用户名: 密码: 验证码:
钙基脱硫剂硫化反应产物层扩散机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SO_2排放控制是洁净燃烧研究领域的重中之重。干法脱硫中钙基脱硫剂(石灰石)的脱硫效率不高、钙利用率较低。本文从影响钙基脱硫剂微观结构的主要成因,颗粒微观结构分形特性,晶粒团聚模式的粘附融合规律,颗粒孔隙中的气体扩散动力学传质规律,致密晶粒内的固态离子传质规律,以及气-固传质扩散的耦合控制模式等方面展开研究,以期为提高脱硫效率提供理论支撑。主要研究内容及成果如下:
     (1)为探索近似CFB条件对脱硫剂煅烧分解后结构特性的影响,对DTU-2A型热天平进行了技术改造。实验发现:气氛中CO_2浓度增大易导致碳酸化;水蒸气对石灰石分解起到一定的催化作用;温度升高会加快石灰石分解过程,但会加剧石灰石煅烧产物的烧结;杂质导致石灰石最终分解转化率降低。多种因素造成脱硫剂颗粒具有非线性结构。
     (2)分形维数是表征微粒结构特性的重要参数。研究表明:用SEM图像法和压汞仪法均能有效测定颗粒试样的分形维数。同时发现:脱硫剂随温度升高或杂质增加,烧结现象愈严重,脱硫剂分形维数降低。并提出一种测定石灰石煅烧颗粒微观形貌多重分形谱的方法。
     (3)通过建立三维空间粘附方程,进行了晶粒团聚融合的计算机模拟研究,并与压汞仪实验数据进行定性对比分析,发现:石灰石在高温煅烧过程中,存在晶粒融合现象,会导致CaO颗粒分形维数、孔隙率、比表面积的降低。本文利用晶粒团聚体的概念,对产物层进行了二级划分,即:颗粒产物层和晶粒产物层,在颗粒产物层内传质过程服从气体扩散机制,在晶粒产物层内传质过程服从固态离子扩散机制。
     (4)压汞仪实验发现颗粒产物层内的孔隙尺寸在5-2000nm范围内,Knudsen数很大,基本处于K n>0.1区域,反应气体SO_2分子在其内部的扩散存在稀薄气体效应,产物层中孔隙的分形结构导致扩散能力下降,计算出了颗粒产物层内的气体扩散系数,分析了反应气体在颗粒产物层内沿径向的浓度分布规律。
     (5)利用扫描电镜能谱分析功能研究晶粒产物层内离子扩散流,发现:Ca~(2+)离子“向外生长”扩散方式是晶粒产物层内的主要扩散形式,且属于电中性扩散,扩散驱动力来自产物表层的缺陷飘移;利用电导率补偿效应获得CaSO_4产物层的Arrhenius特征温度680K,特征电导率10-5.722S,采用差热分析法推定脱硫剂晶粒产物层内的固态离子扩散活化能为223.98KJ/mol,并计算出了固态离子扩散系数。
     (6)建立了颗粒系统硫化反应物质流的耦合扩散方程,对照TGA实验数据进行定性比较。研究发现:硫化反应扩散过程是由气体扩散与固态离子扩散两种扩散形式耦合作用的结果;固态离子扩散过程对整体硫化进程的控制作用是非常重要的,尤其是在反应初期的控制作用往往被忽视。
Recent study on the release control of SO_2 has become the most important focus in the study of clean coal combustion. Ca-based sorbent (limestone) has been widely applied in dry desulfurization technology, and still, its desulfurization efficiency and calcium utilizable efficiency are both low. In order to attain the theoretical supports for enhancing the efficiency of sulfur removal, the main research contents in this paper include: the main causes of micro-pore structure in sorbent particle, the fractal property of micro-pore structure in sorbent particle, the adhesion and fusion rule of grain aggregates, the reaction gas kinetics diffusion rule inside pores, the solid-state ion mass transfer law inside compact grain, the gas-solid mass diffusion’s coupling control model. The details and results are as follows:
     (1) The technical improvement of DTU-2A thermal gravity analyzer (TGA) has been made to explore the influence of different CFB calcination conditions on sorbent’s microstructure property. The TGA experiments show that, high concentration of CO_2 is liable to lead to carbonation, H2O steam promote limestone decomposition, high temperature accelerates limestone decomposition and causes sintering and aggravated micro-pore structure, and the impurities reduce the final conversion rate of limestone decomposition.
     (2) Fractal dimension is an important parameter for representing micro-particle structure properties. Comparison experiments show, both image analysis technology and mercury intrusion method can efficiently survey particle sample’s fractal dimension. Also, more impurities or higher temperature lead to lower fractal dimension because of sintering. A determination method of multi-fractal spectrum about limestone calcination particle morphology is presented in this chapter.
     (3) The adhesion equation in three-dimension space was found to simulate the CaO grain’s aggregation and fusion process in computer. The results were compared with experiment data from mercury injection apparatus. During limestone high-temperature calcinations, the appearance of grain fusion caused the decrease of fractal dimension, porosity, specific surface area. The concept of grains aggregate is presented in this chapter. According to this accept, the product layer is divided into two layers, one is the product layer of gas diffusion mechanism inside particle, and the other one is the product layer of solid-state ion exchange mechanism inside grain.
