用户名: 密码: 验证码:
黔西地区构造演化及其对煤层气成藏的控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黔西地区位于特提斯构造域和滨太平洋构造域的结合部,构造演化过程复杂,是影响煤层气生成、运移和聚集的最为重要的控制因素。为此,本文以区域构造演化为主线,在野外地质、煤田勘探资料和遥感资料分析的基础上,结合显微构造、包裹体测试以及构造岩组构分析深入研究了黔西地区构造发育及其演化特征,探讨了燕山中晚期构造变形的应力-应变环境及动力学机制。在此基础上,结合煤样品的镜质组反射率、压汞、等温吸附、扫描电镜等实验测试,应用盆地模拟技术深刻揭示了黔西地区构造控制下的煤层气成藏特征。主要研究成果如下:
     第一,在构造层系统划分的基础上,将黔西地区构造演化划分为六个阶段:基底形成阶段(Pt_2-Pt_3)、被动大陆边缘阶段(Z-S)、陆内裂陷阶段(D-P)、稳定台地阶段(T_1-T_2)、陆相坳陷阶段(T_3-J_2)和断褶隆升阶段(J_3-Q)。加里东期以来的区域拉张和裂陷环境对黔西地区晚二叠世聚煤盆地形成具有关键的控制作用,东吴运动产生的峨眉山玄武岩造就西北高、东南低的古地形以及NE、NNE向同沉积断裂控制NE向展布的海陆交互相含煤岩系的形成,成煤期后多期构造演化,尤其是燕山中晚期的构造运动对聚煤盆地产生了的强烈改造作用,使煤层主要赋存于大型向斜和复向斜之中。
     第二,黔西地区构造变形主要形成于燕山中晚期,总体上具有靠近基底断裂变形强烈,远离基底断裂变形渐弱的特点。燕山中期是奠定黔西地区构造格局的关键时期,中国南方由特提斯构造域向滨太平洋构造域转换,新特提斯洋自西向东闭合以及东部古太平洋板块斜向俯冲于华南板块之下,研究区经历了NE-SW向挤压—近NS向挤压—NW-SE向挤压的构造应力演化过程,依次形成了NW向褶皱和逆冲断层—近EW向褶皱和逆冲断层—NE向褶皱和逆冲断层;燕山晚期,受雪峰山快速隆升的影响发生区域性的伸展作用,部分断裂出现反转和左行走滑现象。综合显微变形、包裹体测试分析和构造岩组构分析表明黔西地区构造变形是形成于上地壳的中低温-低温环境下的脆性-脆韧性变形。
     第三,在认同前人的深成变质基础上叠加区域岩浆热变质作用观点的同时,强调燕山中期构造分异决定了煤层埋藏深度的不同,进而决定了煤层的变质程度,并提出水城-紫云等基底断裂不是前人所认为的岩浆侵入通道,海西期的裂谷并未发展到黔西地区,水城-紫云断裂带只是晚古生代裂陷槽在华南板块内部的边界断裂,裂陷作用远小于南盘江断裂以南区域,并不具有超壳性质,不可能成为后期岩浆侵入通道促进煤层变质。
     第四,燕山中期是黔西地区煤层气成藏的关键时期,该期构造分异决定了煤阶的展布特征,而煤阶是研究区煤储层物性极为重要的控制因素;该期构造-热事件不仅产生大量的热成因气,而且可以促进煤储层孔裂隙发育,有效地改善了煤储层渗透性和吸附性能。
     第五,深刻揭示了黔西地区构造控制下的煤层气成藏特征:1)煤层气主要赋存在断块内部的开阔向斜中,具有向斜控气特征;2)中新生代构造抬升幅度大,煤层气藏埋深小;3)多期生烃作用,含气量高;4)煤储层物性变化大,受煤阶控制显著;5)构造-热事件有效地改善了煤储层物性特征;6)成藏过程复杂且分异明显。
Western Guizhou located at the connection of Tethys tectonic domain andmarginal-Pacific tectonic domain, the process of tectonic evolution was extremely complex,which is the most important controlling factor for the generation, migration, andaccumulation of coalbed methane (CBM). Thus, taking the the regional tectonic evolutionas basic approach, based on the field geology, the analyses of coalfield exploration dataand remote sensing data, combined with the microscopic deformation, test calcite veininclusions, and petrofabric analysis of tectonic rock, this paper studied the structuralcharacteristics and evolutionary history in western Guizhou deeply, discussed thestress-deformation environment and dynamic mechanism of structural deformation inmid-late Yanshan Epoch. On that basis, combined with the laboratory tests of reflectivity ofvitrinite, mercury injection, isothermal adsorption, and scanning electronic microscope(SEM) of coal samples, applied basin modeling technique, the characteristics of coalbedmethane reservoiring under tectonic control in western Guizhou were profoundly revealed.Major research results as follows:
     First, based on the systematic division of tectonic layers, the tectonic evolution wasdivided into6Stages in western Guizhou: crystalline basement formation stage (Pt2-Pt3),passive continental margin stage (Z-S), intra-continental taphrogenesis stage (D-P), stableplatform stage (T_1-T_2), continental depression stage (T_3-J_2), and fault-folded uplift stage(J_3-Q). The continental-marine alternating facies developed along NE-SW direction fromNW to SE in late Permian in western Guizhou controlled by NE and NNE syndepositionalflaults and the paleotopography were characterized by being high in the northwest and lowin the southeast formed in Dongwu movement. The original coal basins were damagedstrongly after coal-forming period, especially the movement in mid-late Yanshan Period,and the most important coal-controlling structures are large syncline and synclinore.
