用户名: 密码: 验证码:
若干流动体系中的化学反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对能源利用中多环芳香烃生成、燃料催化点火与催化氧化和低压气相沉积制备多晶硅三个方面的一些具体问题,分别使用三种简单的流体结构结合相应的探测手段、数值模拟和模型分析进行研究。
     第一章从能源使用的大背景下,阐述了开展多环芳香烃生成机理、燃料的催化点火和催化氧化、多晶硅生成三方面研究的重要性和必要性。介绍了本文的主要方法和思路。
     第二章使用同步辐射结合分子束-真空紫外光电离质谱技术,对两种最具代表性的芳香烃(苯、甲苯)在1200-1900 K和低压( ̄25 Torr)下进行了系统性的热解研究,全面地探测了物种和其摩尔分数的温度分布。使用G3B3方法计算了部分物种的势能面,定性分析相应的反应通道。创建了包含150个物种和560个反应的芳香烃热解模型,通过与实验值对比,定量的分析燃料热解的主要通道和多环芳香烃生成通道。得到以下具体结论:
     1.苯的主要分解路径为C__6H__6→C__6H__5→o-C_6_H__4→C__4H_-2 + C_2H_2;甲苯的主要分解路径为C_6H_5C_H_3→C_6H_5C_H_2→c-C_5H_5→C_3H_3。
     2.苯热解过程中主要多环芳香烃生成路径是C_6H_6→C_9H_8→C_9H_7→C_12H_8→C_14H_8;除了H_AC_A机理中的乙炔,苯热解产生其它小分子(C_3、C_4和C_6物种)也对多环芳香烃的产生有极大贡献。甲苯热解过程中,苄基参与的先聚合、再脱氢/氢气的反应也很重要,这显示了苯环上支链的影响。
     3.苯/苯基对苯热解过程多环芳香烃的生成起关键作用;苄基对甲苯热解过程多环芳香烃的生成起关键作用。
     4.分解产物的初始生成温度的高低与G3B3方法计算所得分解所需能量的大小定性吻合。
     5.通过对苯和甲苯热解过程中各物种进行生成速率分析,提炼各物种主要生成和消耗路径(这也是机理化简的核心观点),形成具有167个反应的简化机理。
     6.通过生成速率分析,并对比各物种摩尔分数的模型预测值和实验值,对实验结果进行解释,分析了模型预测值和实验值差别的原因,为进一步改进模型提供基础。
     第三章使用流体结构明确的热丝微热测量法以甲烷为例研究了小分子燃料在钯/氧化钯表面催化氧化反应,测量了点火温度和表面催化反应放热速率,获得了总包反应活化能和燃料分子反应级数。使用多种表面分析方法:聚焦离子束切割,背散射电子成像(BSE),能量色散型X射线(EDX)和X射线光电子能谱(XPS),分析了催化剂表面形貌与成分。使用FLUENT软件创建模型,模拟催化反应放热速率,验证反应机理,分析关键反应。得到以下具体结论:
     1.获得了400-800 K,1-4%甲烷的放热速率。这些数据可以用于验证和发展反应机理。
     2.甲烷浓度由1%增加到4%,甲烷的点火温度由642降低到580 K;压力由0.5 at_m增加到4 at_m,点火温度630降低到556 K。甲烷在氧化钯表面催化反应的总包活化能为21.5±0.9 kcal/_mol,甲烷的反应级数在630-770 K为0.9±0.1。随着催化剂尺度的减小,反应级数增加。
     3.建立了模拟实验的FLUENT模型。通过甲烷反应的实验与模拟对照,认识到表面形貌的重要性。灵敏度分析显示甲烷的解吸附,氧气解吸附和脱附与放热速率密切相关。
     第四章研究低压化学气相沉积中稀薄气体效应对太阳能材料硅膜生成速率的影响。通过使用滑移边界条件(速度、物种浓度和温度滑移)修正SPIN程序,使其只能模拟连续流体的化学气相沉积扩展到稀薄气体领域。选择了由硅烷制备硅沉积的简化机理,通过数值模拟阐述稀薄气体效应随着压力的降低而影响增大,在压力0.001 at_m、温度800-1200 K时,硅的沉积速度降低30% - 55%,稀薄气体通过入射分子温度T_m的改变和温度滑移边界条件T_slip影响硅沉积速度,而非速度和物种浓度滑移。T_m总是明显地降低具有粘着系数小、大活化能特点的沉积反应的速度;T_slip总是通过降低温度的空间分布,降低气相分解反应,进而降低自由基分子浓度,最终降低自由基沉积反应的速度。随温度升高,气相分解产生自由的反应增强,T_slip影响自然加强。本文所诠释的稀薄气体效应的影响,尤其是T_m和T_slip一般性的作用机理,可以推广到不同反应器,不同反应物的低压气相沉积中。
In this dissertation, three subjects on energy, the formation of polycyclic aromatic hydrocarbon (PAH_), catalytic ignition and oxidation, silicon deposition in low-pressure chemical vapor deposition (C_VD), were studied using simple but well-defined flow systems with advanced diagnosis methods, numerical simulations and modeling.
     C_hapter 1, under the background of energy deficiency,more and more concerns and strict legislation on the environment, the importance and necessity of studies on the formation mechanism of PAH_, the catalytic ignition and oxidation and the weakly rarefied effect on the silicon deposition in low pressure C_VD are described. The research methods used in this thesis are briefly outlined.
     C_hapter 2, the pyrolysis of two typical aromatics (benzene and toluene), well-known precursor of PAH_s, were studied at temperature range of 1200-1900 K and low pressure of~25 torr by synchrotron VUV single photoionization mass spectrometry combined with molecular-beam sampling technology. The intermediates of pyrolysis process were identified and their mole fractions vs temperature were acquired. A G3B3 method was used to calculate the reaction pathways related to many important intermediates. A detailed kinetic model including 150 species and 560 element reactions was applied to simulate the pyrolysis process. Satisfactory agreement has been achieved between experimental results and computed predictions for most species. The conclusions are as follows:
     1. Benzene mainly decomposes through the reaction sequence of C_6H_6→C_6H_5→o-C_6H_4→C_4H_2 + C_2H_2;while toluene decomposes through the channel C_6H_5C_H_3→C_6H_5C_H_2→c-C_5H_5→C_3H_3.
