用户名: 密码: 验证码:
当归补血总苷的研制及对实验性肺纤维化的干预作用和分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特发性肺纤维化(Idiopathic pulmonary fibrosis ,IPF)是一种原因不明、以弥漫性肺泡炎和肺泡结构紊乱最终导致肺间质纤维化为特征的疾病。主要临床表现是逐渐加重的呼吸困难,伴有刺激性干咳,病情一般持续进展,最终因呼吸衰竭而病死,其发病率和死亡率很高,预后极差。IPF的发病机制尚未明了,然而目前肺纤维化治疗尚无特效药物,IPF已成为临床治疗的难点。研究肺纤维化发病机理和寻找行之有效的治疗药物是目前医学界迫切需要解决的课题。
     中医经典名方当归补血汤由当归、黄芪组成,两者均有抗肺纤维化作用。前期研究表明,对于博莱霉素诱导的大鼠肺纤维化模型,当归补血总苷能明显减轻肺泡炎症和纤维化程度。本课题拟观察肺纤维化形成过程中胶原基质重塑在IPF发病机制中的动态变化,探索IPF防治新的作用靶点。同时在整体水平上研究当归补血总苷对IPF胶原基质重塑的调控作用从而探讨其对IPF的防治作用及机制,研究当归补血总苷对实验性肺纤维化形成过程中TGF-β1等细胞因子的影响,以及对MMPs和TIMPs局部表达失衡的调节作用,和其对TGF-β1/Smads信号转导通路的影响,为中医药益气活血协同抗肺纤维化提供现代科学依据。
     目的制备当归补血总苷并建立其质量控制标准,优选当归补血汤中有效部位的提取工艺,建立当归补血总苷HPLC指纹图谱,并以此考察当归补血总苷的质量。观察当归补血总苷对实验性肺纤维化大鼠肺系数及肺组织病理形态的影响以及血清中HA,LN,PCⅢ、CⅣ,TGF-β1,COLⅠ和IL-13水平的变化;探讨肺纤维化大鼠肺组织中MMP-1、MMP-9与TIMP-1 mRNA的改变,并观察当归补血总苷对肺纤维化大鼠肺组织、MMP-1、MMP-9与TIMP-1表达的影响;探讨PF模型中体内成纤维细胞表型转分化和TGF-β1-Smad3途径在肺纤维化发生发展中的作用,阐明当归补血总苷对肺成纤维细胞表型转分化及TGF-β/Smads信号转导通路的影响及其机制。
     方法采用薄层色谱法对当归补血总苷中的黄芪甲苷和阿魏酸进行定性鉴别;采用紫外分光光度法测定当归补血总苷的含量;采用HPLC法测定当归补血总苷中的黄芪甲苷、黄芪苷Ⅱ和阿魏酸的含量。设计L9(34)正交试验,采用HPLC法测定黄芪甲苷、阿魏酸的含量作为质控指标,考察乙醇浓度(A)、乙醇用量(B)、提取时间(C)和提取次数(D)4个因素对当归补血总苷提取的影响,优化提取工艺。采用HPLC-DAD,Diamonsil C18色谱柱(250 mm×4.6 mm, 5μm),乙腈―水二元梯度洗脱,流速1.0 mL·min-1,(λ=203 nm),柱温为30℃,建立了当归补血总苷的HPLC指纹图谱。180只Wistar大鼠随机分为正常对照组、模型对照组、强的松组和当归补血总苷大、中、小剂量组,每组30只。除正常对照组外,其他五组均采用经气管滴注博莱霉素A5建立大鼠肺纤维化模型,造模后第二日起当归补血总苷大、中、小剂量组每天用当归补血总苷(剂量64、32、16 mg·kg-1)灌胃,强的松组用醋酸强的松混悬液(剂量3 mg·kg-1)灌胃,每日一次,每组分别于7、14和28天随机处死10只大鼠采集肺组织,观察各组光镜、电镜(当归补血总苷组中剂量组)下的病理学变化以及比较各组肺系数,以及血清中HA,LN,PCⅢ、CⅣ,TGF-β1,COLⅠ和IL-13水平的变化。RT-PCR法检测当归补血总苷对肺纤维化大鼠肺组织MMP-1、MMP-9与TIMP-1 mRNA表达的影响;Western blotting和RT-PCR法分别检测大鼠正常组、模型组、当归补血总苷组不同组别中a-SMA、TGF-β、COLⅠ、Smad3、P-Smad3等蛋白及mRNA的表达。
     结果黄芪甲苷在0.85~6.76μg之间呈良好的线性关系(r=0.9992),平均回收率为97.53%,RSD为0.82%。黄芪苷Ⅱ在1.05~8.4μg之间呈良好的线性关系(r=0.9994),平均回收率为94.82%,RSD为2.16%。阿魏酸在0.07~0.53μg之间呈良好的线性关系(r=0.9998),平均回收率为99.74%,RSD为1.62%。最佳提取条件为采用8倍量70%乙醇提取2次,每次2h。建立的当归补血总苷的HPLC指纹图谱确定了12个共有峰,各峰相对保留时间的RSD在0.2~1.0%之间,相对峰面积的RSD在1.6 ~3.2%之间。结果发现,不同批次当归补血总苷质量基本稳定,通过HPLC指纹图谱能够较好地控制其质量。与模型对照组相比,TGDGBX (16-64 mg·kg-1)及强的松组肺系数明显降低(P<0.01),肺组织病理观察显示肺泡炎及肺纤维化程度均明显减轻;TGDGBX (16-64 mg·kg-1)能显著降低BLM诱导的PF大鼠血清中升高的的HA,LN,PCⅢ和CⅣ水平,显著降低PF大鼠血清中IL-13含量,且造模后7、14和28 d三个时间点均有效。TGDGBX (16-64 mg·kg-1)可抑制BLM诱导的肺纤维化大鼠肺组织在肺纤维化不同阶段MMP-1 mRNA、MMP-9 mRNA的表达,提高TIMP-1mRNA的表达,使MMPs/TIMPs表达趋于平衡。进一步研究发现,TGDGBX (16-64 mg·kg-1)可以显著降低PF大鼠血清中升高的TGF-β1和COLⅠ水平。TGDGBX (16-64 mg·kg-1)可明显抑制肺纤维化不同阶段肺组织α-SMA和TGF-β1的表达,抑制肺组织升高的α-SMA、TGF-β1、COLⅠmRNA和蛋白的表达水平;下调肺纤维化不同阶段肺组织升高的Smad 3、P-Smad 3蛋白和Smad3 mRNA水平。
