用户名: 密码: 验证码:
物探检测公路地质的综合方法研究及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据国内外物探技术的发展方向,重点利用面波、折射波法等物探测试技术解决公路地质初探中的软弱不良地层和土石分界的勘探问题。研究中主要根据目前各物探测试方法应用中存在的问题和公路工程初探测试的具体特点,通过小生境遗传算法解决了大数据量的自动反演和分析问题,通过建立现场时域、频域分析方法解决了软弱不良地层的快速探测和现场测试调整技术,通过面波测试方法和折射波测试方法的结合解决了土石分界的综合判定技术。通过本文研究,基本解决了公路工程地质初探中的快速测试、数据分析和判定方法的问题。
    论文完成的主要研究工作有:
    (1)系统的分析、比较了国内外面波测试方法中信号处理、理论频散曲线的提取、曲线的正演、反演分析理论,研究了相关参数对信号分析的影响。对国际上比较先进的泛音分析法进行了研究,并编制了系统的测试分析软件。
    (2)根据国内外相关方法研究的特点,首次实现了小生境遗传算法在频散曲线反演上的应用,提高了面波分析反演的速度,避免了多次人工试算和调整结果,避免了事先模型的假定,并且利用遗传算法的小生境方法,提高了反演分析结果的合理性。
    (3)通过有限差分软件Flac3D 的数值模拟,分析了不同情况下软弱不良地层的时域波形和频散特征。从面波在软弱不良地层中的传播规律出发,建立一套完整的数据分析处理方法,从时域和频散曲线等多种渠道对软弱地层进行研究,从而提出相应的软弱不良地层判定标准。
    (4)从时域、频域和云图三个阶段分析了软弱不良地层在面波测试过程中的信号表现和分类,提出了典型软弱地层情况下不同测试阶段的表现形式和判断标准,为在不同测试阶段进行软弱不良地层判定提供了系统的依据。并对软弱不良地层测试的参数设计、测试步骤等给出了具体的操作流程,为现场测试和软弱不良地层的准确判定奠定了坚实的基础。
    (5)通过对弹性波在土石地层中传播规律的研究,分别提出面波和折射波进行土石分界检测的基本原理,指出各自的优缺点,最后提出利用二者优点进行土石分界综合检测的基本方法。通过现场工程应用,取得了较好的应用效果,避免了单一方法存在的不足。
    (6)通过大量现场实测结果分析,提出综合检测土石分界的关键技术,建立土石分界的判定标准。
    (7)将提出的检测方法应用于大量的实体工程测试中,通过测试效果表明,
In this paper, the writer holds the development trend of geophysical exploration home and abroad. Surface wave, refractive wave method can often is used in construction quality evaluation of weak stratum and soil rock interface determination in highway embankment field. By remedying the disadvantage of current settle method and taking into account the characteristic of highway embankment exploration, genetic algorithm based on inches is proposed to solute the automatic inversion and analysis while excessive data exist. The analysis of locale time and frequency domain is proposed to solute the fast exploration of weak stratum and testing in-situ adjusting .The surface wave testing and refractive wave testing are combined to solute soil rock interface determination. In this way, fast testing, data analysis, determinant method can be achieved in highway engineering geological exploration.
    This paper includes achievements as following:
    (1) For surface wave testing method home and abroad, signal analysis, the abstraction of dispersion curves in theory, version and inversion analysis theory are analyzed and compared by the numbers. The effect of related parameter on signal analysis is found. Overtone analysis method, which is advanced international, is investigated, and systemic testing analysis software is compiled.
    (2) Based on characteristics of related investigation methods, the application of genetic algorithm based on inches to dispersion curves inversion is realized for the first time. The analysis rapidity of surface wave inversion is enhanced, while manual work and rectifying, the assumer of prior model are avoided. Genetic algorithm based on inches is proposed to improve the rationality of inversion analysis result.
    (3) The finite difference software’s Flac3D numerical simulation is used to analyze the time domain waveform and dispersion characteristics in various weak stratum. Based on the transmit law of surface wave in weak stratum, an integrated data analysis method is established. Weak stratum is studied from time domain and dispersion curves aspects; weak stratum determinant criterion is brought forward.
