用户名: 密码: 验证码:
高超声速稀薄气流非结构网格DSMC及并行算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速飞行器在高空飞行时,随着飞行高度的增加,流场的稀薄气体效应随之增大,此时已不再能用连续介质的方法研究高空高速气流中所发生的各种现象。受类似条件下地面实验设备及相关测试技术所限,求解Boltzmann方程又存在着巨大的困难,直接模拟Monte Carlo方法(DSMC)已经成为非常重要的研究手段,也是求解稀薄气体动力学问题唯一获得巨大成功的方法。本文主要目的是通过深入研究高超声速稀薄气体流动的非结构网格直接模拟Monte Carlo方法及其并行计算技术,致力于开发一套适用于任意复杂外形的高效通用DSMC模拟程序。
     首先,研究了直接模拟Monte Carlo方法所必需的基本分子气体动力学理论,为流场的直接物理模拟打下理论基础。论述了二元弹性碰撞中的力学机理并推导了分子碰撞后速度的求解公式。讨论了分子间的作用势与分子碰撞模型。在前人工作的基础上,以Lennard-Jones势为作用模型,设计了GSS-3分子碰撞模型,该模型同时具有吸引和排斥的分子作用力,能够给出正确的气体输运性质。
     其次,研究了高超声速稀薄气流非结构网格DSMC方法的实现策略及应用。将Bird位置元方案中的子网格思想引入到非结构网格上来,只存储子网格的总体标识号,利用较少的计算网格又能提高分子的分辨率和计算精度。提出了将面积元/体积元坐标搜索技术与交替数字二叉树搜索算法(ADT)相结合来跟踪模拟分子在网格之间的迁移,使用ADT方法判别分子与物面是否相交,节约了计算时间。同时编制了相应的计算程序,对具体的算例进行了数值模拟。
     然后,在非结构网格DSMC方法实现的基础上,对其中的关键技术进行了优化与设计。以面积元/体积元坐标搜索技术为原型,设计了一类跟踪模拟分子迁移的新算法,该算法仅需少量的逻辑运算与代数运算,较之以往需要大量的逻辑运算与浮点运算节约了计算时间,同时新算法不仅可以跟踪模拟分子在网格之间的迁移,而且可以准确判别分子与物面是否相互作用,搜索过程中的附带信息给出了分子与物面碰撞的确切时间与精确位置。为了加快流场的时间发展历程,提出了适合非结构网格DSMC方法的动态局部时间步长技术,该项技术的应用能够较大幅度地缩短流场模拟的计算时间。在非结构网格DSMC中,引入了碰撞距离的思想,可以有效避免因网格尺度过大导致出现严重的计算误差。同时,本文对传统DSMC方法中的数据结构进行了优化,设计了局部化的数据组织方式,节约了内存,变间接访问数据为直接访问,节约了计算时间。在程序编制过程中,充分展现了Fortran90高级语言的主要特性,引人动态数组、指针、链表以及派生类型数据。最后对过渡领域高超声速绕流进行了数值模拟并对计算效率进行了比较。
     接下来,研究了化学反应气体流动的非结构网格DSMC及其应用。论述了碰撞过程中的化学反应理论,给出了不同分子碰撞模型下的化学反应抽样几率函数(位阻因子)构造的过程。同时编制了化学反应气体流动非结构网格DSMC的计算程序,给出了具体的数值算例。
     最后,基于PC-CLUSTER群机并行体系结构与消息传递库MPI环境开展了非结构网格DSMC并行计算技术的研究。提出了一类基于结构背景网格上的动态非结构网格分区策略,保证各子区域的分子数大致相等,实现计算进程间的动态负载平衡。利用MPI库函数构造了两类符合DSMC并行原理的通信方法:单步通讯法与多步通讯法。采用单控制多数据流(SPMD)以及Master/Slave并行模式,设计了非结构网格DSMC整体并行算法。最后对高超声速绕流进行并行计算,取得了较为理想的加速比与计算效率。
Hypersonic vehicles encounter a broad range of flight conditions varying from continuum to rarefied flows. In rarefied regime, the molecular effects are important and the assumptions of continuum methods become invalid. Due to the facts that the available ground tunnel experimental techniques and test facilities are limited and attempts to solve the Boltzmann equation have met with many difficulties, the Direct Simulation Monte Carlo (DSMC), originally developed by Bird in 1960’s, has become a widely used computational tool for the rarefied gas flows. The purpose of the present thesis is to study detailed DSMC method on unstructured grids for hypersonic rarefied gas flows and to develop highly efficient automated DSMC software that is suitable for any complex geometry.