     2. The main PAH_ formation pathway is C_6H_6→C_9H_8→C_9H_7→C_12H_8→C_14H_8 in benzene pyrolysis; besides the vital role of C_2H_2 in H_AC_A mechanism leading to PAH_ formation, other small molecule products (C_3, C_4 and C_6-species) also contribute a lot. The PAH_ formation in toluene pyrolysis process has a feature: combination of aromatics/aromatic radical followed by H_/H_2 elimination to form PAH_s.
     3. Benzene and phenyl radical play a vital role on PAH_ formation in benzene pyrolysis, while benzyl radical play the most important role on PAH_ formation in toluene pyrolysis.
     4. The initial formation temperature of species produced in pyrolysis process is qualitatively accorded with the energy surface calculated by the G3B3 mothod.
     5. The important reactions contributing to the formation and consumption of all species are abstracted from the detailed mechanism to preliminarily get a simple mechanism with 167 reactions by production-rate analysis of all species in benzene and toluene pyrolysis process.
     6. The difference between the modeling result and experimental data is analyzed by production-rate analysis of all species in benzene and toluene pyrolysis process, which gives lots of insight into improving the current modeling.
     Chapter 3, Catalytic oxidation of light hydrocarbons/air mixtures over Pd-based catalytic surface were studied by using wire microcalorimetry which determines the catalytic heat release rate as a function of the wire temperature. The experiments were conducted with thorough pre-treatment and extensive surface characterization using focused ion beam, backscattered electron (BSE), energy dispersive x-ray (EDX), and x-ray photoelectron spectrometry (XPS), which render the catalyst surface well controlled and characterized. Consequently the catalytic ignition temperature was successfully determined. It is also noted that the geometry of the experiment is so simple that it was readily simulated to validate chemical mechanisms by software FLUENT.
     1. The heat release rates of 1-4% methane at a temperature range of 400-800 K were acquired.
     2. When the concentration of methane increases from 1% to 4%, the ignition temperature decreases from 642 to 580 K; while pressure increases from 0.5 to 4 atm, ignition temperature decreases from 630 to 556 K. The global activation energy of methane over PdO is 21.5±0.9 kcal/mol, the reaction order of methane is 0.9±0.1 at the temperature range of 630-770 K. The reaction order increases as catalyst size decreases.
     3. Comparison of experimental data with modeling result indicates the importance of surface morphology. The sensitivity analysis of heat release rate indicates three important reactions: the dissociative adsorption of methane and oxygen, and the desorption of oxygen.
     Chapter 4, we introduced the boundary slip phenomena into the SPIN program for the simulation of rotating-disk LPCVD, in which the weakly rarefied flow effects must be included to accurately compute the deposition rate. A model reaction mechanism for silicon deposition was used to elucidate the rarefied flow effect of the reduced deposition rate with decreasing system pressure. This trend is further augmented by considering the boundary _slip phenomena, especially the temperature _slip. Furthermore, the _slip temperature T_slip and the temperature of the molecules striking the surface Tm are recognized to be two important factors associated with the temperature _slip phenomena. Their distinctive roles in affecting the deposition rate are identified in that, at relatively low disk temperatures (e.g. 800 K). The total deposition rate mainly attributes to the SiH4 deposition, which is substantially affected by the Tm-sensitive sticking coefficient. However, at higher disk temperatures (e.g. 1200 K), the total deposition rate is mainly due to the SiH2 deposition, which is substantially affected by T_slip. Considering that the model reaction mechanism contains the representative gas-phase and surface reactions, the present results are believed to be readily extendable to detailed reaction mechanisms and other similar LPCVD system.
引文
[1] International Energy Outlook 2009 Energy Information Administration, Washington, DC, 2009.
    [2] The Environment: The environment: challenges for the chemical sciences in the 21st century, National Academies Press, Washington, D.C., 2003.
    [3] W.C. Pfefferle, L.D. Pfefferle, Prog Energ Combust 12 (1986) 25-41.
    [4] R.E. Hayes, S.T. Kolaczkowski: Introduction to catalytic combustion, Gorden and Breach, Amsterdam, 1997.
    [5] H. Arakawa, M. Aresta, J.N. Armor, M.A. Barteau, E.J. Beckman, A.T. Bell, J.E. Bercaw, C. Creutz, E. Dinjus, D.A. Dixon, K. Domen, D.L. DuBois, J. Eckert, E. Fujita, D.H. Gibson, W.A. Goddard, D.W. Goodman, J. Keller, G.J. Kubas, H.H. Kung, J.E. Lyons, L.E. Manzer, T.J. Marks, K. Morokuma, K.M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W.M.H. Sachtler, L.D. Schmidt, A. Sen, G.A. Somorjai, P.C. Stair, B.R. Stults, W. Tumas, Chem Rev 101 (2001) 953-996.
    [6] G. Centi, J Mol Catal a-Chem 173 (2001) 287-312.
    [7] D. Ciuparu, M.R. Lyubovsky, E. Altman, L.D. Pfefferle, A. Datye, Catal. Rev. 44 (2002) 593-649.
    [8] K.F. Roenigk, K.F. Jensen, J Electrochem Soc 132 (1985) 448-454.
    [9] S. Ecoffey, D. Bouvet, A.M. Ionescu, P. Fazan, Nanotechnology 13 (2002) 290-293.
    [10] Advanced silicon and semiconducting silicon-alloy based materials and devices Institute of physics publishing, London, 1994.
    [11] R.J. Kee, M.E. Coltrin, P. Glarborg: Chemically reacting flow-theory and practice, John Wiley & Sons, Hoboken, New Jersey, 2003.
    [12] C.A. Taatjes, N. Hansen, A. McIlroy, J.A. Miller, J.P. Senosiain, S.J. Klippenstein, F. Qi, L.S. Sheng, Y.W. Zhang, T.A. Cool, J. Wang, P.R. Westmoreland, M.E. Law, T. Kasper, K. Kohse-H?inghaus, Science 308 (2005) 1887-1889.
    [13] N. Hansen, T.A. Cool, P.R. Westmoreland, K. Kohse-Hoinghaus, Prog. Energy Combust. Sci. 35 (2009) 168-191.
    [14] M. Yahyaoui, N. Djebaili-Chaumeix, P. Dagaut, C.E. Paillard, S. Gall, Proc. Combust. Inst. 31 (2007) 385-391.
    [15] G. Yu, C.K. Law, C.K. Wu, Combust. Flame 63 (1986) 339-347.