     结论该提取工艺稳定性和重现性良好,简便,快速,可行;本方法制备的TGDGBX质量可控,检测方法精密度、重现性良好,准确,适用于TGDGBX的质量控制。TGDGBX能减轻肺泡炎性水肿、保持肺泡结构及阻抑纤维化形成,能够明显减少博莱霉素诱导肺纤维化大鼠ECM的生成,提示其对肺纤维化有一定防治作用。TGDGBX抗PF可能与其降低血清中升高的TGF-β1水平、促进COLⅠ胶原降解作用有关。提示TGDGBX可能通过对调节MMP1、MMP9/TIMP1表达实现对ECM重塑的调控;TGDGBX可通过TGF-β1环节下调Smad3和P-Smad 3表达,降低COLⅠ表达,从而减少ECM胶原沉积,发挥抗PF作用。但TGF-β1/Smads的改变与MMPs/TIMPs水平的相关性等尚需进一步研究。
Idiopathic pulmonary fibrosis (IPF), caused by unidentified reasons, is a kind of disease featured in diffuse alveolitis and the disordered structure of alveolus that finally lead to the fibrosis of pulmonary interstitial substance. Its major clinical manifestations include increasingly worsening breathing difficulty accompanied by irritable dry cough, progressive development and death due to breathing failure finally.
     IPF is marked by higher rates of morbidity and mortality and extremely poor prognosis and its pathogenesis has not been clarified. Even worse, there is no highly effective medicine to treat pulmonary fibrosis and IPF has been a difficult challenge in clinical care. Therefore, it is urgent for medical researchers to study the pathogenesis of pulmonary fibrosis and seek effective medicine to treat the disease.
     The increasingly rising cases of idiopathic pulmonary fibrosis have caused serious consequences and it is of great significance to seek effective medicines of low toxicity. DangGui BuXue Decoction, the classic recipe of traditional Chinese medicine, contains angelicae,radix and radix astragali, both of which can fight against pulmonary fibrosis. Previous studies indicate that the total glycosides of DangGui BuXue Decoction can obviously relieve the inflammation of pulmonary alveoli and the severity of pulmonary fibrosis according to the pattern of rats’ pulmonary fibrosis induced by the bleomycetin. This paper intends to search the new targets of preventing and curing IPF through observing the dynamic changes of the collagen matrix’remodeling in the pathogenesy of IPF. At the same time, it has also explored the preventive and curing functions and mechanisms on IPF of the total glycosides of DangGui BuXue Decoction by studying its coordinating functions on the collagen matrix’s remodeling of IPF on the incorporated, molecular levels and the effect of the signals’transmitting access, to provide modern scientific evidence of the traditional Chinese medicine’s invigorating and blood-activating functions in concurrently treating IPF.
