用户名: 密码: 验证码:
数字控制铝合金双脉冲MIG焊工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘 要
    铝合金重量轻、比强度高、抗腐蚀性好,又便于回收再利用,近年来在汽车、
    高速列车、船舶等行业的应用越来越广泛,因此研究高效优质的铝合金焊接技术
    有重要意义。双脉冲焊,即低频调制脉冲焊是针对铝合金焊接的一种新工艺方法,
    已成功应用在奥迪 A8 的铝构架和汽车发动机进气管的焊接中,目前该法在国内
    还没有得到广泛应用和深入研究,本文结合 MCU+DSP 双机系统,在单脉冲焊稳定
    焊接的基础上提出铝合金双脉冲焊全数字控制系统设计,同时对双脉冲焊铝工艺
    进行了研究,获得了美观的焊缝成形和优良的焊接质量。
    传统的逆变焊机及大多数单片机实现的脉冲焊机,由于其基值、峰值闭环控
    制共用一片脉宽调制芯片,很难兼顾这两个阶段控制系统的静、动态性能指标。
    随着数字控制技术的发展,尤其是数字信号处理器(DSP)的广泛应用,为数字化
    控制提供了物质基础。本文针对脉冲焊控制需要,采用变参数数字 PI 调节,即
    根据工艺需要设计不同的基值电流、峰值电流控制器参数。对脉冲电流波形控制,
    实现了对脉冲上升沿和下降沿的分别、独立调节,同时很好保证了基值电流和峰
    值电流控制期间的稳态精度。
    弧长控制是焊接过程稳定的核心问题,本文提出一种新的电弧控制思路,即
    弧长同步脉冲控制法,采用一定的弧长控制算法使在弧长发生变化的当前脉冲周
    期就得到有效的控制,实现了全电流范围内对弧长的快速稳定调节,取得了良好
    的工艺效果。对薄板铝焊而言,脉冲电流波形的精确控制,弧长的及时调整、有
    效控制对防止自动焊回烧、短路等现象的发生,获得稳定的焊接过程很重要。
    实验证明,本文设计的双脉冲全数字控制系统,不仅获得了一致性好的脉冲
    电流波形,稳定的焊接过程,无回烧、顶丝现象发生(目前铝自动焊中常发生的
    现象),而且,良好的弧长控制作用防止了飞溅的发生,同时双脉冲焊铝时产生
    的熔池搅拌作用有效的减小了气孔发生的几率,细化了晶粒,获得了美观的鱼鳞
    纹焊缝。另外,本文设计的引弧程序实现了可靠的引弧过程。
Abstract
     Aluminum alloy is of light, high strength, anti-erode and can be recycled. It is
    important to study aluminum alloy welding technique for its wide application in car,
    high-speed train and ship. Double-pulsed gas metal arc (DPMIG) welding is a new
    process for Aluminum alloy welding, it has been applied aboard because beautiful bead
    appearance can be got, pore and crack can be avoided to great extent using this method
    in aluminum alloy welding. Only several foreign companies master the technique now,
    no correlative product and study in china. On the base of MCU+DSP technique, Full
    digital control system design of DPMIG is presented on the basis of PMIG design in
    this study, and DPMIG process is studied too.
     One anolog chip is used for pulse current control in most conventional method,
    which is hard to take account of control system dynamic and static performance in
    peak period, base period and arc-igniting period, so it is hard to get ideal pulse current
    waveform control result. The development of digital control technique and DSP’s
    appearance provide base of matter for studying digital welding power. Compared with
    conventional pulse current control method, the full digital control system design is
    presented for PMIG/PMAG welding inverter in this study. A PI regulator with variable
    parameters is adopted for flexibly and accurately controlled pulse current-waveform.
    The experimental results validated pulse current’s rising and falling edge can be
    adjusted respectively and flexibly, the stable state precision of peak and base current is
    improved.
     Arc-length control is the core of welding process stability. A new arc-length
    synchronization pulse control method is presented and the higher arc-length adjustment
    performance is achieved within a wide range. For sheet metal aluminum welding,
    timely adjustment and effective control of arc-length is very important in order to avoid
    melt back events in the GMAW mass production in an automated production line.
     The experimental results validated that the desirable control performance is
    achieved with the repeatable pulse current waveform, high-speed and stable arc-voltage
    adjustment. Even if arc length varies with higher frequency and large amplitude in
     -III-
    
    
    北京工业大学工学硕士学位论文
    DPMIG, the welding process is very stable. Spatter can be avoided with new arc length
    control design and suitable process parameters. In addition, arc ignition program is
    designed and the stable arc ignition process is achieved.