    [16] F.N. Egolfopoulos, P. Cho, C.K. Law, Combust. Flame 76 (1989) 375-391.
    [17] C.G. Fotache, T.G. Kreutz, C.K. Law, Combust. Flame 108 (1997) 442-470.
    [18] W. Liu, A.P. Kelley, C.K. Law, Combust. Flame 157 (2010) 1027-1036.
    [19] P. Cho, C.K. Law, Combust. Flame 66 (1986) 159-170.
    [20] T.C. Zhang, L.D. Zhang, X. Hong, K.W. Zhang, F. Qi, C.K. Law, T.H. Ye, P.H. Zhao, Y.L. Chen, Combust. Flame 156 (2009) 2071-2083.
    [21] T.C. Zhang, J. Wang, T. Yuan, X. Hong, L.D. Zhang, F. Qi, J. Phys. Chem. A 112 (2008) 10487-10494.
    [22] T.C. Zhang, D.L. Zhu, N. Yao, F. Qi, C.K. Law, Proc. Combust. Inst. in press (2010).
    [23] K. Kohse-H?inghaus, J.B. Jefferies: Applied combustion diagnostics, Taylor and Francis, London, 2002.
    [24] In-situ spectroscopy in heterogeneous catalysis, Wiley VCH Verlag GmbH, Weinheim, 2002.
    [25] T.C. Zhang, P. Zhang, C.K. Law, F. Qi, Chem Vapor Depos 15 (2009) 274-280.
    [1] H. Richter, J.B. Howard, Prog. Energy Combust. Sci. 26 (2000) 565-608.
    [2] M. Frenklach, Phys Chem Chem Phys 4 (2002) 2028-2037.
    [3] J.L. Durant, W.F. Busby, A.L. Lafleur, B.W. Penman, C.L. Crespi, Mutat Res-Genet Tox 371 (1996) 123-157.
    [4] M.F. Denissenko, A. Pao, M.S. Tang, G.P. Pfeifer, Science 274 (1996) 430-432.
    [5] N. Kunzli, R. Kaiser, S. Medina, M. Studnicka, O. Chanel, P. Filliger, M. Herry, F. Horak, V. Puybonnieux-Texier, P. Quenel, J. Schneider, R. Seethaler, J.C. Vergnaud, H. Sommer, Lancet 356 (2000) 795-801.
    [6] L.J. Allamandola, A.G.G.M. Tielens, J.R. Barker, Astrophys J Suppl S 71 (1989) 733-775.
    [7] E. Dwek, R.G. Arendt, D.J. Fixsen, T.J. Sodroski, N. Odegard, J.L. Weiland, W.T. Reach, M.G. Hauser, T. Kelsall, S.H. Moseley, R.F. Silverberg, R.A. Shafer, J. Ballester, D. Bazell, R. Isaacman, Astrophys J 475 (1997) 565-579.
    [8] M.M. Boorum, Y.V. Vasil'ev, T. Drewello, L.T. Scott, Science 294 (2001) 828-831.
    [9] L.T. Scott, M.M. Boorum, B.J. McMahon, S. Hagen, J. Mack, J. Blank, H. Wegner, A. de Meijere, Science 295 (2002) 1500-1503.
    [10] H. Richter, S. Granata, W.H. Green, J.B. Howard, Proc. Combust. Inst. 30 (2005) 1397-1405.
    [11] Soot formation in combustion: mechanism and models, Springer, Berlin, 1994.
    [12] W.J. Grieco, A.L. Lafleur, K.C. Swallow, H. Richter, K. Taghizadeh, J.B. Howard, Proc. Combust. Inst. 27 (1998) 1669-1675.
    [13] M. Frenklach, D.W. Clary, W.C. Gardiner, S.E. Stein, Proc. Combust. Inst. 20 (1984) 887-901.
    [14] H. Bockhorn, F. Fetting, H.W. Wenz, Ber. Bunsen-Ges. Phys. Chem 87 (1983) 1067-1073.
    [15] H. Wang, M. Frenklach, J. Phys. Chem. 98 (1994) 11465-11489.
    [16] H. Wang, M. Frenklach, Combust. Flame 110 (1997) 173-221.
    [17] P.R. Westmoreland, A.M. Dean, J.B. Howard, J.P. Longwell, Journal of Physical Chemistry 93 (1989) 8171-8180.
    [18] S.J. Harris, A.M. Weiner, R.J. Blint, Combust. Flame 72 (1988) 91-109.
    [19] J. Appel, H. Bockhorn, M. Frenklach, Combustion and Flame 121 (2000) 122-136.
    [20] F. Xu, P.B. Sunderland, G.M. Faeth, Combust. Flame 108 (1997) 471-493.
    [21] M.J. Castaldi, S.M. Senkan, Combust. Sci. Technol. 116 (1996) 167-181.
    [22] S.G. Davis, C.K. Law, H. Wang, Combust. Flame 119 (1999) 375-399.
    [23] A. Laskin, H. Wang, C.K. Law, Int J Chem Kinet 32 (2000) 589-614.
    [24] H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law,High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, http://ignis.usc.edu/USC_Mech_II.htm (2007).
    [25] C.D. Hurd, J.I. Simon, A.R. Macon, R.V. Levetan, J Am Chem Soc 84 (1962) 4509-&.
    [26] C.H. Wu, R.D. Kern, J. Phys. Chem. 91 (1987) 6291-6296.
    [27] R.D. Kern, H.J. Singh, C.H. Wu, Int J Chem Kinet 20 (1988) 731-747.
    [28] Y. Hidaka, T. Nakamura, A. Miyauchi, T. Shiraishi, H. Kawano, Int J Chem Kinet 21 (1989) 643-666.
    [29] U. Alkemade, K.H. Homann, Zeitschrift Fur Physikalische Chemie Neue Folge 161 (1989) 19-34.
    [30] J.A. Miller, J.V. Volponi, J.L. Durant, J.E.M. Goldsmith, G.A. Fisk, R.J. Kee, Proc. Combust. Inst. 23 (1990) 187-194.
    [31] J.A. Miller, C.F. Melius, Combust. Flame 91 (1992) 21-39.
    [32] S.E. Stein, J.A. Walker, M.M. Suryan, A. Fahr, Proc. Combust. Inst. 23 (1991) 85-90.