    (4) In weak stratum, signal behavior and rating are analyzed from time domain, frequency domain and cloud picture while surface wave testing is being carried through. Appearance and determinant criterion in various testing phases of weak stratum are proposed, which provide abundant evidences for weak stratum determinant. Parameters
    and steps of weak stratum testing are embodied, which establish stable foundation for testing in-situ and weak stratum’s precision determinant. (5) Elastic wave’s transmit law in soil rock stratum is investigated and postulate of soil rock interface determination when surface wave and refractive wave transit. Because each has advantages and disadvantages, both advantages are imposed in oil rock interface determination. This measure has superiority in abundance locale engineering and avoids both disadvantages. (6) A great deal of testing in-situ results are analyzed and critical technology in soil rock interface determination is proposed, so soil rock interface determination determinant criterion could be established. (7) The provided testing measure is applied in a mass of engineering testing. The results indicate that the measure can achieve engineering setting’s basic require and the determination criterion is available.
引文
[1] 刘世丰,工程物探技术在我院公路勘测与检测工作中的应用与效果,交通部第一公路勘察设计院[C],1997.07.
    [2] 林宗元,中国岩土工程技术发展展望,西部探矿工程[J],200.01.
    [3] 杨成林. 瑞雷波勘探原理及其应用[J]. 物探与化探,1989,13 (6):465~468.
    [4] 吴世明,曾国熙,陈云敏,等,利用表面波频谱分析测试土层波速(M),地震工程与工程振动[J],1988. 8(4),27~32.
    [5] Rayleigh,L. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematic Society,1887,17:4~11.
    [6] Thomson WT. Transmission of elastic waves through a stratified solid medium[J]. J. Appl. phys.,1950,(21):89~93.
    [7] Haskall N A. The dispersion of surface waves on multilayered media[J]. Bull seismsoc A.,1953,(43):17~34.
    [8] Rosebaum,J H. A note on the computation of rayleigh wave dispersion curves for layered elastic media[J]. Bull seismsoc Am.,1964,53 (3):1013~1019.
    [9] Thrower E N. The computation of the dispersion of elasticwaves in layered media [J]. J soundvib,1965,2 (3):210~226.
    [10] Dorman J,Ewing M. Numerical inversion of seismic surfacewave dispersion data and crust2mantle structure in the New York Pennsylvania area [J]. Journal of Geophysical Research,1962,67:5227~5241.
    [11] 严寿民. 瑞雷面波勘探方法[J]. 物探与化探,1992,16(2):113~119.
    [12] Chang F K. Rayleigh wave dispersion technique for rapid subsurface exploration[A]. 第42 届国际地球物理年会,1973.
    [13] 佐藤长范. 用GR-810 激光激振系统进行地基勘察[M]. 日本VIC 株式会社,1986.
    [14] Stokoe,ⅡK H,Nazarian S. Effectiveness of ground improvement from spectral analysis of surface waves[A]. In: Proc. 8th Euro Conf On Soil Mech and Found Eng.,1983.
    [15] Barbara A L,Kenneth H,Stokoe Ⅱ. Application of SASW Method Underwater[J]. Journal of Geotechnical and Geoenvionmental engineering,1998,523~531.
    [16] Xia J,Miller R D,Park C B. Estimation of near surface shear wave velocity by in version of Rayleigh waves [J].Geophysics,1999,64 (3):691~700.
    [17] 夏唐代,陈云敏,吴世明. 利用瑞雷波速度弥散特性反演地基参数[J]. 振动工程学报,1991,4 (4):31~37.
    [18] 张忠苗,魏玉伦,陈云敏,吴世明. 瞬态面波测试技术在地基处理评价中的应用[J]. 物探与化探,1992,16(1):48~55.
    [19] 陈云敏,吴世明,曾国熙. 表面波谱分析方法及其应用[J]. 岩土工程学报,1992,14(3):61~65.
    [20] 陈云敏,吴世明,夏唐代. 用表面波谱分析方法检测道路结构的质量[J]. 浙江大学学报,1993,27 (3):309~314.
