用户名: 密码: 验证码:
无烟煤泥岩夹矸的岩石矿物学特征及研究意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晋城矿区位于山西沁水煤田东南部,3号无烟煤层中广泛分布着1~3层泥岩夹矸,有时可达5~6层,其中厚度较大也较稳定的主要有2层。作者通过野外实地观测,并采集一定数量的标本,室内通过显微镜下鉴定、差热分析、X射线粉晶衍射分析、红外吸收光谱分析、透射电镜下观察等一系列测试手段,对无烟煤层中泥岩夹矸的岩石矿物学特征进行了研究,对其主要成分高岭石发生变化的主要原因及影响因素进行了探讨。结果发现,无烟煤层中泥岩夹矸的主要成分高岭石因受不同因素的影响而向不同方向发生转化,主要表现在高岭石向伊利石转化,并有伊利石-蒙脱石(I/M)混层矿物及蒙脱石出现。造成这种煤的变质程度升高而夹矸成分转化的主要原因是区域变质作用及周围介质条件影响所致。随着煤变质程度的升高,煤层夹矸中高岭石的结晶度、有序度也随之升高。晋城矿区出现了与刘长岭指出的结晶度最好的白水江高岭石相似的高岭石。当煤变质达到一定-程度(至少是烟煤→无烟煤),碱性介质中富含K~+,高岭石向伊利石转化,富含Na~+等,高岭石向蒙脱石转化。晋城矿区3号无烟煤泥岩夹矸应划分出四种类型,即:高岭石泥岩夹矸;高岭石-伊利石泥岩夹矸;伊利石泥岩夹矸;蒙脱石-I/M混层泥岩夹矸。从晋城矿区3号无烟煤泥岩夹矸来看,愈靠近煤层下部,高岭石伊利石化愈显著,并伴有蒙脱石及I/M混层矿物出现,且伊利石多属1Md型;煤层顶部夹矸及顶板中伊利石多属2M型。煤层顶板石英含量远大于煤层夹矸中石英含量,且愈接近煤层,石英含量愈低。研究煤层中高岭石泥岩夹矸的矿物成分变化具有一定的指向意义。即低变质程度的烟煤层当中,煤夹矸的粘土矿物成分以高岭石为主,随着煤层变质程度的升高,周围介质条件改变,粘土矿物组合发生变化,高岭石向伊利石、蒙脱石及I/M混层矿物转化。在高变质阶段的贫煤、无烟煤层中,煤层夹矸的粘土矿物成分以伊利石为主,高岭石次之。反过来,我们也可以通过研究煤层夹矸的矿物成分变化来预测煤变质程度或变质阶段的高低。
The article studied the petrological and mineralogical features of tonstein intercalations in the anthracite bed of Jincheng coal mine and discussed the main changing reasons and the influence factors of kaolinite, the main composition of tonstein. A series of instrumental means, such as microscopic identification, differential thermal analysis, X-ray powder diffraction analysis, infrared absorption spectrum analysis, transmission electron microscope identification etc. were used to study the samples which were collected on the working field by the author. It has been find that kaolinite influenced by different factors. transformed toward different directions The results suggested that kaolinite transformed toward illinite, accompanied by appearing of I/M and montmorillonite. The main reason for the rise of the coal rank and its composition transformation is the process of regional metamorphism and the influence of medium conditions around it. With the rise of the coal rank, the crystallinity of kaolinite and its order in the anthracite bed go up. The same kaolinite which has the best crystallinity as that in the Baishui River was found in Jincheng coal mine. When the coal rank reaches a certain degree(at least from soft coal to anthracite ),if the alkaline medium has rich k~+, kaolinite transforms toward illinite, if it has rich Na~+ ,kaolinite transforms toward montmorillonlite.The tonstein intercalations in anthracite bed in the No.3 coal mine in Jincheng can be divided into four types: kaolinite, kaolinite-illinite, illinite and montmorillonite-I/M tonstein intercalations. In the No.3 coal is 1MD.At the same time, montmorillonite-I/M minerals appear, The type of the illinite, at the top of the coal bed is 2M .The quartz content of the top roof of the coal bed is much higher than that in the tonstein intercalations in the coal bed .The nearer to the coal bed , the lower the quartz content becomes. thus ,study on the change of the mineral in the kaolinite tonstein intercalations in the coal bed has great significance.