     Second, the structural deformations were largely determined in mid-late YanshanEpoch in western Guizhou, characterized by being strong when close to the basementfaults and being weak when far away from the basement faults. The middle Yanshan Epochis key period for building the tectonic framework in western Guizhou, the research area hasexperienced the tectonic stress evolution of NE-SW compression—nearby NScompression—NW-SE compression, so, the sequence of structural deformation is NW foldand thrust fault—nearby EW fold and thrust fault—NE-NNE fold and thrust fault; In lateYanshan Epoch, regional extension was formed in western Guizhou influenced by rapid uplifting of Xuefeng mountain, reversion and left-slipping of some faults arised. Throughthe microscopic deformation, test calcite vein inclusions, and petrofabric analysis oftectonic rock, the structural deformations mainly were brittle to brittle-ductile formed atmiddle-low to low temperature in the upper crust.
     Third, after identified the preceding conception that the coal rank raised by theregional magmatic thermal metamorphism on the basis of plutonic metamorphism, thispaper emphasized that structural differentiation of middle Yanshan Epoch decided theburied depth and further controlled the metamorphic grade of coal, metamorphism patternwas the established in western Guizhou. The viewpoint was put forward and different fromthe preceding conception that the basement faults were not the channel of magma, theHercynian rifting has not been developed to western Guizhou, Shuicheng-ziyun fault wasthe boundary fault of the aulacogen internal South China plate in later Paleozoic, thetaphrogenesis much smaller than the south region of the Nanpanjiang fault. The basementfaults had not cut the crust, and they were not the the channel of magma increasing the coalmetamorphic grade.
     Fourth, the middle Yanshanian Epoch is the key period for CBM reservoiring, oneside, the structural differentiation decided distributional characteristics of coal rank, whichis so important to physical property of coal reservoir; On the other side, the tectonicthermal event had not only increased the thermogenic gas, but also promoted the growth ofthe pore-fracture system, the permeability and adsorbability of coal reservoir wereimproved available.
     Fifth, the characteristics of CBM reservoiring under tectonic control in westernGuizhou was profoundly revealed:1) The CBM reservoir occurrence in the open syncline,and characterized by syncline-controlled gas;2) The scope of tectonic uplift is large inMesozoic-Cenozoic, and the depth of CBM reservoir is small;3) Multiple phases ofhydrocarbon generation, and high CBM content;4) The physical properties are greatlyvaried, significantly controlled by coal rank;5) The tectonic thermal event improved thephysical properties of coal reservoir available;6) The procession of CBM reservoiring iscomplex and the fractionation in different zone is clear.
引文
Alain M, Bernard D G, Antonio T D R, et al. Structural geometry in the eastern Pyrenees and westernGulf of Lion (Western Mediterranean)[J]. Journal of Structural Geology,2001,23(11):1701-1726.
    Alexeev A D, Ulyanova E V, Starikov G P, et al.. Latent methane in fossil coals [J]. Fuel,2004a,83(10):1407-1411.
    Alexeev A D, Vasilenko T A, Ulyanova E V. Phase state of methane in fossil coals [J]. Solid Statecommunications,2004b,130(10):669-673.
    Allen M B, Vincent S J, Wheeler P J. Late Cenozoic tectonics of the Kepingtage thrust zone:interactions of the Tien Shan and Tarim Basin, Northwest China [J]. Tectonics,1999,18(4):639-654.
    Allen P A, Allen J R. Basin analysis Principles and applications [M]. Lndon: Blackwell Scieniific Press,1990.
    Allmendinger R M, and Zehnder A R. Veloe yfieldforthetrishearmodel [J]. Journal of StrueturalGeology,2000,(22):1009-1014.
    Altenberger U. Duetile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs,Norway [J]. Tectonophysics,2000,(320):107-121.
    Angelier J. Tectonic analysis of fault slip data sets [J]. Tectonophysics, l984,(89):5835-5848.
    Beaumont C, Quinlan G, Hamilton J. Orogeny and stratigraphiy: numerical model of the Palaeozic inthe eastern interior of North Americs [J]. Tectonics,1988,7(3):389-416.
    Benes V, Davy P. Modes of coniinental lithospheric extension: experimental verifieation of strainlocalization Proeesses [J]. Tectonophysics, l996,21(1):69-87.
    Bustinrm, Clarkson C R. Geological controls on coalbed methane reservoir capacity and gas content [J].International Journal of Coal Geology.1998,38(1-2):3-26.
    Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts[J]. Earth Planet Sci lett,1990,(99):79-93.
    Carey E. Recherche des directions principales de contraintes associ es au jeu une pulation de failles [J].Rev Geol Dyn Gogr Phys,1979:21(l):57-66.
    Chang E Z. Collisional orogene between north and south China and its eastern extension in the KoreanPeninsula [J]. Joumal of southeast Asian Earth Sciences,1996:13(35):267-277.
    Cloetingh S, Sassi W, Horvath F, et al. Basin analysis and dynamics of sedimentary basin formation [J].Tectonophysics,1993,226:1-13.
    Coffin M F, Eldholm O. Large igneous provinces: crustal structure, dimensions, and externalconsequences [J]. Rev Geophys,1994,(32):1-36.
    Crosdale P J, Beamish B B, Valix M. Coalbed methane sorption related to coal composition [J].International Journal of Coal Geology,1998,35(1-4):147-158.
    Dahlstrom C D A. Balanced cross scetions [J]. Canadian Journal of Ealth Seienees,1969,6(4):743-757.
    Depaor D G. Balanced section in thrust belts: Part1, Construction [J].AAPG Bulletin,1988,72(1):73-90.
    Dmitriev Y I, Bogatikov O A. Emeishan flood basalts, Yangtze Platform: indications of an abortedoceanic environment [J]. Petrology,1996,(4):407-418.
    Enever J R, Henning A. The relationship between permeability and effective stress for Australian coaland its implications with respect to coalbed methane exploration and reservoir modeling [A].Proceedings of the1997intermational Coalbed Methane Symposium [C].1997.