    [21] 杨学林,吴世明. 考虑高阶模态时SASW 法的反演[J]. 浙江大学学报,1996,30(2):149~156.
    [22] 吴世明著. 土介质中的波[M]. 北京: 科学出版社,1997.
    [23] 杨成林等编著. 瑞雷波勘探[M]. 北京:地质出版社,1993.
    [24] 朱裕林. 瑞雷波勘探在工程勘察中的应用[J]. 工程勘探,1991 (1):67~70.
    [25] 刘云桢,王振东. 瞬态面波法的数据采集处理系统及其应用实例[J]. 物探与化探,1996,20(1):28~34.
    [26] 胡家富,段永康,胡毅力等. 利用Rayleigh 波反演浅土层的剪切波速度结构[J]. 地球物理学报,1999,42(3):393~400.
    [27] 胡家富. Rayleigh 波在工程勘探中的解释方法探讨[J]. 岩土工程学报,1999,25(5):599~602.
    [28] 胡家富,段永康. 影响面波勘探精度的因素探讨[J].地震研究,2000,23(3):333~328.
    [29] 张碧星,肖柏勋,杨文杰,曹思远,牟永光. 瑞雷波勘探中“之”形频散曲线的形成机理及反演研究[J]. 地球物理学报,2000,43(4):557~567.
    [30] 关小平,黄嘉正,周鸿秋. 工程勘探中稳态瑞雷波法解释理论的探讨[J]. 地球物理学报,1993,36 (1):96~105.
    [31] 黄嘉正,周鸿秋,关小平. 工程地质中瑞雷波勘探的理论初探[J]. 物探和化探,1991,15(4):268~277.
    [32] 崔占荣,张世洪,张俊喻. 瞬态瑞雷波勘探中一些问题的探讨[J]. 物探与化探,1995,19(5):367~377.
    [33] 崔建文,乔森,樊耀新. 瞬态面波勘探技术在工程地质中的应用[J]. 岩土工程学报,1996,18(3):33~40.
    [34] 夏宇靖.稳态瑞雷波法的勘探精度[J].工程勘探,1997,9 (2):58~62.
    [35] 祁生文,孙进忠,万志清. 瞬态瑞雷波勘探方法之一点改进[J]. 辽宁工程技术大学学报(自然科学版) .2001,20 (4):466~468.
    [36] 靳洪晓. 瞬态面波CT 研究-原理及其岩土工程勘探应用[D]: [硕士学位论文]. 北京:中国科学院地质研究所,1999.
    [37] 王兴泰,赵东. 瑞雷波勘探:应用、现状和问题[J]. 世界地质,1995,14(2):87~90.
    [38] 赵东,王光杰,王兴泰. 用遗传算法进行瑞雷波反演[J]. 物探与化探,1995,19(3):178~185.
    [39] Knopoff L. A matrix method for elastic wave problems[J].Bull seism soc Am.,1964,54(1):431~438.
    [40] Rosebaum J H. A note on the computation of rayleigh wave dispersion curves for layered elastic media [J]. Bull seismsoc Am.,1964,54 (3):1013~1019.
    [41] Dunkin J W. Computation of model solutions in layered elastic media at high frequencies[J]. Bull seism soc Am.,1965,(55) .
    [42] Abo-Zena. A dispersion function computation for unlimited frequency values[J]. Geophys J R. astrsoc,1979,(55) .
    [43] Schwab,F A,and Knopoff,L Seismic surface waves. Methods in Computational physics [M]. B A Bolt,ed.,Academic press,Inc.,San Diego,11:87~180.
    [44] Vretto C. In plane vibration of soil deposits with variable shear modulus I surface wave [J]. Int J Numer Methods Geotech,1990,(14):209~222.
    [45] Vretto C. Dispersive SH surface waves in soil deposits of variable shear modulus[J]. Soil dynamics and earthquake enginerring,1990,9 (5):255~264.
    [46] 陈云敏,吴世明. 成层地基的Rayleigh 波特征方程的解法[J]. 浙江大学学报. 1991,25 (1):40~52.