     (4) The experiment results on mercury injection apparatus show that, the size of pores in the CaO particle is 5-2000nm, their Knudsen values are high in the rang of K n>0.1. The diffusion of gaseous reaction SO_2 molecular inside particle layer occur rarefied gas effect. The fractal structure inside particle product layer leads to the decrease of gas diffusion capacity. The coefficient of gas diffusion inside particle product layer has been calculated out in this part, and also the concentration of reaction gas has been analyzed along the direction of diameter in the particle.
     (5) Through the energy spectrum analysis of scanning electron microscopy, ion diffusion flow was studied inside the product layer of grain. The Ca~(2+) ion diffusion model of growth outward is the main form of the mass diffusion inside the grain product layer, which is neutral diffusion, the driving force for diffusion comes from defect drift in the surface of grain. Using the compensation effect of conductivity in CaSO_4 product layer, it is obtained that the characteristic temperature of Arrhenius is 600 K, characteristic conductivity is 10-5.722S. The activity energy of solid-state ion diffusion inside grain product layer is 223.98KJ/mol by a different-heat analysis. The coefficient of solid-state ion diffusion inside compact grain product layer has been calculated out in this chapter.
     (6) The coupling control equation of sulfur reaction mass flow has been found, which results compared with the data from TGA experiments. It is shown that, the diffusion process of the sulfur reaction is coupled of two processes, one is gas diffusion process, and the other is solid-state ion diffusion process. The one of two processes, which diffusion rate is slower, controls the whole desulphurization process. The control effect of solid-state ion diffusion to the whole sulfur process is extremely important, especially during the beginning of reaction, which had been ignored by people in the past.
引文
[1] Arthur L. Kohl and Richard B. Nielsen. Gas Purification[M]. Elsevier Inc. 1997: 101~110.
    [2] Sarma V. Pisupadti. Encyclopedia of Physical Science and Technology [M]. USA:2004,P253~274.
    [3]沙钝路,李淑梅,等.推广石灰石干法脱硫控制燃煤二氧化硫污染.化工进展. 1997,10(1):44~47.
    [4] Ramónálvarez-Rodríguez, Carmen Clemente-Jul. Oxidation of the sulphu- rised dolomite produced in the desulphurisation of the gasification gases Fuel.2008,11 (35): 1011~1016.
    [5] J. Pecho, T.J. Schildhauer, M. Sturzenegger, et al. Reactive bed materials for improved biomass gasification in a circulating fluidised bed reactor. Chemical Engineering Science. 2008,63(5):2465~2476.
    [6] G. McKay and S. McKee. Solid-liquid adsorption based on external mass transfer, macropore and micropore diffusion. Chemical Engineering Science. 1987, 42(5):1145~1151.
    [7] Borivoj Adnadjevic, Aleksandar Popovic. Influence of crystal form and morpholo- gyical characteristics of CaCO3 particles on kinetic of combustion gases desulfuri- zation. Fuel processing technology. 2008, 89(8): 773~776.
    [8] Melike S?n?rkaya, Hatice Bayrak?eken, A. Kadir ?zer, et al. The effect of carbon dioxide during the desulfurization of flue gas with Mardin- Maz?dag phosphate rock. Fuel. 2008,87(10):3200~3206.
    [9] A. K. ozer, M.S. Gulabog lu, S. Bayrakceken et al. Flue gas desulfuriza- tion with phosphate rock in a fluidized bed. Fuel, 2002,81(1):41~49.
    [10] Shigeyuki Uemiya, Toshihide Kobayashi and Toshinori Kojima. Desulfuri- zation behavior of Ca-based absorbents under periodically changing con- dition between reducing and oxidizing atmosphere. Energy conversion and management, 2001,42 (10):2029~2041.
    [11] Aurora Garea, Jose Angel Marques and Angel Irabien. Mechanistical and non- linear modelling approaches to in-duct desulfurization. Chemical Engineering and Processing.2005,44(7):709~715.
    [12] Ning Zhang, DaMing Zhuang, JiaJun Liu,et al. Microstructure of iron sulfide layer as solid lubrication coating produced by low-temperature ion sulfurization. Surface and Coatings Technology,2000,132(10):1~5.
    [13] Riley Murphy, Daniel R. Strongin. Surface reactivity of pyrite and related sulfides. Surface science reports,2009,64(1):1~45.
    [14] Vinay M. Bhandari, Chang Hyun Ko, Jung Geun Park,et al. Desulfurization of diesel using ion-exchanged zeolites. Chemical Engineering Science. 2006,61(8):2599~2608.
    [15]张雷,田园,程世庆,等.贝壳型脱硫剂内部气体扩散特性探讨.中国电机工程学报. 2008,11(10):54~59.
    [16] Rajiwara T,Gunn D J T,Bowen J H.Kinetics of calcium carbonate decomposition[J]. Chem Engng Res Dev,1989,67:38~47.
    [17] Milne Corey R. Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents[J] . Ind.Eng.Chem.Res,1990,29(2):139~149.
    [18] Murthy M S, Harish B R, Rajanandam K S, et al. Investigation on the kinetics of thermal decomposition of calcium carbonate[J]. Thermal Anal. 1994,37:1533~1543.
    [19]谢建云,傅维标.碳酸钙颗粒煅烧过程的统一数学模型.燃烧科学与技术.2002,8(3):270~274.