引文
参考文献
    1 Stefan Trube( 德 国 克 鲁 斯 公 司 ),Welding Robot Stations for Improving
     Productivity(提高生产效率的焊接机器人).Proceedings of High-productivity
     Welding Forum(高效化焊接国际论坛论文集).November 6-7,2002:135~144
    2 殷树言. 焊接电弧物理基础讲义. 哈工大焊接教研室.1982.7
    3 殷树言, 刚铁等.协同式脉冲 MIG 焊微机控制系统. 焊接学报.1991.3:47~52
    4 刚铁, 殷树言. 弧压式脉冲 MIG 焊电源微机控制系统的研究. 哈尔滨工业大学
     学报.Vol.26,No.4Aug.1994:106~109
    5 卜华全. MM-350焊机电路分析及微机控制Synergic电源的研制, 哈工大硕士论
     文,1989.
    6 王克鸿. MC-PMIG 焊机的研制及其性能的改善. 哈尔滨工业大学, 硕士学位
     论文, 1991.
    7 王克鸿, 徐越兰等. 微机 PMIG 焊机动态调节过程试验研究. 南京理工大学学
     报.Vol.21,No.3 Jun.1997: 213~216.
    8 包晔峰等. 铝合金脉冲 MIG 焊机研制.焊接学报.第 21 卷第 1 期 2000.3:90~94.
    9 上山智之等. 微机数控电流波形脉冲 MIG 焊机的控制方法及焊接性能. 焊
     接.2000(5):33~38
    10 胡特生. 电弧焊. 机械工业出版社,1996.10:195~196.
    11 潘际銮. 现代弧焊控制, 机械工业出版社, 2000.
    12 刘会杰. 脉冲 MIG 焊熔滴过渡最佳方式的控制.金属科学与工艺,1992(4).
    13 贺剑锋, 黄石生.脉冲MIG焊缝质量控制的研究和展望. 焊接技术. 1994年第5
     期:38~41
    14 蒙永民等 . GMAW-P 焊熔滴过渡及其控制的研究现状与发展 . 电焊
     机.Vol.30,2000(1):1~5
    15 杨立军, 李桓等. 熔化极气体保护焊熔滴过渡过程控制的精确化趋势. 焊管.
     第 22 卷第 6 期 1999 年 11 月:8~13
    16 刘会杰等. 脉冲 MIG 焊微机控制系统的研究. 电焊机,1993(4):24~27
    17 丁京柱. 全数字化 CO2气体保护焊机研究. 北京工业大学博士论文,2002.
    18 杨军,江燕. 微机控制多功能逆变式弧焊机的研究.电焊机.Vol.30,2000(1):9~14
     -59-
    
    
    北京工业大学工学硕士学位论文
    19 丁京柱, 王伟明等. 数字弧焊电源 PWM 芯片的 VHDL 语言设计. 焊接学
     报.2002,23(6):155~162
    20 韩赞东,都东. 微机控制 IGBT 逆变式脉冲 MIG 焊电源的研究. 电焊
     机.Vol.28,1998(6):11~13
    21 黄鹏飞等. IGBT 逆变熔化极脉冲氩弧焊机研制.焊接技术.第 30 卷,增刊
     2001.12:36~37
    22 刘嘉. 弧焊逆变电源控制系统的研究. 北京工业大学博士论文,2002.
    23 刘嘉,卢振洋等. 电焊机的数字化. 焊接学报.2002.1:88~92
    24 仝红军,上山智之. 低频调制型脉冲 MIG 焊接方法的工艺特点. 焊接
     2001(11):33~36
    25 包 晔 峰 , 吴 毅 雄 等 . 铝 合 金 MIG 焊 机 的 辅 助 控 制 系 统 . 电 焊
     机.Vol.32.No.1.Jan.2002:28~31
    26 丁伟等. 铝合金脉冲 MIG 焊电弧稳定性. 焊接学报.Vol.17 No 2.June
     1996:116~120
    27 包晔峰等. 铝合金脉冲 MIG 焊自调节动特性研究. 铁道车辆. 第 36 卷第 4 期
     1998.4:17~19
    28 赵举东等. 铝及其合金脉冲 MIG 焊接短路模糊控制系统的研究. 焊接技
     术.No2 1997:7~9
    29 易翔, 方平. 焊铝新设备-全数字化 MIG 焊机. 焊接 2002(3):34~37
    30 J.M.Fortain. Current developments of the arc welding processes with shielding
     gases of aluminum and aluminum alloys. Metal Welding and
     Applications.2001,331~347
    31 BOB.INRVING. The auto industry gears up for aluminum-How well will
     established and new welding processes hold up at the challenge of the
     mass-produced aluminum automobile? Welding Journal, NOVEMBER 2000:63~68
    32 Automotive Engineering International Online: Tech Briefs, Nov,1999,p.9.
    33 Larsson,L., Palmquist,N., and Larsson,J.K.2000. High-quality aluminum welding-a
     key factor in futor car body production. Svetsaren 54(2):17-24
    34 Ian D.Harris, B.Sc., M.Sc. New developments in arc welding aluminum for
     automotive applications. TMS Annual Meeting February 2001.