    [47] 夏唐代,张忠苗,吴世明. Rayleigh 面波法原理的数值模拟[J]. 浙江大学学报,30 (3):277~285.
    [48] Kirwood S C. The significance of isotropic inversion of anisotropic surface wave dispersion[J]. Geophys J R astrsoc.,1978,(55):131~142.
    [49] Addo KO,Robertson P K. Shearwave velocity measure ment of soils using Rayleigh waves[J]. Can Geotech J .,1992,29:558~568.
    [50] Gabriels P,Sneider R,Nolet G. In situ mearsurements of shearwave velocity in sediments with highermode Rayleigh waves[J]. Geophys Prospecting,1987,35,187~196.
    [51] Ganji V,Gucunski N,Nazarian S. Automated inversion procedure for spectral analysis of surface waves [J]. J of Geotechnical and Geoenvionmental engineering.,1998,757~770.
    [52] Gucunski N,Woods R D. Inversion of Rayleigh wave dispersion curve for SASW tests [J]. Soil Dyn and Earthquake Engrg.,1991,15:223~231.
    [53] Yuan D,Nazarian S. Automated surface wave method: Inversion technique [J]. J Geotech Engrg.,ASCE,1993,119(7):1112~1126.
    [54] Dorman J,Ewing M. Numerical inversion of seismic surface wave dispersion data and Crust Mantle structure in the New York-Pennsylvania area[J]. J Geophys Res,1962,67:5227- 5241.
    [55] Xia J,Miller R D,Park C B. Estimation of near-surface shearwave velocity by inversion of Rayleigh wave [J]. Geophysics,1999,64(3):691 -700.
    [56] Meier R W,Rix GJ . Initial study of surface wave inversion using artificial neural networks [J]. Geotechnical Testing Journal,1993,16(4): 425-431.
    [57] Yamanaka H,Ishida H. Application of genetic algorithms to an inversion of surface wave dispersion data [J]. Bull Seism Soc Am,1996,86 (2):436-444.
    [58] 石耀霖,金文. 面波频散反演地球内部构造的遗传算法[J]. 地球物理学报,1995,38(3):189-198.
    [59] 宋先海. 瑞雷波频散曲线的正反演研究[D].武汉:中国地质大学,2001.
    [60] Marquardt D W. An algorithm for least squares estimation of nonlinear parameters[J]. J Soc Indus Appl Math,1963,(2).
    [61] Golub G H,Reinsch C. Singular value decomposition and least square solution[J]. Numer. Math,1970,14: 403-420.
    [62] Schwab F,Knopoff L. Surfacewave dispersion computations[J].Bull Seism Soc Am,1970,60:321-344.
    [63] Park,C.B.,Miller,R.D.,and Xia,J.,2000,Multichannel analysis of surface-wave dispersion: Geophysics,in review.
    [64] Park,C.B.,Miller,R.D.,and Xia,J.,1999,Multichannel analysis of surface waves (MASW): Geophysics,64,800-808.
    [65] Park,C.B.,Miller,R.D.,and Xia,J.,1998,Imaging dispersion curves of surface waves on multi-channel record: Technical Program with biographies,SEG,68th Annual Meeting,New Orleans,Louisiana,1377-1380.
    [66] Park,C.B.,Miller,R.D.,Steeples,D.,and Black,R.,1996,Swept impact seismic technique(SIST): Geophysics,61,1789-1803.
    [67] 杨成林,葛宝来,王炎.SM98 瑞雷波仪测试原理及应用效果分析. 物探与化探.2000. 24(5).332~339.
    [68] 何发,李苍松,刘建军等. 声波探测技术的新发展及其应用,中国铁道科学1999.20( 4)83~87.
    [69] 赵晓豹,马良筠. 瞬态瑞雷波测试方法. 岩石力学与工程学报. 2001. 20(增1) 1127~1131.
    [70] 李锦飞,李人厚. 瑞利波勘探技术的发展与应用. 煤炭学报. 1997. 22( 2) 122~126
    [71] 黄润秋,余嘉顺.软弱夹层特性对地震波强度测定影响的模拟研究,成都工程地质学报,2003,11(03)P312-317.