    [20]郑瑛,陈小华,郑楚光.描述石灰石分解的分数维收缩核模型及模拟.华中科技大学学报.2003,31(5):78~80.
    [21]陈鸿伟,吉云,王春波.石灰石颗粒煅烧特性的模拟与分析.电站系统工程.2004,20(6):12~14.
    [22] Szekely J,Evans J.W.,A structural model for gas-solid reaction with a moving boundary[J].Chem.Eng.Sci. 1970,25,1091~1107.
    [23] Ramachandran P A, Simith J M. A single pore model for gas-solid noncatalytic reactions[J]. AIChEJ, 23,353~361.
    [24] Christman P G, Edger T F. Distributed pore size model for sulphation of limestone[J]. AIChEJ, 1983, 29,388~395.
    [25] Bhatia S.K. and Perlmutter D.D. A random pore for fluid solid react ionsⅠSothermal, Kinetic control [J]. AIChEJ, 1981,26,379~386.
    [26] Bhatia S.K. and Perimutter D.D. A random pore for fluid solid reactionsⅡDiffusion and transport effects[J].AIChEJ, 1981,27,247- 254.
    [27] Bhatia S.K. Analysis of distributed pore closure in gas solid reactions [J]. AIChEJ, 1986, 31,642~648.
    [28] Szekely J,Evans J.W.,A structural model for gas-solid reaction with a moving boundary.Ⅱthe effect of grain size,porosity and temperature on the reaction of porous pellets.Chem.Eng.Sci[J], 1971,26,1901~1913.
    [29] Hartman M, Coughlin R W. Reaction of sulfur dioxide with limestone and the grain model[J]. American Institute of Chemical Engineers Journal,1976,22(2): 490~498.
    [30] Georgakis C, Chang C W, et al. A changing grain size model for gas reaction. Chem. Eng. Sci[J], 1979, 34,1066~1072.
    [31] Dam-Johansen K, Hansen P F B, et al, High-temperature reaction between sulfurdioxide and limestone,ⅢA grain-micrograin model and its verification[J]. Chem.Eng.Sci., 1991,46(3):847~853.
    [32] Lindner B. Simonsson D. Comparison of structure model for gas-solid reaction in porous solids undergoing structural changes[J]. Chem. Eng. Sci., 1981, 36(9): 1519~1526.
    [33] Mai M C, Edgar T F. Surface area evolution of calcium hydroxide during calcination and sintering[J]. AIChEJ,1989,35,30~36.
    [34] Alvfors P, Svederg G. Modeling of the sulphation of calcined limestone and dolomite. A gas-solid reaction with structure changes in the presence of inert solids[J]. Chem. Eng. Sci.,1988,43,1183~1193.
    [35] Milne C R, Silcox G D, et al. High-temperature, short-time sulphation of calcium-based sorbents I Theoretical sulphation model[J].Ind. Eng. Chem. Res. 1990, 29(5):2192~2201.
    [36] Mohanty K K,Ottino J M,Davis H T. Reaction and transport in disordered media:Introduction of percolation concepts. Chem.Eng.Sci.,1982,37, 905~912.
    [37] Reyes S J,Jensen K F. Estimation of effective transport coefficients in porous solid based on percolation concepts. Chem.Eng.Sci., 1985, 40(9): 1723~1740.
    [38] Shah N,Ottino J M. Transport and reaction in evolving disordered composities.I. Gasification of porous solid. Chem.Eng.Sci.,1987,42, 63~70.
    [39] Sotirchos S V,Zarkanitis S.Inaccessible pore volume formation during sulfation of calcined limestone. AICHEJ,1992,38,1536~1550.
    [40] Sotirchos S V,Zarkanitis S. A distributed pore size and length model for porous media reacting with diminishing porosity. Chem.Eng.Sci., 1993, 48(8),1467~1487.
    [41] Sotirchos S V,Yu H C.Overlapping grain models for gas-solid reaction with solid product.Ind.Eng.Chem.Res,1988,27,836~840.
    [42] Sotirchos S V,Yu H C. Mathematical modeling of gas-solid reaction with solid product. Chem.Eng.Sci., 1989, 17, 863~870.
    [43] Fisher M E, Essan J W. Some cluster size and percolation problem. J Math. Phys,1961,2, 609~619.
    [44] K. Binder,D.W.Heermann著,秦克诚译,统计物理学中的蒙特卡洛模拟方法[M],北京:北京大学出版社,1993.9~15.
    [45] Burganos V N,Sotirchos S V. Diffusion in pore networks:effective medium theory and smooth field approximation. AICHEJ.,1987,33(10),1678~1690.
    [46]缪明峰.钙基脱硫剂非线性孔结构及其硫化活性的研究[D].东南大学,2001.
    [47] Coppens M.O. and Froment G.F. Diffusion and reaction in a fractal catalyst pore[J].ⅡDiffusion and firstorder reaction.Chem.Eng.Sci, 1995, 50,1027~1039.
    [48] Avnir D., Farin, D.and Pfeifer. Molecular fractal surfaces[J]. Nature, 1984,308:261~263.
    [49] Avnir D., Farin, D.and Pfeifer. Chemical in noninterger dimension between two and three Fractal surfaces of adsorbents[J]. J.Chem.Phys., 1983,79(1):3566~3571.
    [50] Avnir D, Farin, D. and Pfeifer, P. A discussion of some aspects of surface fractality and of its determination[J]. New J.Chem, 1992, 16, 39~449.