    Ettinger I L. Systematic handbook for the determination of the methane content of coal seams from theseam pressure of the gas and the methane capacity of coal [A]. National Coal Board [C]. Moscow.1958.
    Evans H, Brown K M. Coal structures in outbursts of coal and firedamp conditions [J]. The Miningengineer,1973,132(148):171-179.
    Fitzgerald J E, Sudibandriyo M, Pan Z, et al. Modeling the adsorption of pure gases on coals with theSLD model [J]. Carbon,2003,41(12):2203-2216.
    Fowler P, Gayer R A. The association between tectonic deformation, inorganic composition and coalrank in the bituminous coals from the South Wales coalfield, United Kingdom [J]. Int J Coal Geol,1999,(42):1-31.
    Gamson P, Beamish B. Johnson David. Effect of coal microstructure and secondary mineralization onmethane recovery [J]. Geol Spec Publication,1996,(199):165-179.
    Guo D Y, Han D X, Jiang G J. Research on Geological Structure Mark of Coal and Gas Outbursts inPingdingshan Mining Area [J]. Journal of China University of Mining&Technology,2002,12(1):72-76.
    Harris I, Gayer R ed. Coal bed Methane and Coal Geology [M]. London: London Geological Society,1996.
    Hildenbrand A, Krooss, B M, Busch A, Gaschnitz R,. Evolution of methane sorption capacity of coalseams as a function of burial history-a case study from the Campine Basin, NE Belgium [J].International Journal of Coal Geology,2006,(66):179–203.
    Jiang B, Qu Z H, Wang G, et al. Effects of structural deformation on formation of coalbed methanereservoirs in Huaibei coalfield, China [J]. International Journal of Coal Geology,2010,82(3-4):175-183.
    Martini A M, Walter L M, Ku T C W, et al. Microbial production and modification of gases insedimentary basins: a geochemical case study from a Devonian shale gas play, Michigan basin [J].American Association of Petroleum Geologists Bulletin,2003,(87):1355–1375.
    Morgan W J. Convection plumes in the lower mantle [J]. Nature,1971,(230):42-43.
    Mouthereau F, Lacombe O, Deffontaines B, et,al Deformation history of the southwestern Taiwanforeland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections [J].Tectonophysics,2001,333(1):293-322.
    Reks I J, Gray D R. Strain patterns and shortening in a folded thrust sheet: an example from thesouthern Appalachians [J]. Tectonophysics,1983,93(1):99-128.
    Scott A R. Hydrogeologic factors affecting gas content distribution in coal beds. International Journal ofCoal Geology,2002,(50):363–387.
    Shahram S, Jean L.Variation of structural style and basin evolution in the centralZagros(Izeh zone andDezful Embayment), Iran [J]. Marine and Petroleum Geology,2004,21(5):535-554.
    Song X Y, Zhou M F, Hou Z Q, et al. Geochemical constraints on the mantle source of the upperPermian Emeishan continental flood basalts, southwestern China [J]. International Geology Review,2001,(43):213-225.
    Taboada A, Rivera L A, Fuenzalida A, et al. Geodynamics of the northern Andes: subductions andintracontinental deformation(Colombia)[J]. Tectonics,2000,19(5):787-813.
    Thomas F, Martin H. Folded basement-cored tectonic wedges along the northern edge of the AmadeusBasin, CentralAustralia: evaluation of orogenic shortening [J]. Journal of Structural Geology,1999,21(4):399-412.
    Wernicke, Brian, Walker, et al. Structural discordance between Neogene detachments and frontal Sevierthrusts,central Mormon Mountains,southern Nevada [J]. Tectonics,1985,4(2):213-246.
    Xu Y G, Chung S L, Jahn B M, et al. Petrological and geochemical constraints on the petrogenesis of theEmeishan Permo-Triassic Emeishan flood basalts insouthwestern China [J]. Lithos,2001,(58):145-168.
    Yee D, Seidle J P, Hanson W B. Gas sorption on coal and measurement of gas content.//In: Law B E,Rice D D Eds. Hydrocarbons from Coal [J]. AAPG Studies in Geology,1993,38(5):327-368.
    Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneous province(SW China) and the end-Guadalupian mass extinction [J]. Earth Planet Sci Lett,2002,(196):113-122.
    毕华,彭格林,赵志中等.湘中涟源盆地煤层气形成气藏的条件及其资源预测[J].地质地球化学,1997,(4):15-20.
    毕素萍,张庆龙,王良书等.松辽盆地宾县凹陷平衡剖面恢复及构造演化分析[J].石油实验地质,2008,30(2):203-211.
    曾锦光,罗元华,陈太源.应用构造面曲率研究油气藏裂缝问题[J].力学学报,1982,17(4):202-205.
    车遥,黄文辉,刘大锰等.中国煤层气资源开发的关键性问题及前景[J].石油天然气学报,2006,28(1):29-31.
    陈发景.裂谷盆地理论模拟[J].石油实验地质,1996,18(3):274-282.
    陈发景.盆地构造分析在我国油气普查和勘探中的作用.石油也天然气地质[J].1989,12(1):1-4.
    陈富庆.郁钟铭.贵州煤层气不易抽放的原因探讨[J].贵州工业大报学报,2005,34(2):34-37.
    陈国达.地台活化及其找矿意义[M].北京:地质出版社,1960.
    陈伟,卢华复,施央申.平衡剖面计算机模拟及其应用[M].北京:科学出版社,1993.
    陈学敏.论贵州西部扭动构造[J].贵州地质,2009,28(1):13-19.
    陈学敏.黔西煤田构造特征[J].煤田地质与勘探,1994,22(2):13-17.
    陈学敏.黔西盘关向斜构造特征及其力学分析[J].中国煤炭地质,2008,20(4):11-16.