     First of all, necessary basic molecular kinetic theory of gases is studied for DSMC. Binary elastic collision is analyzed in detail and the expression of post collision velocities is deduced. Intermolecular potential and different collision model is discussed. Based on some existing results, a new molecular collision model for DSMC, called GSS-3 model, is introduced to provide consistency for the transport properties with Lennard-Jones potentials that is a realistic intermolecular potential.
     Secondly, the implementation of DSMC method on unstructured grids is investigated to calculate hypersonic rarefied flow. The idea of sub-cell in Bird’s Position Element Method is introduced into the DSMC method on unstructured grids, by which only ID number of sub-cell is stored. An automatic searching method is presented to improve efficiency and save running time, which is a coupling of area/volume coordinate searching technique and alternative digital tree (ADT) searching algorithm. As a consequence, not only is the computation time reduced, but also the precision is improved largely. The deterministic criterion for a molecule to reflect on a certain surface element is used by ADT algorithm instead of a probabilistic one. Extensive numerical experiments are made to directly simulate hypersonic rarefied gas flows.
     Then, based on the work of implementation of DSMC method on unstructured grids, this thesis is to study strategies for optimization and improvement of key technique in DSMC method on unstructured grids. A new automatic searching algorithm is presented by calculating intersection point, by which all information about molecules hitting surface boundary can be given and the deterministic criterion is used for a molecule to reflect on a certain surface element instead of a probabilistic one as used in position element method. In order to improve efficiency and save running time, an adaptive local time stepping suitable for DSMC method on unstructured grids is designed. Collision distance is introduced to DSMC method on unstructured grids which can avoid bad errors due to large scale dimension of some unstructured grids. A new data structure based on unstructured grids is introduced to achieve high performance and efficiency. Accessing molecular data is direct other than traditional data structure that is indirect by cross-reference array. Dynamic allocation feature of Fortran90 is fully exploited, which makes the code more flexible. By comparisons of efficiencies of numerical experiments, the feasibility of the method is confirmed.
     Afterwards, DSMC method on unstructured grids is studied to calculate rarefied gas flows with chemical reactions. The collision theory for chemical reactions is discussed and the probability function of reaction (or steric factor) of different collision models is deduced for direct simulation of chemical gas flow. A subroutine is incorporated into existing DSMC code on unstructured grids in order to simulate chemical reaction rarefied gas flow.
     At last, this thesis is to investigate parallel algorithm of DSMC method on unstructur- ed grids using the MPI standard library on PC-CLUSTER that is distributed memory architecture. In order to obtain high parallel performance, a new adaptive domain decomposition technique is presented. Because this method results in equal number of molecules among processors, dynamic load balance is maintained. Two different communication methods are constructed by means of MPI library: single step communication and multiple step communication method. A complete parallel implementation of DSMC method on unstructured grids included 2D and 3D is developed using SPMD and master/slave parallel mode. This new tool is applied to numerical experiments, which are used to evaluate the performance of parallel DSMC code on unstructured grids.
引文
[1] Bird G A. Molecular Gas Dynamics [M]. Oxford: Clarendon Press, 1976.
    [2] Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flow [M]. Oxford: Clarendon Press, 1994.
    [3] 沈青. 稀薄气体动力学[M]. 北京:国防工业出版设,2003.
    [4] 吴其芳, 陈伟芳. 高温稀薄气体热化学非平衡流动的 DSMC 方法[M]. 长沙:国防科技大学出版社,1999.
    [5] Alder B J, Wainwright T E. Studies in molecular dynamics [J]. Journal of Chemical Physics, 27: 1208~1209, 1957.
    [6] Bird G A. Approach to translational equilibrium in a rigid sphere gas [J]. Physics of Fluids, 1963, 6: 1518~1519.
    [7] Celenligil M C, Moss J N. Three dimensional flow simulation about the AFE vehicle in the transitional regime [R]. AIAA-89-0245, 1989.
    [8] Celenligil M C, Moss J N. Direct simulation of hypersonic rarefied flow about a delta wing [R]. AIAA-90-0143, 1990.
    [9] Celenligil M C, Moss J N. Hypersonic rarefied flow about a delta wing direct simulation and comparison with Experiment [J]. AIAA Journal, 1992, vol. 30 (8): 2017~2023.
    [10] Bird G A. Influence of local configuration on the backflow from small rocket thrusters [R]. AIAA-90-0147, 1990.