    [72] 单娜琳,黄英娣. 软土地基强夯加固效果评价,桂林工学院学报[J],1997.10.
    [73] 宋先海,用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞雷波频散曲线,物探与化探[J],Vol.27,No.3
    [74] 汪银泉.山区软土地基处理:浅谈换土垫层法的应用.安徽安徽建筑,1997(4)P34-35
    [75] 黄黔桂,朱伟.汕汾高速公路软弱地基处理方案及施工控制措施.广东建筑机械与施工机械化,2002,19(101)P28-30
    [76] 王俊良,四川中部软地层造斜的特点.四川,钻采工艺,1995,18(3)P16-20
    [77] 刘小丽,周德培. 有软弱夹层岩体边坡的稳定性评价.成都西南交通大学学报,2002,37(4)P382-386.
    [78] 李正文,高分辨率地震勘探,成都:成都科技大学出版社,1993.
    [79] 李家彪等,多波束勘测原理技术与方法,北京:海洋出版社,1999.
    [80] 耿光旭,浅层地震反射处理系统的研制及应用效果,工程勘察,1994 年4 期.
    [81] 张军华等,小波变换方法在地震资料去噪和提高分辨率中的应用,石油大学学报,1997年第21 卷1 期.
    [82] 谢忠球等,复杂目标浅层地层反射法观察技术,中南工业大学学报,2000 年第31 卷6期.
    [83] 李文莲等,变倾角扫描提取有效信号技术及应用,勘探地球物理进展,2002.NO.25.02.
    [84] 王运生,瞬态面波法探测堤坝软弱层技术的研究与应用,人民黄河,1996 年12 期。
    [85] 刘云祯等,瞬态面波法的数据采集处理及其应用实例,物探与化探,1996 年第20 卷1期。
    [86] 李平等,地震面波频散的层析成像,东北地震研究,1998 年14 卷3 期。
    [87] 欧阳联华、王家林,一种高频面波频散函数的快速算法,物探化探计算技术,2002.03。
    [88] 朱介寿等,地震学中的计算方法,北京:地震出版社,1988。
    [89] 赵东,王光杰,王兴泰,孙仁国,用遗传算法进行瑞利波反演,物探与化探1995 年6月第19 卷第3 期178~185
    [90] 吴建平,明跃红,曾融生,遗传算法中的光滑约束反演及其在青藏高原面波研究中的应用,地震学报2001 年1 月第23 卷第1 期45~53
    [91] 叶文,罗黎.云南山间盆地城镇建设适宜性评价.云南云南地理环境研究,1994,6(12)P76-86
    [92] 祝光新.东西关水电站红层中软弱夹层分布特征.成都水电站设计,1996,12(3)P41-42
    [93] 赵华.对软弱岩层工程地质分类的探讨.河北河北水利,2003(9)
    [94] 赵永辉,万明浩等.高速公路软弱路基施工质量综合检测研究.上海物探与化探,2002,26(1)P79-82
    [95] 张留俊,王福胜.关于软弱土判别与处理的问题探讨.陕西中外公路,2003,23(3)P81-83.
    [96] 陈韶光,程志平,公路路基工程勘察的物探方法研究,桂林工学院学报[J]2000.5.
    [97] 陈云敏,吴世明. 成层地基的Rayleigh 波特征方程的解法[J]. 浙江大学学报. 1991,25 (1):40~52.
    [98] 夏唐代,张忠苗,吴世明. Rayleigh 面波法原理的数值模拟[J]. 浙江大学学报,30 (3):277~285.
    [99] 王运生,瞬态面波法探测堤坝软弱层技术的研究与应用,人民黄河,1996 年12 期。
    [100] 胡家富,温一波,谢应齐.利用地震面波频散反演岩石圈结构的奇异值分解算法.地球物理学报,1998,41(2):211~217
    [101] 石耀林,金文.面波频散反演地球内部构造的遗传算法.地球物理学报,1995,38(2):189~198
    [102] 薛琴访.场论.北京:地质出版社,1978.359~362
    [103] 崔建文,乔森,樊耀新.瞬态面波勘探技术在工程地质中的应用.岩土工程学报,1996,18(3):35~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700