    陈有能,王祁仑,冉正万.贵州中部东西向构造带的构造形迹及历史定位[J].贵州地质,1997,1(1):40-45.
    程国繁,徐安全.试论“威宁一紫云”北西向构造带变形特征[J].贵州地质,1998,15(4):311-320.
    崔军平.松辽盆地东部哈尔滨一绥化地区构造演化及其对油气成藏条件的拉制作用[D].西安:西北大学,2007.
    丁国瑜,中国岩石圈动力学概论[M].北京:地震出版社,1991.
    窦新钊,姜波,张军等.太行山构造演化对冀东南煤层赋存的控制作用[J].煤炭学报,2009,34(3):293-297.
    杜思清,魏显贵等.广义纵弯褶皱叠加机制、类型及其应用.矿物岩石,1998,(18):56-60.
    范俊佳,琚宜文,侯泉林等.不同变质变形煤储层孔隙特征与煤层气可采性[J].地学前缘,2010(5):325-335.
    范祥发.从1∶50万重力异常探讨贵州省区域地质构造格架[J].贵州地质,1999,16(3):195-198.
    方爱民,侯泉林,琚宜文等.不同层次构造活动对煤层气成藏的控制作用[J].中国煤田地质,2005,17(4):15-20.
    封永泰,赵泽恒,赵培荣等.黔中隆起及周缘基底结构、断裂特征[J].石油天然气学报,2007,29(3):35-38.
    付立新.扬子地台南缘及周边地区构造演化与油气运聚的关系[J].中国石油大港油田公司、中国石油大学(北京)博士后研究工作报告,2003.
    傅雪海,姜波,秦勇等.用测井曲线划分煤体结构和预测煤储层渗透率[J].测井技术,2003,27(2):140-143.
    傅雪海,秦勇,权彪等.中煤级煤吸附甲烷的物理模拟与数值模拟研究[J].地质学报,2008,82(10):1368-1371.
    傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007.
    傅雪海,秦勇,薛秀谦等.煤储层孔隙-裂隙系统分形研究[J].中国矿业大学学报,2001,30(3):225-228.
    傅雪海,秦勇,张万红等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(S1):51-55.
    高弟,秦勇,易同生.论贵州煤层气地质特点与勘探开发战略[J].中国煤炭地质,2009,21(3):20-23.
    顾成亮,桂宝林.滇东—黔西地区晚二叠世煤层割理研究及其在煤层气勘探中的意义[J].云南地质,2000,19(4):352-362.
    顾成亮.滇东、黔西地区煤层气地质特征及远景评价[J].新疆石油地质,2002,23(2):106-111.
    顾成亮.滇东-黔西地区晚二叠世煤岩及煤层气储层物性分析[J].贵州地质,2001,18(3):163-167.
    贵州省地质矿产局.贵州省区域地质志[M].北京:地质出版社,1987.
    桂宝林,王朝栋.滇东-黔西地区煤层气构造特征[J].云南地质,2000,19(4):321-351.
    桂宝林,王学仁,王朝栋等.黔西滇东煤层气地质与勘探[M].昆明:云南科技出版社,2001.
    桂宝林.滇东黔西煤层气选区及勘探目标评价[J].云南地质,2004,23(4):410-420.
    桂宝林.六盘水地区煤层气地质特征及富集高产控制因素[J].石油学报,1999,20(3):31-37.
    桂宝林.煤层气勘探目标评价方法-以滇东黔西地区为例[J].天然气工业,2004,24(5):33-35.
    郭建,韦重韬,李洪波等.构造和古地热场演化对煤层气扩散散失控制研究[J].能源技术与管理,2008,(4):4-6.
    郭英海,李壮福,李大华等.四川地区早志留世岩相古地理[J].古地理学报,2004,6(1):20-29.
    韩德馨,杨起.中国煤田地质学(下册)[M].北京:煤炭工业出版社,1979.
    何登发,贾承造,周新源等.多旋回叠合盆地构造控油原理[J].石油学报,2005,26(3):1-9.
    何登发,赵文智.中国叠合型盆地复合含油气系统的基本特征[J].地学前缘,2000,7(3):23-37.
    何永年,林传勇,史兰斌.构造岩石学基础[M].北京:地质出版社,1988.
    胡斌,齐丽军,张辉等.平衡剖面在焉耆盆地构造演化分析中的应用[J].西南石油学院学报,2006,28(4):17-21.
    黄汲清.中国地质构造基本特征的初步总结[J].地质学报,1960,40(1):1-37.
    黄继均.纵弯叠加褶皱地区岩石有限应变特征-以川东北地区典型叠加褶皱为例[J].地质论评,2000,46(2):178-185.
    姜波,金法礼.煤田超显微构造研究方法[J].煤炭科学技术,1994,22(10):12-15.
    姜波,琚宜文.构造煤结构及其储层物性特征[J].天然气工业,2004b,24(5):26-29.
    姜波,刘洪章.河北兴隆复式叠瓦扇构造[J].地质科学,1997,32(2):165-172.
    姜波,秦勇,琚宜文等.煤层气成藏的构造应力场研究[J].中国矿业大学学报,2005,34(5):564-569.
    姜波,王桂梁.煤田断裂构造岩分类研究[J].中国煤田地质,1990,(2):5-7.
    姜波,王桂梁.走滑断裂在煤田构造中的作用和意义[J].中国矿业大学学报,1995,24(1):14-20.
    姜波,徐凤银,金法礼.柴达木盆地周边断裂超微构造变形特征及其应力-应变环境[J].煤田地质与勘探,2003,31(5):10-13.
    姜波,徐凤银,彭德华等.柴达木盆地北缘断裂构造变形特征[J].中国矿业大学学报,2004a,33(6):687-692.