    [33] N.M. Marinov, W.J. Pitz, C.K. Westbrook, M.J. Castaldi, S.M. Senkan, Combust. Sci. Technol. 116 (1996) 211-287.
    [34] R.P. Lindstedt, G. skevis, Proc. Combust. Inst. 26 (1996) 703-709.
    [35] J.A. Miller, S.J. Klippenstein, J. Phys. Chem. A 107 (2003) 7783-7799.
    [36] C.F. Melius, J.A. Miller, E.M. Evleth, Proc. Combust. Inst. 24 (1992) 621-628.
    [37] A. D'Anna, J.H. Kent, Combust. Flame 132 (2003) 715-722.
    [38] M.B. Colket, D.J. Seery, Proc. Combust. Inst. 25 (1994) 883-891.
    [39] A. D'Anna, A. D'Alessio, J. Kent, Combust. Flame 125 (2001) 1196-1206.
    [40] G. Blanquart, P. Pepiot-Desjardins, H. Pitsch, Combust. Flame 156 (2009) 588-607.
    [41] A.M. Dean, J. Phys. Chem. 94 (1990) 1432-1439.
    [42] M.J. Castaldi, N.M. Marinov, C.F. Melius, J. Huang, S.M. Senkan, W.J. Pitz, C.K. Westbrook, Proc. Combust. Inst. 26 (1996) 693-702.
    [43] N.M. Marinov, W.J. Pitz, C.K. Westbrook, A.M. Vincitore, M.J. Castaldi, S.M. Senkan, C.F. Melius, Combust. Flame 114 (1998) 192-213.
    [44] V.V. Kislov, A.M. Mebel, J. Phys. Chem. A 111 (2007) 9532-9543.
    [45] Y. Murakami, T. Saejung, C. Ohashi, N. Fujii, Chem. Lett. 32 (2003) 1112-1113.
    [46] R.G. Butler, I. Glassman, Proc. Combust. Inst. 32 (2009) 395-402.
    [47] G. da Silva, J.A. Cole, J.W. Bozzelli, J. Phys. Chem. A 113 (2009) 6111-6120.
    [48] R.S. Slysh, C.R. Kinney, J. Phys. Chem. 65 (1961) 1044-1045.
    [49] S.H. Bauer, C.F. Aten, J. Chem. Phys. 39 (1963) 1253-1260.
    [50] J.D. Bittner, J.B. Howard, Proc. Combust. Inst. 18 (1981) 1105-1116.
    [51] R.D. Kern, H.J. Singh, M.A. Esslinger, P.W. Winkeler, Proc. Combust. Inst. 19 (1982) 1351-1358.
    [52] R.D. Smith, A.L. Johnson, Combust. Flame 51 (1983) 1-22.
    [53] H. Bockhorn, F. Fetting, H.W. Wenz, Ber Bunsen Phys Chem 87 (1983) 1067-1073.
    [54] H.J. Singh, R.D. Kern, Combust. Flame 54 (1983) 49-59.
    [55] M. Braun-Unkhoff, P. Frank, T. Just, Proc. Combust. Inst. 22 (1988) 1053-1061.
    [56] A. Hamins, D.T. Anderson, J.H. Miller, Combust. Sci. Technol. 71 (1990) 175-195.
    [57] M. Hausmann, P. Hebgen, K.-H. Homann, 24 (1992) 793-801.
    [58] G.W. Sidebotham, K. Saito, I. Glassman, Combust. Sci. Technol. 85 (1992) 283-296.
    [59] M. Takatsu, T. Yamamoto, Bull. Chem. Soc. Jpn. 66 (1993) 1265-1268.
    [60] A. Laskin, A. Lifshitz, Proc. Combust. Inst. 26 (1996) 669-675.
    [61] C.S. McEnally, L.D. Pfefferle, Combust. Sci. Technol. 128 (1997) 257-278.
    [62] A. Tregrossi, A. Ciajolo, R. Barbella, Combust. Flame 117 (1999) 553-561.
    [63] C.S. McEnally, L. Pfefferle, Proc. Combust. Inst. 28 (2000) 2569-2576.
    [64] F. Defoeux, V. Dias, C. Renard, P.J. Van Tiggelen, J. Vandooren, Proc. Combust. Inst. 30 (2005) 1407-1415.
    [65] R. Sivaramakrishnan, K. Brezinsky, H. Vasudevan, R.S. Tranter, Combust. Sci. Technol. 178 (2006) 285-305.
    [66] M. Shukla, A. Susa, A. Miyoshi, M. Koshi, J. Phys. Chem. A 112 (2008) 2362-2369.
    [67] G.M. Badger, T.M. Spotswood, J. Chem. Soc. (1960) 4420-4427.
    [68] R.D. Smith, Combust. Flame 35 (1979) 179-190.
    [69] D.C. Astholz, J. Durant, J. Troe, Proc. Combust. Inst. 18 (1981) 885-892.
    [70] K. Brezinsky, I. Glassman, Abstr Pap Am Chem S 194 (1987) 38-Fuel.
    [71] K. Brezinsky, Prog Energ Combust 12 (1986) 1-24.
    [72] K.M. Pamidimukkala, R.D. Kern, M.R. Patel, H.C. Wei, J.H. Kiefer, J. Phys. Chem. 91 (1987) 2148-2154.
    [73] A. Hamins, K. Seshadri, Combust. Flame 68 (1987) 295-307.
    [74] L.D. Brouwer, W. Muller-Markgraf, J. Troe, J. Phys. Chem. 92 (1988) 4905-1914.
    [75] M. Braun-unkhoff, P. Frank, T. Just, Proc. Combust. Inst. 22 (1989) 1053-1061.
    [76] V.S. Rao, G.B. Skinner, J. Phys. Chem. 92 (1988) 2442-2448.
    [77] J.L. Emdee, K. Brezinsky, I. Glassman, J. Phys. Chem. 96 (1992) 2151-2161.
    [78] R.A. Eng, A. Gebert, E. Goos, H. Hippler, C. Kachiani, Phys. Chem. Chem. Phys. 4 (2002) 3989-3996.
    [79] P. Dagaut, G. Pengloan, A. Ristori, Phys. Chem. Chem. Phys. 4 (2002) 1846-1854.
    [80] R. Sivaramakrishnan, R.S. Tranter, K. Brezinsky, Combust. Flame 139 (2004) 340-350.
    [81] R. Bounaceur, I. Da Costa, R. Fournet, F. Billaud, F. Battin-Leclerc, Int J Chem Kinet 37 (2005) 25-49.