    [51] Friesen W.I. and Laidlaw W.G., Porosimetry of fractal surfaces[J]. J Colloid Interface Sci, 1993, 160, 226~235.
    [52]殷春根,骆仲泱,李绚天等.石灰石锻烧后多孔结构及其对脱硫活性的影响[J].环境科学学报,1996, 16(4):498~502.
    [53]缪明烽,沈湘林.钙基脱硫剂分形孔结构的实验研究[J].洁净煤燃烧与发电技术,2001,20(1):28~30.
    [54]陈德珍,张鹤声.模拟石灰颗粒干式除酸的分形Bethe孔网模型[J].同济大学学报,2000,12(1):54~60.
    [55]黄立基,丁菊仁.多标度分形理论及进展[J].物理学进展,1991,11(3):269~272.
    [56]赵凯华,朱照宣,黄峋非线性物理导论[M].北京北京大学非线性物理中心,1992.
    [57] Z. Moktadir, M. Kraft, H. Wensink. Multifractal properties of Pyrex and silicon surfaces blasted with sharp particles[J]. Physica A: Statistical Mechanics and its Applications.Volume 2008,387(3):2083~2090.
    [58]辛厚文,侯中怀.表面化学反应体系中非线性问题的理论研究[J].化学进展,2000,12(1):1~17.
    [59] Guffraind R,Sheituch M. Chem Phys Lett. 1990,174,8~12.
    [60] Guffraind R,Sheituch M,Avnir D.J. Chem Phys lett. 1991,95,6100~6111.
    [61] Tambe S S,Budda P,Kulkarmi B D. Chem Phys lett. 1994,226,88~92.
    [62] Lee C K,Lee S L. Chem Phys Lett,1998,73,981~996.
    [63]刘洋,杨弋涛.基于多重分形理论的球铁石墨颗粒分散均匀性的分析[J].铸造, 2007,19(2):140~145.
    [64]孙霞,吴自勤.规则表面形貌的分形和多重分形描述[J].物理学报,2001, 50 (11):2126~2131.
    [65] Wang Chunbo, Chen Hongwei, Ji Yun. Investigation on sulfation of modifyed ca-based dorbent[J]. Proceedings of the CSEE, 2004,24(12): 238-242.
    [66] Yang Tianhua, Zhou Junhu, Li Rundong. Kinetics for Formation of CaSas Sulphur Intermediate Retention[J]. Proceedings of the CSEE, 2006,26(23): 104~108.
    [67] Efthimaadis Evangelos A. Sulfidation of limestone derived calcines[J]. Ind Eng Chem Res, 1992,31(10):2311~2321.
    [68] Yan Yan, Peng Xiaofeng,Wang Buxuan. Investigation on flue gas desulfurization in a circulating fluidized bed[J]. Proceedings of the CSEE, 2003, 23(11):173~177.
    [69] TadaakiShimizu, MirkoPeglow, ShinichiSakuno. Effect of attritionon SO2 capture by limestone under pressurized fluidized bed combustion conditions[J]. Chemical Engineering Science, 2001,56(5): 6719~6728.
    [70] Wen C Y, Ishida M. Reaction rate of sulphur dioxide with particles containing calcium oxide[J]. Environ Science Technology,1973,7(8): 703~708.
    [71] Suhas K. Mahuli. Pore-structure optimization of calcium carbonate for enhanced sulfation[J]. AIChE J, 1997, 43(9):2323~2335.
    [72] Laurent A. Fenouil. Study of calcium-based sorbents for high temperature H2S removal. 2. kinetics of H2S sorption by calcined limestone[J]. Ind. Eng. Chem. Res., 1995, 34(7):2334~2342.
    [73] Iisa K , Hupa M . Product layer diffusion in the sulphation of calcium carbonate[J].Symposium on Combustion,1992,24(1):1349~1356.
    [74] Shriniwas S. Chauk. Kinetics of high-pressure removal of hydrogen sulfide using calcium oxide powder[J]. AIChE J, 2000, 46(6): 1157~1167.
    [75] Han,Kuihua,Effect of characteristics of calcium-based sorbents on the sulfation kinetics[J],Fuel, 2005(84):1933~1939.
    [76] Hsia C, Pierre G R St. Diffusion through CaSO4 formed during the reaction of CaO with SO2 and O2[J] . AIChE Journal, 1993, 39(4):698~700.
    [77] Hsia C, Pierre G R St. Isotope study on diffusion in CaSO4 formed during sorbent-flue-gas reaction[J]. AIChE Journal, 1995, 41(10):2337~2340.
    [78] Wenli Duo, Karin Laursen. Crystallization and fracture: formation of product layers in sulfation of calcined limestone[J]. Powder Tech- nology, 2000,111(1-2): 154~167.
    [79] Rajeev Agnihotri, et al. Mechanism of CaO reaction with H2S: Diffusion through CaS product layer[J]. Chemical Engineering Science,1999, 54: 3443~3453.
    [80]王春波,陈鸿伟.石灰石煅烧过程中孔隙网络结构的动态可视化数值模拟[J].中国电机工程学报,2005(25):88~92.
    [81] Chunbo Wang,Hongwei Chen. Investigation on sulfation of modified Ca-based sorbent[J]. Proceedings of the CSEE, 2004(24):238~242.