    [11] Bird G A. Application of the DSMC method to the full shuttle geometry [R]. AIAA-90-1692, 1990.
    [12] Dogra V K, Wilmoth R G and Moss J N. Aerothermodynamics of a 1.6-m-diameter sphere in hypersonic rarefied flow [R]. AIAA-91-0773, 1991.
    [13] Fan J, Boyd I D and Cai C P. Computation of rarefied gas flows around a NACA0012 airfoil [J]. AIAA Journal, 2001, vol. 39 (4): 618~625.
    [14] Wilmoth R G, LeBeau G J and Carlson A B. DSMC grid methodologies for computing low density, hypersonic flows about reusable launch vehicles [R]. AIAA-96-1812, 1996.
    [15] Laux M, Fasoulas S, Messerschmid E W. Development of a DSMC code on planar unstructured grids with automatic grid Adaptation [R]. AIAA-95-2053, 1995.
    [16] Laux M, Fasoulas S, Messerschmid E W. DSMC simulation of flow fields with adaptive boundary conditions [R]. AIAA-96-1846, 1996.
    [17] Laux M. Optimisation and parallelization of the DSMC method on unstructured grids [R].AIAA-97-2512, 1997.
    [18] Dietrich S, Boyd I D. A scalar optimized parallel implementation of the DSMC method [R]. AIAA-94-0355, 1994.
    [19] Dietrich S, Boyd I D. Scalar and parallel optimized implementation of the direct simulation Monte Carlo method [J]. Journal of Computational Physics, 1996, 126: 328~342.
    [20] LeBeau G J. A parallel implementation of the direct simulation Monte Carlo method [J]. Computer methods in applied mechanics and engineering, 1999, 174: 319~337.
    [21] Bhatnagar P L, Gross E P and Krook M A. A model for collision processes in gases [J]. Phys. Rev., 1954, 94: 811~525.
    [22] Mott-Smith H M. The solution of the Boltzmann equation for a shock wave [J]. Phys. Rev., 1951, 82: 855~892.
    [23] Gross E P, Ziering S. Kinetic theory of linear shear flow. Physics of Fluids [J]. 1958, 1: 213~224.
    [24] Li ZH H. Zhang H X. Numerical investigation on from rarefied flow to continuum by solving the Boltzmann model equation [J]. Int. J. Num. Meth. Fluids, 2003, vol. 42, 361~382.
    [25] Brodwell J E. Study of rarefied flow by the discrete velocity method [J]. J. of Fluids Mech., 1964, 19: 401~414.
    [26] Haviland J K, Lavin M L. Applications of the Monte Carlo method to heat transfer in a rarefied gas [J]. Phys. Fluids, 1962, 5: 1399~1405.
    [27] Koura K, Matsumoto H. Variable soft sphere model for inverse power law or Lennard-Jones potential [J]. Phys. Fluids A, 1991, 3: 2459~2465.
    [28] Koura K, Matsumoto H. Variable soft sphere model for air species [J]. Phys. Fluids A, 1992, 4: 1083~1085.
    [29] Hassan H A, Hash D B. A generalized hard sphere model for Monte Carlo simulations [J]. Phys. Fluids A, 1993, 5: 738~744.
    [30] Hirschfelder J O, Curtiss C F. Molecular Theory of Gases and Liquids [M]. New York: Wiley, 1954.
    [31] Fan J. A generalized soft sphere model for Monte Carlo simulations [J]. Phys. Fluids, 2002, 14: 4399~4405.
    [32] Koura K. Null collision technique in the DSMC method [J]. Phys. Fluids, 1986, 29: 3509~ 3511.
    [33] Bergnakke C, Larsen P S. Statistical collision model for Monte Carlo simulation of poly-atomic gas mixture [J]. Journal of Computational Physics, 1975, 18(4): 405~420.
    [34] 沈青,吴万青,胡振华等. 均匀气体中内自由度激发松弛与理解反应的直接模拟统计[J]. 空气动力学学报, 1991, 9(1): 1~7.
    [35] Wadsworth D C, Wysong I J and Cambell D H. Direct simulation Monte Carlo modeling for non-equilibrium flow field applications [R]. PL-TR-97-3024, 1997.
    [36] Talbot-Stern J L, Auld D J. Direct simulation (Monte Carlo) of two dimensional vortex street [R]. AIAA-98-2671, 1998.
    [37] Moss J N. DSMC computations for regions of shock/shock and shock/boundary layer interactions [R]. AIAA-2001-1027, 2001.