    [82] E. Zervas, Energy Fuels 19 (2005) 1865-1872.
    [83] R. Sivaramakrishnan, R.S. Tranter, K. Brezinsky, J. Phys. Chem. A 110 (2006) 9388-9399.
    [84] B. Shukla, A. Susa, A. Miyoshi, M. Koshi, J. Phys. Chem. A 111 (2007) 8308-8324.
    [85] A. El Bakali, L. Dupont, B. Lefort, N. Lamoureux, J.F. Pauwels, M. Montero, J. Phys. Chem. A 111 (2007) 3907-3921.
    [86] J.C.G. Andrae, T. Brinck, G.T. Kalghatgi, Combust. Flame 155 (2008) 696-712.
    [87] T.C. Zhang, L.D. Zhang, X. Hong, K.W. Zhang, F. Qi, C.K. Law, T.H. Ye, P.H. Zhao, Y.L. Chen, Combust. Flame 156 (2009) 2071-2083.
    [88] V. Detilleux, J. Vandooren, J. Phys. Chem. A 113 (2009) 10913-10922.
    [89] H.P.S. Shen, J. Vanderover, M.A. Oehlschlaeger, Proc. Combust. Inst. 32 (2009) 165-172.
    [90] Y.Y. Li, L.D. Zhang, Z.Y. Tian, T. Yuan, J. Wang, B. Yang, F. Qi, Energy Fuels 23 (2009) 1473-1485.
    [91] A. Ergut, S. Granata, J. Jordan, J. Carlson, J.B. Howard, H. Richter, Y.A. Levendis, Combust. Flame 144 (2006) 757-772.
    [92] Y.Y. Li, Z.Y. Tian, L.D. Zhang, T. Yuan, K.W. Zhang, B. Yang, F. Qi, Proc. Combust. Inst. 32 (2009) 647-655.
    [93] P.J. Linstrom, W.G. Mallard, NIST Chemistry Webbook, National Institute of Standard and Technology, Number 69, Gaithersburg, MD, 2005, http://webbook.nist.gov.
    [94] C.J. Geankoplis: Transport Processes and Unit Operations, PTR Prentice Hall: Englewood Cliffs, NJ, 1993.
    [95] T.A. Cool, A. McIlroy, F. Qi, P.R. Westmoreland, L. Poisson, D.S. Peterka, M. Ahmed, Rev. Sci. Instrum. 76 (2005) 094102.
    [96] N. Kanno, K. Tonokura, Appl. Spectrosc. 61 (2007) 896-902.
    [97] T.A. Cool, K. Nakajima, T.A. Mostefaoui, F. Qi, A. McIlroy, P.R. Westmoreland, M.E. Law, D.S. Peterka, M. Ahmed, J. Chem. Phys. 119 (2003) 8356-8365.
    [98] J.C. Robinson, N.E. Sveum, D.M. Neumark, Chem. Phys. Let. 350 (2004) 601-605.
    [99] N. Hansen, T.A. Cool, P.R. Westmoreland, K. Kohse-Hoinghaus, Prog. Energy Combust. Sci. 35 (2009) 168-191.
    [100] T. Adam, R. Zimmermann, Anal. Bioanal. Chem. 389 (2007) 1941-1951.
    [101] Z.Y. Zhou, M.F. Xie, Z.D. Wang, F. Qi, Rapid Commun. Mass Spectrom. 23 (2009) 3994-4002.
    [102] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Munnucci, C. Pomelli, C. Adamo, S. Clliford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Pikorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nakayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzales, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2004.
    [103] A.G. Baboul, L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 110 (1999) 7650-7657.
    [104] Y.Y. Li, L.X. Wei, Z.Y. Tian, B. Yang, J. Wang, T.C. Zhang, F. Qi, Combust. Flame 152 (2008) 336-359.
    [105] R.J. Kee, F.M. Rupley, J.A. Miller, Sandia Report SAND 89-8009B. Sandia National Laboratories, 1989.
    [106] G.B. Bacskay, J.C. Mackie, Phys Chem Chem Phys 3 (2001) 2467-2473.
    [107] L.K. Madden, L.V. Moskaleva, S. Kristyan, M.C. Lin, J. Phys. Chem. A 101 (1997) 6790-6797.
    [108] C. Xu, M. Braun-Unkhoff, C. Naumann, P. Frank, Proc. Combust. Inst. 31 (2007) 231-239.
    [109] N. Hansen, J.A. Miller, P.R. Westmoreland, T. Kasper, K. Kohse-Hoinghaus, J. Wang, T.A. Cool, Combust. Flame 156 (2009) 2153-2164.
    [110] M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 110 (2006) 9867-9873.
    [111] M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, Proc. Combust. Inst. 31 (2007) 211-219.
    [112] S.J. Klippenstein, L.B. Harding, Y. Georgievskii, Proc. Combust. Inst. 31 (2007)221-229.
    [113] C. Cavallotti, M. Derudi, R. Rota, P Combust Inst 32 (2009) 115-121.
    [114] A.M. Mebel, M.C. Lin, D. Chakraborty, J. Park, S.H. Lin, Y.T. Lee, J. Chem. Phys. 114 (2001) 8421-8435.
    [115] A.M. Mebel, M.C. Lin, T. Yu, K. Morokuma, J. Phys. Chem. A 101 (1997) 3189-3196.
    [116] H. Wang, A. Laskin, N.W. Moriarty, M. Frenklach, Proc. Combust. Inst. 28 (2000) 1545-1555.
    [117] D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, T. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker, J. Warnatz, J. Phys. Chem. Ref. Data 34 (2005) 757-1397.
    [118] C. Xu, M. Braun-Unkhoff, C. Naumann, P. Frank, P Combust Inst 31 (2007) 231-239.
    [119] W.Q. Deng, K.L. Han, J.P. Zhan, G.Z. He, Chem Phys Lett 288 (1998) 33-36.
    [120] M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 110 (2006) 6649-6653.
    [121] Y.Y. Li, L.D. Zhang, Z.Y. Tian, T. Yuan, J. Wang, B. Yang, F. Qi, Energy and Fuel in press (2009).
    [122] C. Cavallotti, M. Derudi, R. Rota, Proc. Combust. Inst. 32 (2009) 115-121.
    [123] J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136.