    姜波,王桂樑,高元等.安徽省淮南煤田颍凤区推覆构造微观变形特征及其形成机制[J].中国区域地质,1992,(1):60-67.
    姜波,张军,赵本肖等.冀东南隐伏区煤层赋存的构造控制作用[J].中国煤炭地质,2008,20(10):14-17.
    姜波.淮南煤田逆冲叠瓦扇构造系统[J].煤田地质与勘探,1993,21(6):12-17.
    姜波.煤田推覆构造地球化学特征初探[J].煤田地质与勘探,1992,20(1):22-26.
    琚宜文,姜波,侯泉林等.华北南部构造纳米级空隙结构演化特征及作用机理[J].地质学报,2005,79(2):269-285.
    琚宜文,姜波,王桂梁等.构造煤结构及储层物性[M].徐州:中国矿业大学,2005.
    琚宜文,王桂梁.煤层流变及其与煤矿瓦斯突出的关系[J].地质论评,2002a,48(1):96-105.
    琚宜文.构造煤结构演化与储层物性特征及其作用机理[D].徐州:中国矿业大学,2003.
    乐光禹,张时俊,杨武年.贵州中西部构造格局与构造应力场[J].地质科学,1994,29(1):11-19.
    乐光禹.六盘水地区构造格局新探讨[J].贵州地质,1991,8(4):289-301.
    李德生,中国东部含油气盆地的构造特征,石油勘探与开发,1982,9(2):1-14
    李德生.渤海湾及沿岸盆地的构造格局[J].海洋学报,1978,4(2):94-101.
    李明潮,梁生正,赵克镜.煤层气及其勘探开发[M].北京:地质出版社,1996.
    李明潮,张五侪.中国主要煤田的浅层煤成气[M].北京:科学出版社,1990.
    李思田.沉积盆地的动力学分析[J].地学前缘,1995,2(3-4):1-8.
    李思田.含能源盆地沉积体系[M].武汉,中国地质大学出版社,1996.
    李思田.盆地分析与煤地质学研究[J].地学前缘,1999,6(5):133-138.
    李思田.中国东部及邻区中、新生代盆地演化及地球动力学背景[M].武汉:中国地质大学出版社,1997.
    李四光.地质力学概论(1962)[M].北京:年科学出版社,1973.
    李小明,彭格林,席先武等.淮南煤田构造热演化特征与煤层气资源的初步研究[J].矿物学报,2002,22(1):85-91.
    李兴平.贵州六盘水地区煤层气勘探反思[J].贵州地质,2005,22(3):188-191.
    梁福谅.贵州省煤层气资源及其利用[J].贵州地质.1998,15(2):128-138.
    林畅松,解习农,张燕梅等.二维沉积层序计算机模拟研究[J].沉积学报,1998a,16(2):68-73.
    林畅松,刘景彦,张燕梅.沉积盆地动力学与模拟研究[J].地学前缘,1998b.(S1):122-128.
    林树基.贵州晚新生代构造运动的主要特征[J].贵州地质,1993,10(10):10-15.
    林宗虎.煤层气-一种亟待开发利用的清洁能源[J].工业锅炉,2006,(3):1-5.
    刘宝珺,许效松,潘杏南.中国南方古大陆沉积地壳演化与成矿[M].北京:科学出版社,1993.
    刘大锰,姚艳斌,蔡益栋等.华北石炭—二叠系煤的孔渗特征及主控因素[J].现代地质,2010,24(6):1198-1203.
    刘光炎,蒋录全.平衡剖面技术与地震资料解释[J].石油地球物理勘探,1995,30(6):833-844.
    刘和甫,梁慧社,蔡立国等.川西龙门山冲断系构造样式与前陆盆地演化地质学报[J].1994a,68(2):101-118.
    刘和甫,梁慧社,蔡立国等.天山两侧前陆冲断系构造样式与前陆盆地演化[J].地球科学,1994b,19(6):727-741.
    刘和甫,梁慧社,李晓清等.中国东部中新生代裂陷盆地与伸展山岭偶合机制[J].地学前缘,2000,7(4):477-486.
    刘和甫,夏义平,殷进垠等.走滑造山带与盆地耦合机制[J].地学前缘,1999,6(3):121-132.
    刘和甫.沉积盆地地球动力学分类及构造样式分析[J].地球科学,1993,18(6):699-724.
    刘洪林,王红岩,宁宁等.中国煤层气资源及中长期发展趋势预测[J].中国能源,2005,27(7):21-26.
    刘洪林,王红岩,赵国良等.燕山期构造热事件对太原西山煤层气高产富集影响[J].天然气工业,2005,25(1):29-32.
    刘丽萍,李三忠,戴黎明等.雪峰山西侧贵州地区中生代构造特征及其演化[J].地质科学,2010(1):228-242.
    刘少峰,张国伟.盆山关系研究的基本思路、内容和方法[J].地学前缘,2005,12(3):101-111.
    卢记仁.峨眉山地幔柱的动力学特征[J].地球学报,1996,(17):424-438.
    卢平,鲍杰等.岩浆侵蚀区煤层孔隙结构特征及其对瓦斯赋存之影响分析[J].中国安全科学学报,2001,11(6):41-44.
    陆克政.关于盆地分类问题的讨论[J].华东石油学院学报,1987,11(4):1-7.
    罗开平,刘光祥,王津义.黔中隆起金沙地区中新生代隆升剥蚀的裂变径迹分析[J].海相油气地质,2009,14(1):61-64.
    罗志立,李景明,李小军等.试论郯城-庐江断裂带形成、演化及问题[J].吉林大学学报,2005,(6):21-28.
    吕志发,张新民,钟铃文等.块煤的孔隙特征及其影响因素[J].中国矿业大学学报,1991,20(3):48-57.
    马力,陈焕疆,甘克文等.中国南方大地构造和海相油气地质[M].北京:地质出版社,2004.