    [82] Chunbo Wang. The investigation on sulfation of modified Ca-based sorbent [J]. Fuel Proceeding Technology. 2002,(79):121~133.
    [83]樊泉桂,阎维平主编.锅炉原理[M].北京:中国电力出版社,2004.61~75.
    [84]刘妮,赵敬德.燃煤脱硫剂空隙结构分形特性的研究[J].动力工程,2007,27(5): 802~804.
    [85] Satterfield C N, Feakes F. Kinetics of thermal decomposition of calcium carbonate [J]. AIChE Journal, 1959, 5(1): 115~122.
    [86]李英杰,赵长遂.钙基吸收剂循环煅烧/碳酸化反应过程特性研究[J].中国电机工程学报,2008,28(2):55~60.
    [87] Jung H, Thomson W J. Dynamic X-ray diffraction for shrinking-core reaction studies[J]. Industrial & Engineering Chemistry Research, 1991, 30(7): 1629~1634.
    [88]郑楚光.洁净煤技术[M].武汉:华中科技大学出版社,1996.87~91.
    [89]姚洪.炉内喷钙脱硫实验研究及其对锅炉性能的影响[D].华中科技大学硕士学位论文,1997.
    [90]能源部电力环保研究所.火电厂干式脱硫的实验研究[M].北京:电力工业出版社,1990.77~91.
    [91]郭晓宁,李元芝.炉内喷钙脱硫技术在电站锅炉中应用的可行性分析[J].华中电力,1995,8(3):8~12.
    [92]段建中,何红光.炉内喷钙脱硫技术的现状与发展前景[J].热力发电,1990,(3):48~51.
    [93] Ian Gower, Malcolm Crawford.燃煤锅炉烟气脱硫技术的发展[J].热力发电译丛,1992,(2):1~8.
    [94] Juan Luis Perez,BernalMiguel,Angel Bello. Fractal geometry and mercury porosimery Camparision and application of proposed models on building stones[J]. Appfied Surface Science 2001,185: 99~107.
    [95] Christos D,Tsakiroglou,Alkiviades C Payatakes. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation[J]. Advances in Water Resources,2000,23: 773~789.
    [96]缪明烽,沈湘林.直接预测脱硫剂煅烧产物孔隙分形维数的模型[J].中国电机工程学报,2003,23(2): 149~152.
    [97] D Avnir.The Fractal Approach to Heterogeneous Chemistry[M].Wiley,New York, 1989.
    [98]王春波,沈湘林. Na2CO3调质钙基脱硫剂硫化机理实验研究[J].工程热物理学报, 2002,32(5): 641~644.
    [99]董建勋,李振中,冯兆兴等.石灰石炉内高温煅烧脱硫及产物活性的实验[J].动力工程,2004,24(5):711~715.
    [100]S. V. Gollakota. Study of adsorption process using silicate for sulfur dioxide removal from combustion gases[J].Ind. Eng. Chem. Res., 1998, 27:139~14.
    [101]Mahnke M, Mogel H J. Fractal analysis of physical adsorption on material surfaces[J]. Colloids and surfaces A, 2003, (216):215~228.
    [102]Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surface of metals[J]. Nature,1984,308(19):721~72.
    [103]Stanley H E, Meakin P. Multifractal phenomena in physics and chemistry [J].Nature, 1998, 335(6189):405~40.
    [104]Ajay Chaudhari, Ching-Cher Sanders Yan, Shyi-Long Lee. Multifractal analysis of growing surfaces[J]. Applied Surface Science, 2004,238(11): 513~517.
    [105]Chuang Liu, Xiu-Lei Jiang, Tao Liu,et al. Multifractal analysis of the fracture surfaces of foamed polypropylene polyethylene blends[J]. Applied Surface Science, 2009, 255( 7) :4239~4245.
    [106]Li H, Ding Z J, Wu Z Q. Multi-fractal behavior of the distribution of secondary-electron-emission sites on solid surfaces[J]. Phys Rev B, 1995, 51: 13554~13559.
    [107]辛厚文.分形理论及其应用[M].北京:中国科学技术出版社,1993.15~75.
    [108]李会方.多重分形理论及其在图象处理中应用的研究[D].西安:西北工业大学,2004.
    [109]谢云霞.大气颗粒物的多重分形特征及多重分形吸附模型[D].成都:四川大学,2005.
    [110]Robertson M C, Sammis C G, et al. Fractal analysis of three–dimensional spatial distributions of earthquakes with a perculation interpretation [J]. J Geophys Res, 1995,100,B1:609~620.
    [111]周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性I经典Renyi定义法[J].华东理工大学学报, 2000,28(4): 385~390.
    [112]Irfan A, Giilsen D. Calcination kinetics of high purity limestones[J]. Chemical Engineering Journal,2001,(83): 131~137.
    [113]王春波,陈鸿伟,吉云.调质钙基脱硫剂硫化特性研究[J].中国电机工程学报,2004,24(12):238~242.
    [114]杨天华,周俊虎,李润东.固硫中间产物CaS生成反应动力学研究[J].中国电机工程学报,2006,26(23):104~108.
    [115]颜岩,彭晓峰,王补宣.循环流化床内烟气脱硫模拟分析[J].中国电机工程学报,2003,23(11):173~177.
    [116]Agnew J, Hampartsoumian E, Jones J M. The effect of sintering on sulphur capture by limestone and dolomite[J]. Journal of the Institute of Energy, 2005, 78(2):81~89.
