4, pp.532–540, April 1983.
    [165] A.L. Cunha, J. Zhou, M. Do, The nonsubsampled Contourlet transform: Theory, design and applications, IEEE Trans. Img. Proc., 2005.
    [166] J.L. Starck, F. Murtagh, A. Bijaoui, Image Processing and Data Analysis. Cambridge University Press, 1998.
    [167] Z. Cvetkovic, M. Vetterli, Oversampled filter banks, IEEE Trans. on Signal Proc., Vol.46, No.5, pp.1245–1255, 1998.
    [168] P.P. Vaidyanathan, Multirate Systems and Filterbanks. Prentice Hall, 1993.
    [169] J.H. McClellan, The design of two-dimensional digital filters by transformation, 7th Annual Conf. Information Sciences and Systems, 1973.
    [170] S.M. Phoong, C.W. Kim. A new class of two-channel biorthogonal filter banks and wavelet bases, IEEE Trans. Signal Proc., Vol.43, No.3, pp.649-661, 1995.
    [171] S. Mitra, R. Sherwood, Digital ladder networks, IEEE Trans. on Audio and Electroacoustics, Vol.2, No.1, pp.30-36, 1973.
    [172] Z. Cvetkovic, M. Vetterli, Oversampled filter banks, IEEE Trans. on Signal Processing, Vol.46, No.5, pp.1245-1255, 1998.
    [173] C.V. Jiji, S. Chaudhuri. Single-Frame Image Super-resolution through Contourlet Learning. EURASIP Journal on Applied Signal Processing, Vol.2006, pp.1-11, 2006.
    [174] F.M. Candocia, J.C. Principe. Super-resolution of images based on local correlations. IEEE Trans. on Neu.l Networks, Vol.10, No.2, pp.372-380, 1999.
    [175] M. Oshima. VHS camcorder with electronic image stabilizer, IEEE Trans. Consumer Electronics, Vol.35, No.4, pp.749-758, 1989.
    [176] K. Uomori, A. Morimura. Automatic image stabilizing system by full-digital signal processing. IEEE Trans. Cons. Electr., Vol.36, No.3, pp. 510-519, 1990.
    [177]朱娟娟.基于小波变换的电子稳像算法研究[硕士学位论文].西安电子科技大学, 2005.
    [178] ISO/IEC/JTC1/SC29/WG11, Coding of Audio-Visual Objects-Part 2:Visual, ISO/IEC 14496-2(MPEG-4 Visual Version 1), 1999.
    [179] JVT of ISO/IEC, Draft ITU-T recommendation and final draft international standard of joint video specification, JVT-G050, Pattaya, March 2003
    [180] L.M. Po, W.C. Ma. A novel four-step search algorithm for fast block motion estimation. IEEE Trans. CSVT, Vo.6, No.6, pp. 313-317, 1996.
    [181] M. Ghanbari The cross-search algorithm for motion estimation. IEEE Trans Communication, Vo.38, No.7, pp. 50-953, 1990.
    [182] S. Zhu, K.K. Ma, A new diamond search algorithm for fast block–matching motion estimation, IEEE Trans. Image Proc., Vol.9, No.2, pp.287-290, 2000
    [183] C. Zhu, X. Lin, L.P. Chau, Hexagon-Based Search Pattern for Fast Block Motion Estimation, IEEE Trans. CSVT, Vol.12, pp.349-355, May 2002.
    [184] P.I. Hosur, K.K. Ma, Motion Vector Field Adaptive Fast Motion Estimation, ICICS’99, Vol.1, pp.7-10, Singapore, 1999.
    [185] K.K. Ma, P.I. Hosur. Performance report of motion vecotor field adaptive search technique. ISO/IEC JTC1/SC29/WG11 MPEG99/m5851, 2000.
    [186] X.Q Banh, Y.P. Tan, Dual-cross search algorithm for block matching motion estimation, IEEE Trans. Cons. Electr., Vol. 50, No.2, pp.766-775, 2004.
    [187] C.W. Lin, W.J. Chang, Hierarchical ME Algorithm Based on Pyramidal Elimination, Inter. Computer Symposium 1998, Vol.2, pp.1285-1289, 1998.
    [188] C.H. Lee, L.H Chen. A Fast Motion Estimation Algorithm Based on the Block Sum Pyramid, IEEE Trans. Imag. Proc., Vol.6, No.11, pp.1014-1020, 1997.
    [189] Y.J. Tham, S. Ranganath. A novel unrestricted center-biased diamond search algorithm for block motion estimation. IEEE Trans. Circuit Syst. Video Technol., Vol.8, No.8, pp.369-377, 1998.
    [190] W.G. Zheng, I. Ahmad, Adaptive Motion Search with Elastic Diamond for MPEG-4 Video Coding, Inter. Conf. Im. Proc. 2001, Vol.1, pp.377-380, 2001.
    [191] W. Ni, B.L. Guo, L. Yang, Motion Vector Field and Direction Adaptive Search Technique for Motion Estimation, Journal of Information and Computational Science, Vol.2, No.2, pp.547-588 , 2005.
    [192] A.M. Tourapis, O.C. Au, M.L. Liou, Highly Efficient Predictive Zonal Algorithms for Fast Block-Matching Motion Estimation. IEEE Trans. Circuit Syst. Video Technol. Vol.12, No.10, pp.934-947, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700