    [38] Thuong X N, Choong K Oh. Robert S. High-speed, High Knudsen Number flows in a Channel containing a wedge [R]. AIAA-97-0376, 1997.
    [39] Tsuboi N, Yamaguchi H and Matsumoto Y. Three Dimensional DSMC simulations of Hyp- ersonic rarefied gas flow around a sharp flat plate [R]. AIAA-2001-1851, 2001.
    [40] Celenligil M C, Bird G A and Moss J N. Direct simulation of 3-D hypersonic flow about intersecting blunt wedges [R]. AIAA-88-0463, 1988.
    [41] Dogra V K, Moss J N. Hypersonic rarefied flow about plates at incidence [R]. AIAA-89-1712, 1989.
    [42] Giordano D, Ivanov M and Kashkovsky A, et al. Application of DSMC to the study of satellite thrusters plumes [R]. AIAA-97-2538, 1997.
    [43] Brian R H, John N P. Comparisons of experimental and computational aerothermodynamics of a 70 deg sphere cone [R]. AIAA-96-1867, 1996.
    [44] Moss J N, Wilmoth R G and Price J M. DSMC simulations of blunt body flows for mars entries: Mars Pathfinder and Mars microprobe capsules [R]. AIAA-97-2508, 1997.
    [45] 沈青, 樊菁, 胡振华等. 过渡领域三维绕流直接统计模拟位置元法的一种新方案[J]. 空气动力学学报. 1996, 14(3): 295~303.
    [46] 樊菁, 刘宏立, 沈青等. 直接统计模拟位置元方法中的分子表面反射确定论判据[J]. 空气动力学学报. 2000, 18(2): 180~187.
    [47] 樊菁, 刘宏立, 沈青等. DSMC 位置元方法中的表面元的程序标识及分子表面反射确定论判据[J]. 力学学报, 1999, 31(6): 671~676.
    [48] Yerry M A. Automatic three-dimensional mesh generator by the modified octree technique [J]. Int. J. Num. Meth. Eng. 1984, 20: 1965-1990.
    [49] Buratynski E K. A fully automatic tree-dimensional mesh genertor for complex geometries [J]. Int. J. Num. Meth. Eng. 1990, 30: 931-952.
    [50] Bowyer A. Computing dirichlet tessellations [J]. Computer. Journal, 1981, 24(12): 162~167.
    [51] Watson D F. Computing the n-dimensional Delaunay tessellation with application to voronoi polytopes [J]. Computer Journal, 1981, 24(2): 167~172.
    [52] Kennon S R. A vectorized Delaunay triangulation scheme for non-convex domains with automatic nodal point generation [R]. AIAA -88-0314,1988
    [53] 黄明恪. 用非结构网格和欧拉方程计算多段翼形绕流[J]. 空气动力学报, 1997, 15(3): 320~327.
    [54] Lohner R, Parikh P. Generation of three dimensional unstructured grids by advancing front method [J]. Int. J. Num. Meth. Fluids, 1988, 8: 1135~1149.
    [55] Pirzadeh S. Structured background grids for generation of unstructured grids by advancing front method [R]. AIAA-91-3222, 1991.
    [56] Lohner R, Parikh P. Generation of three-dimensional unstructured grids by advancing front method [C]. AIAA-88-0515, 1988.
    [57] Pirzadeh S. Three dimensional unstructured viscous grids by advancing Layer method [J]. AIAA Journal, 1996, 34(1), 43~49.
    [58] Marcum D L, Weathrill N. P. Unstructured grid generation using iterative point insertion and local reconnection [J]. AIAA Journal, 1995, 33, 1619~1625.
    [59] Marcum D L. Generation of unstructured grids for viscous flow application [C]. AIAA-95-0212, 1995.
    [60] 王学德. 非结构网格生成技术研究及非结构网格上的数值模拟[D]. 南京航空航天大学硕士论文, 2003, 3 月.
    [61] Bonet J, Peraire J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems [J]. Int. J. Num. Meth. Eng. 1991 31: 1~7.
    [62] Hurlbut F C, Sherman F S. Application of the Nocilla wall reflection model to free molecule kinetic theory [J]. Physics of Fluids, 1968, 11(3): 486~496.
    [63] Cercignani C. Rarefied Gas Dynamics [M]. Cambridge University Press, 2000.
    [64] Lord R G, Some extensions to the Cercignani-Lampis-Gas scattering kernel [J]. Physics of Fluids A, 1991, 3(4): 706-710.