    马丽芳,乔秀夫,闵龙瑞等.中国地质图集[M].北京:地质出版社,2002.
    马杏垣,刘和甫,王维襄等.中国东部中、新生代裂陷作用和伸展构造[J].地质学报,1983(1):22-32.
    马杏垣,索书田.论滑覆及岩石圈多层次滑脱构造[J].地质学报,1984,(3):213-219.
    马杏垣,吴在宁.中国新生代的伸展构造[J].地质科技情报,1988,7(2):1-12.
    毛健全,张启厚,顾尚义.水城断陷的地质特征及构造演化[J].贵州工业大学学报,1997,26(2):1-6.
    毛小平,吴冲经.三维构造模拟方法-体平衡技术研究[J].地球科学,1999,24(5):506-508.
    梅冥相,高金汉,易定红等.黔桂地区二叠系层序地层格架及相对海平面变化研究[J].高校地质学报,2002,8(3):318-333.
    梅冥相,马永生,邓军等.加里东运动构造古地理及滇黔桂盆地的形成—兼论滇黔桂盆地深层油气勘探潜力[J].地学前缘,2005,12(3):227-236.
    庞雄奇,姜振学.叠合盆地构造变动破坏烃量研究方法探讨[J].地质论评,2002a,48(4):384-390.
    庞雄奇,金之均.叠合盆地油气资源评价问题及其研究意义[J].石油勘探与开发,2002b,29(1):9-13.
    漆家福,杨桥,王子煜.编制盆地复原古构造图的若干问题的讨论[J].地质科学,2003,38(3):413-424.
    秦建华,吴应林,颜仰基等.南盘江盆地海西-印支期沉积构造演化[J].地质学报,1996,70(2):99-107.
    秦勇,姜波,王继尧等.沁水盆地煤层气构造动力条件耦合控藏效应[J].地质学报,2008a,85(10):1355-1362.
    秦勇,熊孟辉,易同生等.论多层叠置独立含煤层气系统-以贵州织金-纳雍煤田水公河向斜为例[J].地质论评,2008b,54(1):65-70.
    秦勇.中国煤层气地质研究进展与述评[J].高校地质学报,2003,9(3):339-358.
    丘元禧,张渝昌,马文璞等.雪峰山的构造性质与演化-一个陆内造山带的形成演化模式[M].北京:地质出版社,1999.
    桑树勋,范炳恒,秦勇等.煤层气的封存与富集条件[J].石油与天然气地质,1999,20(2):104-107.
    宋建国.基于地震地质模型的高分辨经处理方法[J].石油大学学报,2002,26(3):30-33.
    宋岩,赵孟军,柳少波等.构造演化对煤层气富集程度的影响[J].科学通报,2005,50(S1):1-5.
    孙斌,邵龙义,卢霞等.盘关向斜煤层气成藏条件评价[J].天然气地球化学,2008,19(3):427-432.
    孙茂远,范志强.中国煤层气开发利用现状及产业化战略选择[J].天然气工业,2007,27(3):1-5.
    孙少才,陈晓明.利用航磁数据成果对某大地构造格架推断解释的应用[J].西部探矿工程,2006,(8):145-146.
    汤济广.柴达木北缘西段中新生代多旋回叠加改造型盆地构造演化及对油气成藏的控制作用[D].武汉:中国地质大学,2007.
    汤良杰,郭彤楼,田海芹等.黔中地区多期构造演化、差异变形与油气保存条件[J].地质学报,2008(3):298-307.
    唐大卿.伊通盆地构造特征与构造演化-典型走滑伸展盆地剖析[D].武汉:中国地质大学,2009.
    唐巨鹏,潘一山,梁政国.断层构造对北票矿区煤层气地表泄露的影响[J].岩土力学,2007,28(4):694-704.
    唐书恒,蔡超,朱宝存等.煤变质程度对煤储层物性的控制作用[J].天然气工业,2008,28(12):30-33.
    陶树,汤达祯,秦勇等.黔西滇东典型矿区含煤地层热演化史分析[J].煤田地质与勘探,2010,38(6):17-22.
    田在艺,韩屏.渤海盆地构造变形分析及其拗陷机制[J].石家庄经济学院学报,1991,31(6):1-18.
    田在艺,张庆春.论改造型盆地与油气成藏—以华北东部盆地为例[J].石油学报,2001,22(2):110-116.
    田在艺,张庆春.中国含油气沉积盆地论[J].北京:石油工业出版社,1996.
    佟彦明,钟巧霞.利用平衡剖面快速判定盆地区域古构造应力方向[J].石油实验地质,2007,29(6):633-636.
    汪吉林,姜波,王超勇.矿井构造应力场的模拟研究-以鲍店煤矿为例[J].地质力学学报,2007,13(3):239-246.
    王勃,巢海燕,郑贵强等.高、低煤阶煤层气藏地质特征及控气作用差异性研究[J].地质学报,2008(10):1396-1401.
    王朝栋,桂宝林,郭秀钦等.恩洪煤层气盆地构造特征[J].云南地质,2004,23(4):471-478.
    王朝栋,桂宝林,郭秀钦等.恩洪煤层气盆地构造特征[J].云南地质,2004,23(4):471-478.
    王方发.贵州省纳雍县补作井田煤层气赋存特征与开发前景[J].西部探矿工程,2008,(11):175-177.
    王桂梁,曹代勇,姜波等.华北南部的逆冲推覆、伸展滑覆与重力滑动构造-兼论滑脱构造的研究方法[M].徐州:中国矿业大学出版社,1992:108-109.
    王鹤年,张守韵,俞受军.华夏地块韧性剪切带型金矿地质[J].北京:科学出版社,1992,2-8.