    [124] H. Richter, S. Granata, W.H. Green, J.B. Howard, Proc. Combust. Inst. 30 (2004) 1397-1405.
    [125] A. Burcat, B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables, Report TAE960 (2005).
    [126] R. Sivaramakrishnan, R.S. Tranter, K. Brezinsky, J. Phys. Chem. A 110 (2006) 9400-9404.
    [127] L.D. Zhang, J.H. Cai, T.C. Zhang, F. Qi, Combust. Flame 157 (2010) 1686-1697.
    [128] J.H. Kiefer, K.I. Mitchell, R.D. Kern, J.N. Yong, J. Phys. Chem. 92 (1988) 677-685.
    [129]G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/ (1999).
    [130] L. Vereecken, J. Peeters, Phys Chem Chem Phys 5 (2003) 2807-2817.
    [131] J. Jones, G.B. Bacskay, J.C. Mackie, J. Phys. Chem. A 101 (1997) 7105-7113.
    [132] S. Fascella, C. Cavallotti, R. Rota, S. Carra, J. Phys. Chem. A 109 (2005) 7546-7557.
    [133] M. Kamphus, M. Braun-Unkhoff, K. Kohse-Hoinghaus, Combust. Flame 152 (2008)28-59.
    [134] K. Roy, C. Horn, P. Frank, V.G. Slutsky, T. Just, Proc. Combust. Inst. 27 (1998) 329-336.
    [135]V. Mokrushin, V. Bedanov, W. Tsang, M. Zachariah, V. Knyazev, Chemrate Version 1.5.8, National Institute of Standards and Testing, Gaithersburg, MD, 2006.
    [136] E.P. Wigner, Z. Phys. Chem. Abt. B 19 (1932) 203-216.
    [137] G. da Silva, J.W. Bozzelli, J. Phys. Chem. A 113 (2009) 12045-12048.
    [138] M.U. Alzueta, P. Glarborg, K. Dam-Johansen, Int J Chem Kinet 32 (2000) 498-522.
    [139] W. Mullermarkgraf, J. Troe, J. Phys. Chem. 92 (1988) 4899-4905.
    [140] H. Hippler, J. Troe, J. Phys. Chem. 94 (1990) 3803-3806.
    [141] V.D. Knyazev, I.R. Slagle, J. Phys. Chem. A 106 (2002) 5613-5617.
    [1] D.T. Wickham, R. Cook, S. De Voss, J.R. Engel, J. Nabity, J Russ Laser Res 27 (2006) 552-561.
    [2] J.L. Sabourin, D.M. Dabbs, R.A. Yetter, F.L. Dryer, I.A. Aksay, Acs Nano 3 (2009) 3945-3954.
    [3] B. Van Devener, S.L. Anderson, T. Shimizu, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, S. Williams, J. Phys. Chem. C 113 (2009) 20632-20639.
    [4] T. Edwards, J. Propul. Power 19 (2003) 1089-1107.
    [5] D. Ciuparu, M.R. Lyubovsky, E. Altman, L.D. Pfefferle, A. Datye, Catal. Rev. 44 (2002) 593-649.
    [6] P. Forzatti, G. Groppi, Catal. Today 54 (1999) 165-180.
    [7] R.M. Heck, R.J. Farrauto: Catalytic air pollution control: commercial technology, VanNostrand Reinhold, New York, 1995.
    [8] J. Kaspar, P. Fornasiero, N. Hickey, Catal. Today 77 (2003) 419-449.
    [9] R.J. Farrauto, R.M. Heck, Catal. Today 51 (1999) 351-360.
    [10] J.K. Lamprt, M.S. Kasi, R.J. Farrauto, Appl. Catal. B-Environ. 14 (1997) 211-215.
    [11] V.G. Papadakis, Catal. Today 29 (1996) 71-75.
    [12] C. Thomas, O. Gorce, C. Fontaine, J.M. Krafft, F. Villain, G. Djega-Mariadassou, Appl Catal B-Environ 63 (2006) 201-214.
    [13] F. Gao, Y.L. Wang, D.W. Goodman, J. Catal. 268 (2009) 115-121.
    [14] R. Prasad, L.A. Kennedy, E. Ruckenstein, Catal Rev 26 (1984) 1-58.
    [15] R. Burch, F.J. Urbano, Appl. Catal. A-Gen. 124 (1995) 121-138.
    [16] R. Burch, D.J. Crittle, M.J. Hayes, Catal. Today 47 (1999) 229-234.
    [17] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Appl Catal a-Gen 234 (2002) 1-23.
    [18] J. SaintJust, J. derKinderen, Catal. Today 29 (1996) 387-395.
    [19] J.G. McCarty, Nature 403 (2000) 35-36.
    [20] G. Veser, M. Ziauddin, L.D. Schmidt, Catal. Today 47 (1999) 219-228.
    [21] E. Garbowski, C. Feumijantou, N. Mouaddib, M. Primet, Appl. Catal. A-Gen. 109 (1994) 277-291.
    [22] L.M.T. Simplicio, S.T. Brandao, E.A. Sales, L. Lietti, F. Bozon-Verduraz, Appl Catal B-Environ 63 (2006) 9-14.
    [23] M. Schmal, M.M.V.M. Souza, V.V. Alegre, M.A.P. Da silva, D.V. Cesar, C.A.C. Perez, Catal. Today 118 (2006) 393-401.
    [24] K.L. Fujdala, T.J. Truex, US, 2008.
    [25] M. Yashima, L.K.L. Falk, A.E.C. Palmqvist, K. Holmberg, J Colloid Interf Sci 268 (2003) 348-356.
    [26] Y.F.Y. Yao, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 293-298.
    [27] C.F. Cullis, B.M. Willatt, J. Catal. 83 (1983) 267-285.
    [28] V.A. Drozdov, P.G. Tsyrulnikov, V.V. Popovskii, N.N. Bulgakov, E.M. Moroz, T.G. Galeev, React. Kinet. Catal. Lett. 27 (1985) 425-427.
    [29] T.R. Baldwin, R. Burch, Appl. Catal. 66 (1990) 337-358.
    [30] T.R. Baldwin, R. Burch, Appl. Catal. 66 (1990) 359-381.
    [31] R.F. Hicks, H.H. Qi, M.L. Young, R.G. Lee, J. Catal. 122 (1990) 280-294.
    [32] R.F. Hicks, H.H. Qi, M.L. Young, R.G. Lee, J. Catal. 122 (1990) 295-306.