    The study results show that in the soft coal bed of low coal rank, the main composition of the clay mineral in the tonstein intercalations is kaolinite. With the raise of the coal rank , the medium conditions around change, so the combination of the clay mineral change . that is, kaolinite transforms toward illinite, montmorillonite and I/M mineral. In the lean coal bed and anthracite bed of high coal rank, the main composition of the clay mineral in the tonstein intercalations is illinite, Kaolinite takes second place. Instead, the coal rank can be forecasted by studying the change of the mineral in the tonstein intercalations.
引文
[1] 顿涅茨煤田煤层高岭石夹矸[J].煤田地质情报,1984,1:43~45.
    [2] 刘长龄.硬质粘土的变白作用与的有序化[J].硅酸盐学报,1998,26(2):56~60.
    [3] H,布拉特等.沉积岩成因[M].北京:科学出版社.1981.5~6.
    [4] Yiping Zhou et al. International Journal of Coal Geology, 2002(2), 49~77.
    [5] 茅艳,许波.利用煤矸石生产建筑材料及其对性能特性的分析[J],中国矿业,2004,13(8):48~51.
    [6] 胡维淳.煤矸石综合利用是大有可为的事业[J].煤矿环境保护,2003,17(6):20~24.
    [7] 王绍伟,周咨,郭云麟等.煤层中的高岭石泥岩夹矸-煤层对比的重要标志[M].地质科技.北京:地质出版社.1999,4~16.
    [8] Close J C and Mavor M J. Influence of coal composition and rank on fracture development in Fruitland coal bed coal bed natural gas reservoirs of the San Juan Basin[A]. Schwochow. Coal bed methane of Western North America: Rock mountain association of geologists field conference guidebook. 2000. 109~121.
    [9] Law B E. The relationship between coal rank and clean spacing: Implication for the prediction of permeability in coal[A]. Proceedings of the International Coal bed Methane Symposium. 2003. 435~442.
    [10] 魏孔明.从煤的变质程度看其夹矸转化[J].中国煤田地质,2002(5):78~80.
    [11] Enever R E, Hening A. The relationship between permeability and effective stress for Australian coals and its implications with respect to coal bed methane exploration and reservoir modeling[A]. Proceedings of the 1997 International Coal bed Methane Symposium. Alabama: The University of Alabama Tuscaloosa. 1997. 3~22.
    [12] 曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986.96~99.
    [13] 陈扬杰,李晋,任大伟.陕西铜川地区石炭纪煤系地层中高岭石之初步研究[J].矿物岩石,1982,2(4):21~24.
    [14] 陈杨杰,李晋,任大伟.铜川地区煤系地层中四种高岭石泥岩的矿物岩石学研究[J].西安矿业学院学报,1983(2):17~19.
    [15] 陈杨杰,茆训海.陕西不同聚煤期煤层中高岭石夹矸的特征及演化.全国第二届成因矿物、找矿矿物学术会议论文集[A].1986(成都).
    [16] 陈杨杰,任大伟,李晋等,陕西蒲白地区高岭石质煤矸石的特征及其利用的探讨[J].建材地质,1982(2):23~25.
    [17] 任大伟,陈杨杰,何瑞林.陕西蒲白地区煤层夹矸中粗粒高岭石的X-射线研究.国际矿物学会第14届大会论文摘要[A].1986(旧金山):136~138.
    [18] 夏诤.山西某些地区高岭石粘土岩中的混层矿物[J].岩石学报,1995,10(1):41~45.
    [19] 常青.大同煤田石炭-二叠系中高岭岩物质组分和形成条件的初步研究[J].地质论评,1985,31(5):437~445.