    王红岩,万天丰,李景明等.区域构造热事件对高煤阶煤层气富集的控制[J].地学前缘,2008,15(5):364-369.
    王红岩.山西沁水盆地高煤阶煤层气成藏特征及构造控制作用[D].北京:中国地质大学,2005.
    王红岩.影响煤层气富集成藏的构造条件研究[D].北京:中国地质大学,2002.
    王鸿祯,莫宣学.中国地质构造述要[J].中国地质,1996,(8):4-9.
    王亮,张应文,刘盛光.区域重磁资料圈定贵州境内侵入岩体及局部地质构造[J].物探与化探,2009,33(3):245-249.
    王亮,乔计花,龙超林.黔西北威-赫-纳-织-水地区铅锌(铜)矿带上重力异常反映的地质信息[J].物探与化探.2008,32(4):374-379.
    王亮,龙秀洪,张应文等.贵州1:20万重力异常分布特征与透露的区域地质构造新信息[J].贵州地质,2007,24(1):64-69.
    王龙樟,徐强.沉积盆地定量动力学模拟[J].岩相古地理,1998,18(6):48-60.
    王尚彦,张慧,王天华等.黔西水城-紫云地区晚古生代裂陷槽盆充填和演化[J].地质通报,2006,25(3):402-407.
    王生全.论韩城矿区煤层气的构造控制[J].煤田地质与勘探,2002,30(1):21-24.
    王生维,陈钟惠.煤储层孔隙,裂隙系统研究进展[J].地质科技情报,1995,14(1):53-59.
    王小川.黔西川南滇东晚二叠世含煤地层沉积环境与聚煤规律[M].重庆:重庆大学出版社,1996.
    王砚耕,索书田,张明发等.黔西南构造与卡林型金矿[M].北京:地质出版社,1994.
    王砚耕,王尚彦.峨眉山大火成岩省与玄武岩铜矿-以贵州二叠纪玄武岩分布区为例[J].贵州地质,2003,20(1):5-11.
    王永,冯富成,毛耀保等.沁水盆地南端煤层气赋存的构造条件分析[J].西北地质,1998,19(3):28-31.
    王钟堂.黔西煤田构造及其演化[J].中国煤田地质,1990,2(3):13-17.
    王仲平,朱炎铭,闫宝珍.山西枣园地区构造演化与煤层气成藏[J].煤田地质与勘探,2004,32(5):20-23.
    韦重韬,姜波,傅雪海等.宿南向斜煤层气地质演化史数值模拟研究[J].石油学报,2007,28(1):54-57.
    韦重韬,秦勇,傅雪海等.煤层气地质演化史数值模拟[J].煤炭学报,2004,29(5):518-523.
    韦重韬,秦勇,姜波等.华北残留盆地煤层气成藏动力学过程研究-以沁水盆地和鄂尔多斯盆地东缘为例[J].地质学报,2008,82(10):1363-1367.
    韦重韬,秦勇,满磊.沁水盆地中南部上主煤层超压史数值模拟研究[J].天然气工业,2005,25(1):81-84.
    韦重韬,周荣福.煤层气多煤层扩散逸失地质历史模型及数值模拟[J].高校地质学报,2003,9(1):390-395.
    魏书宏,韩少朋.沁水煤田南部煤层气构造控气特征研究[J].中国矿业大学学报,2005,34(5):564-569.
    魏志红,胡熠昭,吴正永.黔中隆起及周缘地区下组合油气成藏条件[J].南方油气.2005,18(2):1-5.
    吴根耀.古深断裂活化与燕山期陆内造山运动-以川南-滇东和扬子褶皱-冲断系为例[J].大地构造与成矿学,2001,25(3):246-253.
    吴根耀.华南格林威尔造山带及其坍塌在罗迪尼亚超大陆演化中的意义[J].大地构造与成矿学,2000,24(2):112-121.
    吴浩若.广西加里东运动构造古地理问题[J].古地理学报,2000,2(1):70-76.
    吴佩芳.煤层气开发的理论与实践[M].北京:地质版社,2000.
    吴艳艳.煤层气生成过程中的矿物/金属元素催化作用[D].徐州:中国矿业大学,2011.
    吴跃东.大别造山带东南缘中新生代盆地沉积构造演化[D].成都:成都理工大学,2009.
    夏邦栋,刘洪磊,吴云高等.滇黔桂裂谷[J].石油实验地质,1992,14(1):20-30.
    肖安成,何光玉,程晓敢等.柴达木盆地北部地区中新生代盆山关系研究(内刊).浙江大学,2003.(8):1-7.
    熊孟辉,秦勇,易同生等.我国南方潜在的高煤级煤层气开发基地-贵州五轮山矿区煤层气地质条件浅析[J].中国煤层气,2007,4(1):40-44.
    徐彬彬,何明德.贵州煤田地质[M].徐州:中国矿业大学出版社,2003.
    徐义刚,钟孙霖.二叠纪峨眉山大火成岩省:地慢柱活动的证据及其熔融条件[J].地球化学,2001,30(1):1-9.
    徐义刚,何斌,黄小龙等.地幔柱大辩论及如何验证地幔柱假说[J].地学前缘,2007,14(2):1-9.
    徐义刚.地幔柱构造、大火成岩省及其地质效应[J].地学前缘,2002,9(4):341-353.
    徐政宇,姚根顺,郭庆新等.黔南坳陷构造变形特征及其成因解析[J].大地构造与成矿学,2010,34(1):20-31.
    徐志斌,云武,王继尧等.晋南地穹列煤层气赋存区构造应力分析[J].大地构造与成矿学,1997,21(3):233-241.
    许浩,汤达祯,秦勇等.黔西地区煤储层压力发育特征及成因[J].中国矿业大学学报.2011,40(4):556-560.
    许靖华.是华南造山带而不是华南地台[J].中国科学(B辑),1987b,(10):1108-1117.