    [33] P. Briot, M. Primet, Appl. Catal. 68 (1991) 301-314.
    [34] F.H. Ribeiro, M. Chow, R.A. Dallabetta, J. Catal. 146 (1994) 537-544.
    [35] R. Burch, F.J. Urbano, P.K. Loader, Appl. Catal. 123 (1995) 173-184.
    [36] A.F. Ahlstroem-Silversand, C. Ulf Ingemar Odenbrand, Appl. Catal. A-Gen. 153 (1997) 157-175.
    [37] K. Fujimoto, F.H. Ribeiro, M. Avalos-Borja, E. Iglesia, J. Catal. 179 (1998) 431-442.
    [38] J.C. van Giezen, F.R. van den Berg, J.L. Kleinen, A.J. van Dillen, J.W. Geus, Catal. Today 47 (1999) 287-293.
    [39] M. Lyubovsky, L. Pfefferle, Catal. Today 47 (1999) 29-44.
    [40] R.S. Monteiro, D. Zemlyanov, J.M. Storey, F.H. Ribeiro, J. Catal. 199 (2001) 291-301.
    [41] R.E. Hayes, S.T. Kolaczkowski, P.K.C. Li, S. Awdry, Chem. Eng. Sci. 56 (2001) 4815-4835.
    [42] G.H. Zhu, J.Y. Han, D.Y. Zernlyanov, F.H. Ribeiro, J. Phys. Chem. B 109 (2005) 2331-2337.
    [43] F. Behrendt, O. Deutschmann, R. Schmidt, J. Warnatz, Heterogeneous Hydrocarbon Oxidation. ACS Symposium Series, 1996.
    [44] J.F. Kramer, S.A.S. Reihani, G.S. Jackson, Proc. Combust. Inst. 29 (2003) 989-996.
    [45] J.C.G. Andrae, A. Johansson, P. Bjornbom, A. Rosen, Surf. Sci. 563 (2004) 145-158.
    [46] J. Szanyi, D.W. Goodman, J. Phys. Chem. 98 (1994) 2972-2977.
    [47] J. Szanyi, W.K. Kuhn, D.W. Goodman, J. Phys. Chem. 98 (1994) 2978-2981.
    [48] X.P. Xu, P.J. Chen, D.W. Goodman, J. Phys. Chem. 98 (1994) 9242-9246.
    [49] X.P. Xu, D.W. Goodman, J. Phys. Chem. 97 (1993) 7711-7718.
    [50] D.R. Rainer, M. Koranne, S.M. Vesecky, D.W. Goodman, J. Phys. Chem. B 101 (1997) 10769-10774.
    [51] N. Ogrinc, I. Kobal, M. Senegacnik, J. Phys. Chem. A 101 (1997) 7236-7242.
    [52] K. Watanabe, H. Ohnuma, H. Kimpara, H. Uetsuka, K. Kunimori, Surf. Sci. 404 (1998) 100-103.
    [53] K. Nakao, S. Ito, K. Tomishige, K. Kunimori, J. Phys. Chem. B 109 (2005) 17553-17559.
    [54] T. Schalow, B. Brandt, M. Laurin, S. Schauermann, J. Libuda, H.J. Freund, J. Catal. 242 (2006) 58-70.
    [55] M.S. Chen, Y. Cal, Z. Yan, K.K. Gath, S. Axnanda, D.W. Goodman, Surf. Sci. 601 (2007) 5326-5331.
    [56] C. Kemball, W.R. Patterson, Proc R Soc Lon Ser-A 270 (1962) 219-&.
    [57] N.W. Cant, W.K. Hall, J. Catal. 16 (1970) 220-231.
    [58] L. Van de Belt, M.C. Van der Ven, K.R. Westerterp, Chem. Eng. Process. 34 (1995) 469-478.
    [59] W. Unterberger, H. Gabasch, K. Hayek, B. Klotzer, Catal. Lett. 104 (2005) 1-8.
    [60] H. Gabasch, A. Knop-Gericke, R. Schlogl, W. Unterberger, K. Hayek, B. Klotzer, Catal. Lett. 119 (2007) 191-198.
    [61] H. Shinjoh, H. Muraki, Y. Fujitani, Appl Catal 49 (1989) 195-204.
    [62] P. Marecot, A. Fakche, B. Kellali, G. Mabilon, M. Prigent, J. Barbier, Appl Catal B-Environ 3 (1994) 283-294.
    [63] A.L. Boehman, S. Niksa, Appl Catal B-Environ 8 (1996) 41-56.
    [64] Y. Yazawa, H. Yoshida, N. Takagi, S. Komai, A. Satsuma, T. Hattori, Appl Catal B-Environ 19 (1998) 261-266.
    [65] A.L. Guimaraes, L.C. Dieguez, A. Schmal, J. Phys. Chem. B 107 (2003) 4311-4319.
    [66] O. Demoulin, B. Le Clef, M. Navez, P. Ruiz, Appl Catal a-Gen 344 (2008) 1-9.
    [67] J.F. Weaver, S.P. Devarajan, C. Hakanoglu, J. Phys. Chem. C 113 (2009) 9773-9782.
    [68] O. Deutschmann, R. Schmidt, F. Behrendt, J. Warnatz, Proc. Combust. Inst. 26 (1996) 1747-1754.
    [69] R.W. Sidwell, H.Y. Zhu, R.J. Kee, D.T. Wickham, C. Schell, G.S. Jackson, Proc. Combust. Inst. 29 (2003) 1013-1020.
    [70] M.M. Wolf, H.Y. Zhu, W.H. Green, G.S. Jackson, Appl Catal a-Gen 244 (2003) 323-340.
    [71] T. Shimizu, A.D. Abid, G. Poskrebyshev, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, B. Van Devener, S.L. Anderson, S. Williams, Combust. Flame 157 (2010) 421-435.
    [72] T. Shimizu, H. Wang, Proc. Combust. Inst. Submitted (2010).
    [73] T.P. Beebe, D.W. Goodman, B.D. Kay, J.T. Yates, J. Chem. Phys. 87 (1987) 2305-2315.
    [74] Y.N. Wang, R.G. Herman, K. Klier, Surf. Sci. 279 (1992) 33-48.
    [75] J.H. Lee, D.L. Trimm, Fuel Process. Technol. 42 (1995) 339-359.