    [117]Orgwardt R H. Sintering of nascent calcium oxide[J].Chemical Engineering Science, 1989, 44(1): 53~60.
    [118]Martin C H, Sotiris E. Pratsinis. Polydispersity of primary particles in agglomera- tes made by coagulation and sintering[J]. Aerosol Science, 2007, 38(1): 17~38.
    [119]魏明锐,张辉亚,孔亮,赵卫东.柴油机微粒分形生长数值模拟及其影响因素[J].自然科学进展,2008,18(9):1027~1032.
    [120]宁静涛,钟北京,傅维标.微细石灰石粉末高温煅烧分解研究[J].燃烧科学与技术,2003,9(3):205~208.
    [121]Borgwardt R H. Calcination kinetics and surface area of dispersed limestone particles[J]. American Institute of Chemical Engineers Journal, 1985 (4): 642~648 .
    [122]张淑新,齐庆杰,刘建忠,等.石灰石的孔隙结构特性及对固氟反应的影响[J].燃料化学学报,2002,4(4):35~38.
    [123]刘妮,骆仲泱,程乐鸣.干性条件下脱硫反应中孔分布模型的研究[J].中国电机工程学报,2005,25(4):147~151.
    [124]王春波,李永华,陈鸿伟,等.石灰石煅烧过程中孔隙网络结构的动态可视化数值模拟[J].中国电机工程学报,2005,17(9):88~92.
    [125]Menshutin A Y, Shchur L N, Vinokour V M. Finite size effect of harmonic measure estimation in a DLA model: Variable size of probe particles[J]. Physica A: Statistical Mechanics and its Applications, 2008,25(11): 6299~6309.
    [126]Vasilije M, Jean-Pierre C, John B, etc. Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles[J]. Fuel, 2009,10 (10):1893~1900.
    [127]Guilin H, Dam-Johansen K, Stig W, et al. Review of the direct sulfation reaction of limestone[J]. Progress in Energy and Combustion Science, 2006, 32(4):386~407.
    [128]German R W,Munir Z A. Surface area reduction during isothermal sintering. Am.Ceram. Soc, 1976,59(8): 379~383
    [129]Stanmore B R, Gilot P. Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration[J]. Fuel Processing Technology, 2005, 16(11):1707~1743.
    [130]Magill J. Fractal dimension and aerosol particle dynamics[J]. Journal of Aerosol Science,1991,22(1):S165~S168.
    [131]Brian K G, John A B, Richard T C. Porosity, surface area and particle size effects of CaO reacting with SO2 at 1100°C. Reactivity of Solids [J], 1988, 6(12):263~275.
    [132]Stefano Stendardo, Pier Ugo Foscolo. Carbon dioxide capture with dolomite: A model for gas–solid reaction within the grains of a particulate sorbent[J]. Chemical Engineering Science, 2009,64(10): 2343~2352.
    [133]P Daniell, A Soltani-Ahmadi,H O Kono.Reaction kinetics of the SO2-CaO system-pore closure model[J]. Powder Technolog, Issue 2, 1988, 55(6): 75~85.
    [134]Ping Sun, John R. Grace, C. Jim Lim,A discrete-pore-size-distribution-based gas–solid model and its application to the CaO+ CO2 reaction[J]. Chemical Engineering Science, Issue 1, 2008, 63(1): 57~70.
    [135]Hollewand m p.Gladden I F. Modeling of diffusion and reaction in porous catalysts using a random three-dimensional network model[J]. Chem.Eng.Sci., 1992,47(7), 761~770.
    [136]缪明烽,沈湘林.钙基脱硫剂孔隙分布特性的模拟研究[J].东南大学学报,2001, 31(2):68~71.
    [137]Coppens M O, Forment G. Diffusion and reaction in a fractal catalyst poreⅢApplication to the simulation of vinyl acetate form ethylene[J]. Chem.Eng.Sci., 1994,49,4897~4907.
    [138]沈青.航天飞行中的稀薄气体动力学[J].流体力学实验与测量, 1997,11(4): 1~7.
    [139]BeskokA, Karniadakis GE, Trimmer W. Rarefaction and compressibility effectsin gas micro-flows [J]. J Fluid Engineering,1996,118: 448~455.
    [140]Tsien H S. Superaerodynamics, mechanics of rarefied gases[J]. J Aero Sci, 1946, 13(12): 653~664.
    [141]王春波,陈传敏,李永华,等. CaO孔结构分形特性研究.热能动力工程, 2008, 23(2):187~190.
    [142]赵敬德,刘妮.多孔脱硫剂孔结构的特性.动力工程,2007,27(1):122~125.
    [143]吴其芬.稀薄气体动力学[M].北京:北京国防科技大学出版社,2004.54~59.
    [144]Sone Y, Aoki K, Takata S, Sugimoto Hand Bobylev A V. Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit:examination by asymptotic analysis and numerical compu- tation of the Boltzmann equation[J]. Phys Fluids,1996,8:628~630.
    [145]Alexander F J, Garcia A L, Alder B J. A consistent Boltzmann algorithm[J]. Physical Review Letters, 1995, 74: 5212~5215.
    [146]Scott, D. S., Dullien, F. A. L.. Diffusion of ideal gases in capillaries and porous solids[J]. A.I.Ch.E.J, 1962, 8(1),113~117.