    [65] 陈伟芳, 吴明巧, 赵玉新等. 超声速平板绕流DSMC/EPSM混合算法研究[J]. 空气动力学学报, 2002, 20(4): 441~445.
    [66] Dogra V K, Wilmoth R G and Moss J N. Aerothermodynamics of a 1.6-m-diameter sphere in hypersonic rarefied flow [R]. AIAA-91-0773, 1991.
    [67] 梁杰,李中华,戚杰. 航天飞机头部绕流的蒙特卡罗数值模拟[A]. 第十届全国高超声速气动力(热)学术交流会论文集[C], 1999, 246-249.
    [68] Moss J N, Price J M, Dogra V K and Hash D B. Comparison of DSMC and experimental results for hypersonic external flows [R]. AIAA-95-2028, 1995.
    [69] Moss J N, Olejniczak J. Shock-wave/Boundary-Layer interactions in hypersonic low density flows [R]. AIAA-98-2668, 1998.
    [70] Markelov G N, Kudryavtsev A N. Continuum and kinetic simulation of laminar separated flow at hypersonic speeds [J]. Journal of Spacecraft and Rockets, 2000. 37(4): 499~506.
    [71] Kim M G, Kim S H and Kwon O J. A parallel cell-based DSMC method with dynamic load balancing using unstructured adaptive meshes [R]. AIAA-2003-1033, 2003.
    [72] Chanetz B. Study of axi-symmetric shock wave boundary layer interaction in hypersonic laminar flow [R]. ONERA Technical Report RT 42/4362 AN, Feb. 1995.
    [73] 樊菁, 沈青. 过渡领域高超声速圆柱绕流直接模拟.空气动力学学报[J]. 1995, 13(4): 405~ 413.
    [74] Braun R D, Powell R W, Engelnud W C, Gnoffo P A, Weilmuenster K J. Mars Pathfinder six degree of freedom entry analysis [J]. Journal of Spacecraft and Rockets, 1995, 32(6): 993~1000.
    [75] Moss J N, Dogra V K and Wilmoth R G. DSMC simulation of Mach 20 Nitrogen flows about a 70 blunted cone and its wake [R]. NASA-TM-107762, 1993.
    [76] Wilmoth R G, Mitcheltree R A, Moss J N and Dogra V K. Zonally decoupled direct simulation Monte Carlo simulations of hypersonic blunt body wake flows [J]. Journal of Spacecraft and Rockets, 1994, 31(6): 971~979.
    [77] Moss J N, LeBeau R G, Blanchard R C and Price J M. Rarefied effects on Galileo probe aerodynamics [C]. 20th Int. Symp. Rarefied Gas Dynamics, Beijing, China, 1996.
    [78] Moss J N. DSMC simulation of separated flows about flared body at hypersonic conditions [C]. European Congress on Computational Methods in Applied Science and Engineering, 2000.
    [79] Agborm A. Efficient sampling schemes for DSMC computations [R]. AIAA-2002-2762, 2002.
    [80] 梁杰, 李中华, 董武高. 双锥外形在近连续流的蒙特卡罗数值模拟[C]. 第十届全国计算流体力学会议论文集,43~46.
    [81] 沈青. DSMC 方法与稀薄气流计算的发展[J]. 力学学报, 1996, 26(1): 1~13.
    [82] 沈青. 航天飞行中的稀薄气体动力学[J]. 流体力学实验与测量, 1997, 11(4): 1~7.
    [83] 蔡国飙, 王慧玉, 祖国军, 等. 低密度小喷管流场的 DSMC 直接模拟[J]. 推进技术, 1996, 17(5): 9~13.
    [84] 蔡国飙, 王慧玉, 祖国军, 等. Rayleigh 问题的 Monte Carlo 直接模拟[J]. 北京航空航天大学学报, 1996, 22(5): 629~633.
    [85] 吴雄, 陈伟芳, 石于中. 过渡区球头气动力特性 DSMC 仿真研究[J]. 航天返回与遥感, 2002, 23(3): 1~5.
    [86] 吴明巧, 陈伟芳, 任兵. 气体化学反应流动的DSMC/EPSM混合算法研究[J]. 计算力学学报,2003, 20(5): 564~567.
    [87] 陈伟芳, 杨晓昆, 吴明巧, 等. 高超声速平头圆柱绕流化学反应流场的 DSMC/EPSM 混合算法研究[J]. 空气动力学学报, 2003, 21(4): 476~481.