    [76] G. Groppi, C. Cristiani, L. Lietti, C. Ramella, M. Valentini, P. Forzatti, Catal. Today 50 (1999) 399-412.
    [77] J.W. Geus, J.C. van Giezen, Catal. Today 47 (1999) 169-180.
    [78] G. Centi, J Mol Catal a-Chem 173 (2001) 287-312.
    [79] P. Gelin, M. Primet, Appl. Catal. B-Environ. 39 (2002) 1-37.
    [80] A.K. Neyestanaki, F. Klingstedt, T. Salmi, D.Y. Murzin, Fuel 83 (2004) 395-408.
    [81] R.J. Farrauto, M.C. Hobson, T. Kennelly, E.M. Waterman, Appl. Catal. a-Gen. 81 (1992) 227-237.
    [82] K. Sekizawa, H. Widjaja, S. Maeda, Y. Ozawa, K. Eguchi, Appl Catal a-Gen 200 (2000) 211-217.
    [83] Z. Ferhat-Hamida, J. Barbier, S. Labruquere, D. Duprez, Appl Catal B-Environ 29 (2001) 195-205.
    [84] F. Gao, Y.L. Wang, D.W. Goodman, J. Phys. Chem. C 114 (2010) 4036-4043.
    [85] Y. Yazawa, H. Yoshida, N. Takagi, S. Komai, A. Satsuma, T. Hattori, J. Catal. 187 (1999) 15-23.
    [86] K.B. Zhou, H.D. Chen, Q. Tian, D.X. Shen, X.B. Xu, J Environ Sci-China 15 (2003) 289-295.
    [87] L. Hiam, H. Wise, S. Chaikin, J. Catal. 10 (1968) 272-276.
    [88] M.A.A. Cardoso, D. Luss, Chem. Eng. Sci. 24 (1969) 1699-1710.
    [89] P. Cho, C.K. Law, Combust. Flame 66 (1986) 159-170.
    [90] K.L. Hohn, C.C. Huang, C. Cao, J. Nat. Gas Chem. 18 (2009) 115-123.
    [91] R.A. Matula, J. Phys. Chem. Ref. Data 8 (1979) 1147-1298.
    [92] A. Bejan, A.D. Kraus: Heat Transfer Handbook, John Wiley & Sons, 2003.
    [93] S.O. Atayilmaz, I. Teke, International Communications in Heat and Mass Transfer 36 (2009) 731-738.
    [94] Y.K. Rao: Stoichiometry and Thermodynamics of Metallurgical Processes, Cambridge Press, Cambridge, 1985.
    [95] W.M. Edwards, F.L. Worley, D. Luss, Chem. Eng. Sci. 28 (1973) 1479-1491.
    [96] N. Yao: Focused Ion Beam System: Basics and Applications, Cambridge University Press, Cambridge, 2007.
    [97] S.T. Kolaczkowski, W.J. Thomas, J. Titiloye, D.J. Worth, Combust. Sci. Technol. 118 (1996) 79-100.
    [1] R. Pollard, J. Newman, J. Electrochem. Soc. 127 (1980) 744-752.
    [2] M.E. Coltrin, R.J. Kee, J.A. Miller, J. Electrochem. Soc. 131 (1984) 425-434.
    [3] M.E. Coltrin, R.J. Kee, G.H. Evans, J. Electrochem. Soc. 136 (1989) 819-829.
    [4] A.G. Thompson, R.A. Stall, P. Zawadzki, G.H. Evans, J. Electron. Mater. 25 (1996) 1487-1494.
    [5] C.R. Kleijn, C.J. Hoogendoorn, A. Hasper, J. Holleman, J. Middelhoek, J. Electrochem. Soc. 138 (1991) 509-517.
    [6] M.D. Allendorf, R.J. Kee, J. Electrochem. Soc. 138 (1991) 841-852.
    [7] Y.B. Wang, F. Teyssandier, J. Simon, R. Feurer, J. Electrochem. Soc. 141 (1994) 824-842.
    [8] E. Meeks, R.J. Kee, D.S. Dandy, M.E. Coltrin, Combust. Flame 92 (1993) 144-160.
    [9] F. Terai, H. Kobayashi, S. Katsui, Y. Sato, T. Nagatomo, T. Homma, Jpn. J. Appl. Phys. 1 44 (2005) 125-130.
    [10] D.E. Rosner, D.H. Papadopoulos, Ind. Eng. Chem. Res. 35 (1996) 3210-3222.
    [11] M.N. Kogan: Rarefied gas dynamics, Plenum Press, 1969.
    [12] P. Zhang, C.K. Law, J. Fluid Mech. in press (2009).
    [13] V.P. Shidlovskiy: Introduction to dynamics of rarefied gases, American elsevier publishing company INC., New York, 1967.
    [14] S.T. Ceyer, Science 249 (1990) 133-139.
    [15] P. Ho, M.E. Coltrin, W.G. Breiland, J. Phys. Chem. 98 (1994) 10138-10147.
    [16] T.L. Hu, N.G. Glumac, Chem. Vap. Deposition 8 (2002) 205-212.
    [17] M.E. Coltrin, R.J. Kee, G.H. Evans, E. Meeks, F.M. Rupley, J.F. Grcar, SPIN: A fortran program for modeling one-dimensional rotating-disk/stagnation-flow chemical vapor deposition reactors. Sandia National Laboratories, 1991.
    [18] R.J. Kee, F.M. Rupley, J.A. Miller, M.E. Coltrin, J.F. Grcar, E. Meeks, H.K. Moffat, A.E. Lutz, G. Dixon-Lewis, M.D. Smooke, J. Warnatz, G.H. Evans, R.S. Larson, R.E. Mitchell, L.R. Petzold, W.C. Reynolds, M. Caracotsios, W.E. Stewart, P. Glarborg: Chemical Collection, 3.7.1, Reaction Design, Inc., San Diego, CA., 2003.
    [19] H. Motz, H. Wise, J. Chem. Phys. 32 (1960) 1893-1894.
    [20] R. Dorsman, C.R. Kleijn, in Devi A., R. F., Parala H., Allendorf M.D., Hitchman M.L. (Eds.), Pro. EUROCVD 15 the Electrochemical Society, Pennington, 2005, p. 65-72.
    [21] O. Leroy, J. Perrin, J. Jolly, M. Pealat, M. Lefebvre, J. Phys. D: Appl. Phys. 30 (1997) 499-509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700