    [147]刘义,曹子栋,唐强.水涤脱附条件下活性炭脱硫吸附反应空间的研究[J].西安交通大学学报,2004,38(1):74~80.
    [148]Mingfeng Miao.Research on non-linear pore structures of calcium based sorbents and their sulfation reactivity[D].2001,103~104.
    [149]Smith,J M. Chemical Engineering Kinetics[M],3rd,ed. McGrawHill: New York, 1981.
    [150]Gullett B K,Bruce K R. Pore distribution changes of calcium based sorbents reacting with sulfur dioxide[J].AICHEJ, 1987,33(10): 1719~1726.
    [151]ShiChang Wang,Qiang Yao,XuChang Xu. Comparision of kinetic reaction rate and diffusion rate during dry FGD reaction with CaO particles[J]. Journal of Engineering hermophysics, 2006, s2(7): 219~222.
    [152]Masayoshi, sadakata. Removal of so2 from flue gas using ultrafine CaO particales [J]. Journal of chemical engineering of Japan,1994,27(4): 550~552.
    [153]Ron Zevenhoven, Patrik Yrjas,Mikko Hupa. Sulfur dioxide capture under PFBC conditions:the influence of sorbent particle structure[J]. Fuel,1998,77(4): 285~292.
    [154]Lee KT, Bhatia S, Mohamed AR. Preparation and characterization of CaO/CaSO4/ coal ?y ash sorbent for sulfur dioxide (SO2) removal: Part I [J]. Energy Source Part A, 2006,28:1241~1250.
    [155]Lee KT, Bhatia S, Mohamed AR, Chu KH. Optimizing the specific surface area of ?y ash-based sorbents for ?ue gas desulfurization [J]. Chemosphere,2006,62: 89~96.
    [156]杨海波,武增华,邱新平. CaO固硫过程中Ca2+在CaSO4产物层内扩散的研究[J].化学学报, 2003,61(9):1410~1415.
    [157]Duo WL, Laursen K, Lim J, Grace J.Crystallization and fracture: Product layer diffusion in sulfation of calcined limestone[J]. Industrial & engineering chemistry research, 2004,43 (18): 5653~5662 .
    [158]颜岩,彭晓峰,王补宣.烟气脱硫反应中产物层形成过程特性分析[J].燃烧科学与技术,2003,9(4):312~318.
    [159]陈传敏,赵长遂,梁财,等.高CO2浓度下石灰石硫化特性实验研究[J].燃烧科学与技术,2006,12(5):453~457.
    [160]Fuertes A B,Velasco G. Study of the direct sulfation of limestone particles at high CO2 partial pressures[J]. Fuel Process Technology,1994,38(3):181~192.
    [161]王春波,尚建宇.钠盐对钙基脱硫剂烧结动力学影响及孔结构生成模型[J].动力工程, 2007,27(5):805~809.
    [162]Agnew J. The simultaneous calcinations and sintering of calcium based sorbents under a combustion atmosphere[J]. Fuel, 2000,79:1515~1523.
    [163]Ishida M, Wen C Y.Comparison of kinetic and diffusion model for solid-gas reactions [J].AIChE Journal,1968,14(2):3l1~317.
    [164]Beskok A. Simulations and models for gas flows in micro geometries(D). Prince- ton University, 1996.
    [165]Arkillic E, Breuer K S. Gaseous flow in small channels[M]. AIAA, 1993:32~70.
    [166]A.L.Hodgkin. Solid state ionics[M]. Japan.1986.194~195.
    [167]王春波,陈传敏.碳酸钙直接硫化反应产物层固态离子扩散机理研究[J].中国电机工程学报, 2007,27(35):44~48.
    [168]王春波,李永华,陈鸿伟.调质脱硫剂硫化反应产物层固态离子扩散机理的研究[J].热能动力工程, 2004,19(5):467~470.
    [169]Bruce C Gates. Catalytic Chemistry[M]. John Wiley. 1992,70~75.
    [170]V Kumar,Y P Gupta.Cation self-diffusion in single crystal CaO[J]. Journal of Physics and Chemistry of Solids,1969,30(3):677~685.
    [171]W Schilling. Properties of Frenkel defects[M]. Elsevier Science B.V. 1994.211~215.
    [172]Evans R C. An Introduction to Crystal Chemistry [M ]. London : Cambridge Press. 1964.220~230.
    [173]Whitake T B, Barre H J, Hamdy M Y. Theoretical and experimental studies of diffusion in spherical bodies with a variable diffusion coefficient [J] .Trans of the ASAE, 1990, 33(2) :688~672.
    [174]N.F.Mott, R.W.Gurney. Electronic processes in ionic crystals[M]. Oxford University Press.1953,78~84.
    [175]Walther Nernst. Reasoning of theoretical chemistry: Nine papers(1889-1921). Frankfurtam Main: Verlag Harri Deutsch, 2003.180~181.
    [176]ThadM Adams, PaulKorinko, Andrew Duncan. Evaluation of oxidation and hydrogen permeation in Alcontaining stainless steel alloys [J]. Materials Science and Engineering A, 2006, 424: 33~39.
    [177]Fujimoto M, Noma T, Takahashi M et al. Battery Technology, Battery Technology Division[M]. Japan: Electrochemical Society, 1993.74~75.
    [178]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2002.152~159.