    [88] 吴明巧, 陈伟芳, 任兵. 超声速平头圆柱绕流DSMC/EPSM混合算法研究[J]. 空气动力学学报, 2002, 20(2): 206~210.
    [89] 陈伟芳, 任兵, 吴其芬. 气体化学反应速率的 DSMC 方法[J]. 国防科技大学学报, 1996, 18(4): 21~26.
    [90] Chen W F, Zhu Z W, Zhang Z C, et al. DSMC study of Rayleigh-Benard instabilities [J]. Chinese Quarterly of Mechanics, 2002, 23(4): 494~498.
    [91] 张小斌, 谈和平, 刘林华, 等. 稀薄流热化学非平衡DSMC方法模拟中两种位阻因子算法的比较[J]. 工程热物理学报, 2002, 23(2): 221~223.
    [92] 石于中, 陈伟芳, 任兵, 等. 稀薄流热化学非平衡效应的 DSMC 研究[J]. 空气动力学学报, 1997, 15(2): 238~ 244.
    [93] Gupta R N, Yos J M, Thompson R A. A review of reaction rates and thermodynamic and transport properties for the 11 species air model for chemical and thermal non equilibrium calculation to 30000K [R]. NASA-TM-101528, 1989.
    [94] Vincenti W G, Kruger C H Jr. Introduction to Physical Gas Dynamics [M]. John Wiley, 1965. 中译本: 维赛特 W G, 小克鲁格 C H. 物理气体动力学引论[M]. 科学出版社, 1978.
    [95] Chapman S, Cowling T G. The Mathematical Theory of Non-uniform Gases [M]. Cambridge University Press, 1970. 中译本: 查普曼 S, 考林 T G. 非均匀气体德数学理论[M]. 科学出版社, 1985.
    [96] Carlson A B, Bird G A. Implementation of a vibrationally linked chemical reaction model for DSMC [R]. NASA-TM-109109.
    [97] Wu J S, Tseng K C and Kuo C H. The direct simulation of Monte Carlo using unstructured adaptive mesh and its application [J]. Int. J. Numer. Mech. Fluids, 2002, 38: 351-375.
    [98] 陈国良. 并行计算[M]. 高等教育出版社, 1999.
    [99] 王嘉谟, 沈毅. 并行计算方法[M]. 国防工业出版社, 1987.
    [100] 张德福. 并行处理技术[M]. 南京大学出版社, 1992.
    [101] 刘建. 并行分布式程序设计[M]. 华中理工大学出版社, 1997.
    [102] 康继昌, 朱怡安. 现代并行计算机原理[M]. 西北工业大学出版社, 1997.
    [103] 于战华. 跨声速欧拉方程并行算法研究及应用[D]. 南京航空航天大学硕士论文, 2004, 3.
    [104] 余奇华. 三维高超声速绕流流场并行算法研究[D]. 南京航空航天大学硕士论文, 2006, 3.
    [105] William Group, Ewing Lusk and Anthony Skjellum. Using MPI: Portable Parallel Programmingwith the Message-Passing Interface [M]. The MIT Press, Cambridge, Massachusetts, London, England, 1994.
    [106] 黄琳, 陈伟芳, 吴其芬. 稀薄气体圆柱绕流的并行化 DSMC 方法研究[J]. 空气动力学学报, 2000, 18(4): 456~459.
    [107] Furlani T R, Lordi J A. A comparison of parallel algorithm for the direct simulation Monte Carlo method II: application to exhaust plume flowfields [R]. AIAA-89-1667, 1989.
    [108] Robinson C D, Harvey J K. A fully concurrent DSMC implementation with adaptive domain decomposition [C]. Proceedings of the Parallel CFD Meeting, 1997.
    [109] Robinson C D, Harvey J K. A parallel DSMC on unstructured meshes with adaptive domain decomposition [C]. Proceedings of RGD 20th.
    [110] Bogdanov A V, Bykov N Y, Grishin I A, et al. Algorithms of Two-Level Parallelization for DSMC of Unsteady Flows in Molecular Gas dynamics [C]. the conference HPCN Europe, 1999.
    [111] Nance R P, Wilmoth R G, Moon B, et al. Parallel DSMC solution of three dimensional flows over a finite flat plate [R]. AIAA-1994-0219.
    [112] Matsumoto Y, Tokumasu T. Parallel computing of diatomic molecular rarefied gas flows [J]. Parallel Computing, 1997, 23: 1249~1260.
    [113] Wu J S, Tseng K C. Parallel particle simulation of the near continuum hypersonic flows over compression ramps [R]. AIAA-2001-2894, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700