     -60--
    
    
    参考文献
    35 T.P.QUINN. Process Sensitivity of GMAW: Aluminum vs. Steel- Aluminum proves
     more sensitive to changes in current and wire-feed speed in comparison to steel.
     Welding Journal, April 2002:55-s to 60-s.
    36 Hinrichs,J.F.,Noruk,J.S.,McDonald,W.M.,and Heideman,R.J.1995. Challenges of
     welding aluminum alloys for automotive structures. Svetsaren 50 (3): 7–9.
    37 Kim,Y.S., and Eagar,T. Metal transfer in pulsed current gas metal arc welding[J].
     Welding Journal, 1993(7):279 to 2877
    38 Subramaniam,S.et al. Droplet transfer in pulsed gas metal arc welding of
     aluminum[J]. Welding Journal,1998(11):458 to 464.
    39 Jacobsen, No. Monopulse investigation of drop detachment in pulsed gas metal arc
     welding. Journal of physics 25, 1992:783 to 7976
    40 Subramaniam.S.1996. Process modeling and analysis for pulsed gas metal arc
     welding of an aluminum automotive space-frame. Ph.D.dissertation. West Virginia
     University, Morgantown, W.Va.
    41 Subramaniam.S. et al. Experiment approach to selection of pulsing parameters in
     pulsed GMAW. Welding Journal. May 1999:166-s to 172-s.
    42 Frank Armao. Frequently asked questions in aluminum welding, Welding Design
     and Fabrication. May 2000:25~27
    43 Subramaniam,S., White D.R.,Jones, J.E., and Lyons,D.W.1998. Analysis of arc
     voltage,current, and light signals in pulsed gas metal arc welding of aluminum.
     Science and Technology of Welding and Joining 3(6):304~311
    44 李焰. 脉冲 MIG 焊弧焊电源控制系统的研究.清华大学博士论文,1988
    45 HeinrichHacki. Digitally controlled GMA Power sources. http://www.fronius.com
    46 张勇等. 数字信号处理器 DSP 主控 GMAW 焊接. 电焊机,2003,33(2):14~18
    47 华学明等. 数字信号处理器在焊接电源中的应用前景. 焊接技术,2003:2~4
    48 李鹤岐等. 脉冲 MIG 焊机数字化控制设计. 电焊机,2002,22(6):1~4
    49 吴开源等.基于 DSP 的弧焊逆变电源数字化控制系统.电子设计及应用,71~73
    50 P.Drews. Schulle,United States patent,4,427,875 Jan.24,1980
    51 吴敏渊等. ADSP 系列数字信号处理器原理. 电子工业出版社,2002
    52 国旭明等. 高强 Al-Cu 合金脉冲 MIG 焊工艺研究.熔接新技术及应用研讨会.
     -61-
    
    
    北京工业大学工学硕士学位论文
     2003:254~258
    53 华学明等. 以数字信号为基控制的可控硅焊机的数字触发. 焊接学报,2002,
     23(2):72~74,93
    54 Richardson,I.M. et al. The influence of power source dynamics on wire melting
     rate in pulsed GMA welding. Welding Journal.February 1994:32-s to 37-s.
    55 Quinn,T.P.and Madigan,R.B.,“Dynamic model of electrode extension for gas metal
     arc welding ” International trends in welding science and technology,ASM
     International,pp1003~1008.1993.
    56 K.L.Moore. Modeling,calibration,and control-theoretic analysis of GMAW process.
     Proeedings of 1998 American Control Conferrence:1747-1751
    57 Poolsak Koseeyaporn, George E. Cool. Adaptive Voltage Control in Fusion Arc
     Welding. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL.36,
     NO.5, SEPTEMBER/OCTOBER 2000.PP:1300-1307
    58 程军. 亿恒(西门子)C166 系列 16 位单片机原理与开发. 北航出版社,2001:
     137~142
    59 苏涛等.高性能数字信号处理器与高速实时信号处理.西安电子工业大学出
     版社,1999
    60 孙栋, 赵举东等. 智能控制 MIG 焊熔滴过渡. 电焊机,1996(2):11~14
    61 都东等. 弧焊逆变器输出电流本脉冲反馈控制. 焊接学报. Vol.18. No.3.
     September 1997:166~170
    62 Pasi Hiltunen,于克勤. KemppiPro增强型双脉冲与铝焊接. 熔接新技术及应用研
     讨会论文集.2003.11:159~162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700