    [20] 刘桂建,许光泉,崔树军.梁宝寺区煤矸石及其综合利用途径研究[J].煤田地质与勘探,1997(4):21~24.
    [21] 夏(王争).中国北方石炭二叠纪高岭石粘土岩的岩石矿物学特征[J].岩石学报,1985,1(4):71~77
    [22] Finkelman R B. What we don't know about the occurrence and distribution of trace in coals[J]. Journal of coal Quality, 2000, (8): 3~4.
    [23] Finkelman R B, Palmer C A, Krasnow M R, et al. Combustion and leaching behavior of elements in the Argonne premium coal samples[J]. Energy Fuels, 2001, (4): 755~766.
    [24] Srodon J. X-ray powder diffiraction identification of illitic materials[J]. Clays and Clays Minerals, 1998, 32(5): 337~349.
    [25] Reynolds R C. Interstratified Clay minerals[A]. Brindley G W and Brown G. Crystal Structure of Clay Minerals and Their X-ray Identification[M]. London: Min. Soc., 2001. 249~303.
    [26] Gutta D C. Environmental aspects of selected trace elements associated with coal and natural waters of Pench Vally coalfield of India and their impact on human health[J]. International Journal of Coal Geology, 2002, (40): 133~149.
    [27] W.Smykatz-kloss. Scientifically valid leaching of coal conversion solid residues to predict environmental impact[J]. Fuel processing Technology, 1994, (39): 445~459.
    [28] Liu Guijian. Experiment of coal leaching and study of the separation of tyace elements[J]. Acta Geological sinica, 2000, 74(2): 386~390.
    [29] 粉晶X射线物相分析编写组.粉晶X射线物相分析[M].北京:科学出版社,1978.282~283.
    [30] 燕莺.太原西山煤田七里沟剖面太原组山西组泥质岩的特征及其沉积环境的研究[D].煤炭科学院西安地质勘探分院研究生毕业论文.1983.
    [31] 任磊夫.粘土矿物及其研究方法[J].福建省地质局科技情报室:非金属专辑之二,1982,3:17~19.
    [32] 程彩红,王云霞,白春娥.古书院井田3号煤层冲刷带的成因及分布规律[J].煤炭科学技术,2003,31(专刊),13~16.
    [33] 曲星武,缪奋等.我国煤变质问题的研究.中国煤炭工业年鉴[M].北京:煤炭工业出版社.1982:256~259.
    [34] 曲星武,王金城.煤的X射线研究.煤田地质与勘探,1999(2):34~37.
    [35] 葛银堂.山西煤变质规律的认识[J].山西煤田地质勘探,1989,6:52~55.
    [36] 阎文英.关于煤变质作用类型划分的初步商榷[J].西安矿业学院学报,1983(2):26~28.
    [37] 陈林,王飞.矸石破碎筛分的综合利用及经济效益[J].煤炭技术,2003(11):70~71.
    [38] 隋广田.论煤矸石烧结空心砖原料制备和码烧生产工艺的技术特点[J].中国煤炭,2001,27(9):31~33.
    [39] 李务新,安风雨.煤矸石全硬塑制砖技术[J].中国煤炭,2001,27(12).46~47.
    [40] 张勇,张灵高,吴志祥等.常村煤矿煤矸石资源化利用途径[J].煤,2001(5):45~46.
    [41] 程根马,张子虎,张弘驰.无烟煤矿区自然煤矸石治理实践[J].煤矿环境保护,2002,16(16):31~32.
    [42] 刘红军,李兴兆.王台铺矿煤炭开采对环境的影响与对策[J].煤矿环境保护,2002,16(16):28~30.
    [43] 陶维屏,孙祁,杨雅秀等.中国高岭土矿床地质学[M].上海:科学技术文献出版社,1984.347~349.
    [44] 司维春.用煤矸石代替粘土生产普通硅酸盐水泥[J].靖煤科技,2001(1~2):78~80.
    [45] 王水利,傅炳章等.平坡矿区煤层夹矸中的IS有序混层矿物[J],西安矿业学院学报,1992(3):230~236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700