    许靖华.中国南方大地构造的几个问题[J].地质科技情报,1987a,6(2):12-16.
    杨明达.松辽盆地南部构造演化与油气聚集[D].北京:中国地质大学(北京),2005.
    杨起,韩德馨.中国煤田地质学(上册)[M].北京:煤炭工业出版社,1979.
    杨起,汤达祯.华北煤变质作用对煤含气量和渗透率的影响[J].地球科学:中国地质大学学报,2000,25(3):273-277.
    杨仁超.沉积盆地动力学研究新进展[J].特种油气藏,2006,13(5):10-14.
    杨森楠,杨巍然.中国区域大地构造学[M].北京:地质出版社,1985.
    杨武年,乐光禹.黔西六枝-大窑地区复合叠加褶皱及构造应力场遥感图像分层解析[J].成都理工学院学报,1998(S1):13-21.
    杨武年.黔西六枝-朗岱地区构造格局及其应力场遥感图像解析[J].国土资源遥感,1996(2):21-28.
    杨兆彪,秦勇,高弟.黔西比德-三塘盆地煤层群含气系统类型及其形成机理[J].中国矿业大学学报,2011b,41(2):215-220.
    杨兆彪,秦勇,高弟等.煤层群条件下的煤层气成藏特征[J].煤田地质与勘探,2011a,39(5):22-26.
    杨兆彪.多煤层叠置条件下的煤层气成藏作用[D].徐州:中国矿业大学,2011.
    叶建平,秦勇,林大扬等.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.
    易同生,李新民.贵州省六盘水煤田盘关向斜煤层气开发地质评价[J].中国煤田地质,2006,18(2):30-32.
    易同生.贵州省煤层气赋存特征[J].贵州地质,1997,4(53):346-348.
    岳文浙,业冶铮.一条横亘千里的古斜坡带[J].载:朱夏学术思想研讨论文集[C].北京:石油工业出版社,1993.
    张春贺.世界未来石油工业的过渡化发展方向-以加拿大油砂石油生产和煤层气开发利用为例[J].中国矿业,2005,14(7):14-17.
    张帆.海拉尔盆地构造特征与构造演化[D].长春:吉林大学,2007.
    张国伟,董云鹏,姚安平.造山带与造山作用及其研究的新起点[J].西北地质,2001,34(1):1-9.
    张江江.黔南坳陷构造演化研究[D].北京:中国石油大学,2003.
    张克鑫,漆家福,马宝军等.济阳坳陷桩海地区构造演化特征研究[J].西安石油大学学报,2005,20(3):40-43.
    张庆玲,张群,张泓等.我国不同时代不同煤级煤的吸附特征[J].煤田地质与勘探,2004,32(S1):68-72.
    张荣强,周雁,汪新伟等.贵州西南部威-紫-罗断裂带构造特征及演化[J].地质力学学报,2009(2):178-189.
    张胜利,陈晓东.控制煤层气含量和可采性的主要地质因素[J].天然气工业,1997,17(4):15-20.
    张文佑,汪一鹏.华北断块区的形成与发展[M].北京:科学出版社,1980.
    张向鹏,杨晓薇.平衡剖面技术的研究现状及进展[J].煤田地质与勘探,2007,35(2):78-80.
    张新民,张遂安,钟玲文等.中国煤层甲烷[M].西安:陕西科学技术出版社,1991.
    张渝昌,秦德瑜,丁道桂等.扬子地区古生代盆地构造格架和油气关系的若干初步认识[J].石油实验地质,1989,(3):205-218.
    赵黔荣.贵州西部煤层气开发前景分析[J].贵州地质,2001,18(1):53-59.
    赵兴龙,汤达祯,许浩等.煤变质作用对煤储层孔隙系统发育的影响[J].煤炭学报.2010,35(9):1506-1511.
    赵泽恒,周建平,张桂权.黔中隆起及周缘地区油气成藏规律探讨[J].天然气勘探与开发,2008,31(2):1-7.
    钟大赉,丁林,刘福田.造山带岩石层多向层架构造及其对新生代岩浆活动制约[J].中国科学(D辑),2000,(12):1-8.
    钟大赉.滇川西部古特提斯造山带[M].北京:科学出版社,1998.
    钟玲文.煤的吸附性能及影响因素[J].地球科学,2004,29(3):327-332.
    周建勋.同沉积挤压盆地构造演化恢复的平衡剖面方法及其应用[J].地球学报,2005,26(2):151-156.
    周新华,胡世玲,任胜利.东南陆壳超多阶段构造演化同位素年代学制约[J].载:东南大陆岩石圈结构与地质演化[M].北京:冶金工业出版社,1993,69-77.
    周永刚.中上扬子地块浅部褶皱逆冲格局:遥感卫星图像处理与解释[D].中国海洋大学,2009.
    朱夏.论中国含油气盆地构造[M].北京:石油工业出版社,1986.
    朱炎铭,秦勇,王猛等.矿物流体包裹体分析及其在石油地质研究中的应用[J].中国矿业大学学报,2005,34(2):55-58.
    朱炎铭,秦勇.黄骅坳陷古生界烃源岩二次生烃的构造控制[M].徐州:中国矿业大学出版社,2002.
    朱炎铭,任文忠.滇中宜良可保煤盆地的走滑成因及其构造演化[J].中国矿业大学学报,1995,24(2):7-11.
    朱炎铭,赵洪,闫庆磊等.贵州五轮山井田构造演化与煤层气成藏[J].中国煤炭地质,2008,20(10):38-41.
    朱炎铭.可保煤盆地沉积-构造演化与聚煤作用[J].煤炭学报,1996,21(1):1-5.
    朱炎铭.云南羊街盆地的走滑成因及构造反转[J].煤田地质与勘探.1996,(3):8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700