    [179]邹邦银.热力学与分子物理学[M].武汉:华中师范大学出版社,2004.110~115.
    [180]于波,刘北兴,景勤.循环加热对变形碳钢奥氏体晶粒尺寸稳定性的影响[J].热加工工艺, 2000, 8(6):23~24.
    [181]工藤彻一.固体离子学[M].北京:工业大学出版社,1992.91~95.
    [182]宋希文,安胜利,赵文广.固体电解质的缺陷与电导率[J].稀土,2005,26 (3):23~27.
    [183]Chakraborty S. Diffusion in silicate melts [J]. Reviews in Mineralogy, 1995, 32:453~454.
    [184]Wu X P, Zheng Y F. The compensation effect for electrical conductivity and its applications to extimate oxygen diffusivity in minerals[J]. J Geophys Res, 2003, 108(B3):2139~2145.
    [185]Wu X P,Zheng Y F.The Meyer Neldel compensation law for electrical conductivity in olivine[J]. Appl Phys Lett, 2005, 87(25):2116~2120.
    [186]吴小平,郑永飞.矿物电导率补偿效应研究及其对元素扩散性质的制约[J].岩石学报,2003,19(4):729~739.
    [187]吴小平,郑永飞.矿物电导率Meyer-Neldel补偿规律及其应用研究[J].中国科学技术大学学报,2007,37(8):927~931.
    [188]赵子福,郑永飞. Pb、Sr和REE在矿物中的扩散补偿关系及其对扩散系数的预测[J].岩石学报,2001, 17:69~94.
    [189]Tyburczy JA and Waff HS. Electrical conductivity of molten basalt and andesite to 25 kilobars pressure: geophysieal significance and implications for chargetransport and melt structure[J]. Geophys. Res.,1995,88: 2413~2430.
    [190]Gong JH, Li Y, Tang ZL, et al. Ionic conductivity in the tempary system [J]. Mater.Sci., 2000,35:3547~3551.
    [191]Hughes K, Isard JO.Ionic transport in glasses[J]. Physics of elec-tolytes, 1972, 1:351~400.
    [192]Johnston GR and Lyons LE.On the compensation effect in electrical conduction through organic crystals[J].Phys.Stat.Sol.,1970, 37 (K): 43~45.
    [193]Bejina F, Jaoul O. Silicon diffusion in silicate minerals[J]. Earth and Planetary Science Letters, 1997, 153(3): 229~238.
    [194]Crandall R S. Defect relaxation in amorphous-silicon-stretched exponentials, the Meyer-Neldel rule, and the Staebler-Wronski effect [J]. Phys Rev B, 1991, 43(5):4057~4070.
    [195]Yelon A, Movaghar B. Microscopic explanation of the compensation (Meyer- Neldel) rule [J]. Physical Review Letters, 1990, 65(5): 618~620.
    [196]Brosda S,Bouwmeester H,Guth U. Electrical conductivity and thermal behavior of solid electrolytes based on alkali carbonates and sulfates[J]. Solid state ionics,1997,101(103):1201~1205.
    [197]Jagdale S H, Pawar S H. Crystal growth and electrical properties of CaSO4:Dy single crystals[J]. Bull. Mater. Sci.,1983,5(5):389~398.
    [198]顾景梅,杨翠英,高洪阁.钙基固硫剂的热力学和动力学分析[J].山东科技大学学报,2007,26(3):41~43.
    [199]Daniel Tao. An integrated approach to minimizing gypsum and pyrite wastes by conversion to marketable products[D]. U.S. Department of Energy National Energy Technology Laboratory,2000.
    [200]刘彬.物理化学[M].武汉:华中科技大学出版社,2008.78~85.
    [201]钱学森.物理力学讲义[M].北京:科学出版社,1962.56~59.
    [202]刘同卷.化学[M].北京:化学工业出版社,2001.25~100.
    [203]张冠军,杨敏中,严璋,等.采用光学方法研究陶瓷绝缘材料的沿面闪络特性[J].中国电机工程学报,2000,8(3):122~125.
    [204]Paul D B. The Avogadro Constant:the Unit and the Scaling Factor[J]. Journal of Chinese Mass Spectrometry Society,2004,25(3):183~186.
    [205]Zhanlong Song, Mingyao Zhang, Chunyuan Ma.Study on the oxidation of calcium sulfide using TGA and FTIR[J]. Fuel Processing Technology,2007, 88(6):569~575.
    [206]Chen Chuanmin, Zhao Changsui, Liang Cai, Pang Keliang. Experimental study on the sulfation characteristics of limestone under high CO2 atmosphere[J]. Combustion science and technology, 2002,5(10):452~456.
    [207]Ye Ruilun. Physical Chemistry of Inorganic Materials[M].Beijing: China Building Industry Press, 1986, 254~255.
    [208]Bengt Linder. Comparison of structure models for gas-solid reactions in porous solids undergoing structural changes[J]. Chem. Eng. Sci, 1981,36(11):1519~1522.
    [209]Szekely J. Gas-solid reaction[M]. New York: Academic Press, 1976.
    [210]Wang Chunbo. The investigation on the sulfation mechanism of modified Ca-based sorbents[M]. Nanjing: Academic, 2002, pp.97~98.
    [211]J.塞克利著.胡道和译.气—固反应[M].北京:中国建筑工业出版社,1986. 35~60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700