     Objective to prepare the Total Glucosides of DangGui BuXue Decoction and set up the standard of controlling its quality; to optimize the extracting technique of active sites of DangGui BuXue Decoction; to set up the finger print of HPLC in the Total Glucosides of DangGui BuXue Decoction and test the quality of the Total Glucosides of DangGui BuXue Decoction; to observe the effects of the Total Glucosides of DangGui BuXue Decoction on the lung index and pulmonary pathology and histomorphology of experimental rats with pulmonary fibrosis and the changes in serum levels of HA,LN,PCⅢ、CⅣ,TGF-β1,COL and IL-13; to explore the expressions of MMP-1、MMP- 9and TIMP-1 mRNA in the pulmonary tissues of the rats with pulmonary fibrosis and observe how the Total Glucosides of DangGui BuXue Decoction affects the pulmonary tissues and the expressions of MMP-1、MMP-9 and TIMP-1; to probe the fibroblast phenotype transdifferentiation in vivo of PF model and the role played by the access of TGF-β1-Smad3 in the formation and development of pulmonary fibrosis, thus to illustrate the effects and mechanisms of the Total Glucosides of DangGui BuXue Decoction on fibroblast phenotype transdifferentiation in vivo and the signal transduction path of TGF-β/Smads.
     Methods Thin-layer chromatography (TLC) was adopted to conduct qualitative identification of the astragalosideⅣand ferulaic acid in the Total Glucosides of DangGui BuXue Decoction; ultraviolet spectrophotometry was applied to measure the content of the total glucosides of DangGui BuXue Decoction; HPLC was used to measure the contents of the astragalosideⅣ, astragalosideⅡand ferulaic acid in TGDGBX to use them as the index of quality control. Orthogonal experiment was designed to explore the effects of four factors-the alcoholic concentration, alcoholic volume, extracting time and times of extracting-on the extraction of TGDGBX by employing HPLC to measure the contents of the astragalosideⅣand ferulaic acid, hence to optimize the extracting technique. The HPLC finger print of TGDGBX was set up by HPLC-DAD: the chromatographic column,Diamonsil C18(250 mm×4.6 mm, 5μm, 30℃)and bidimensional gradient elution using methyl cyanide-water (flowing speed 1.0 mL·min-1,λ=203 nm). 180 Wistar rats were randomly divided into normal control group, model group, cortisone group, and TGDGBX (16,32 and 64 mg·kg-1) groups respectively. With the exception of the normal control group, the other five groups were infused with bleomycin A5 through trachea to build models of the rats with pulmonary fibrosis. And from next day on after the setting-up of the animal models, the three groups treated with different dosages of TGDGBX undertook intragastric administration everyday of TGDGBX (64、32、16 mg·kg-1 for the high, moderate and low dosages respectively) and the cortisone group everyday undertook intragastric administration of suspl. of Prednisoni Acetas. On day 7, 14 and 28, lung tissues were collected by randomly killing 10 rats of each group, and the histopathology changes of the TGDGBX groups were observed under the light microscope and electron microscope and lung index in each group were compared. And the levels of HA,LN,PCⅢ、CⅣ,TGF-β1,COLⅠand IL-13 in serum were also measured. RT-PCR was used to check the effects of TGDGBX on the expressions of TGF-β1、a-SMA、COLⅠ、MMP-1、MMP-9 and TIMP-1 mRNA in the lung tissues of rats with pulmonary fibrosis; Western blotting were employed accordingly to measure the expressions of proteins such as a-SMA, COLⅠ,TGF-β1, Smad3, P-Smad3 of all six groups.
     Results AstragalosideⅣshowed good linear correlation between 0.85 and 6.76μg (r=0.9992), with average recovery rate 97.53% and RSD 0.82%. AstragalosideⅡindicated favorable linear correlation between1.05 and 8.4μg ((r=0.9994), with average recovery rate 94.82% and RSD 2.16%. Ferulaic acid demonstrated good linear correlation between 0.07 and 0.53μg (r=0.9998), with average recovery rate 99.74% and RSD 1.62%. The optimal extracting condition could be achieved by using eight times 70% ethanol and extracting twice, and 2 hours every time. The HPLC finger print of TGDGBX had confirmed 12 co-peaks and RSD the of relative retaining time of each peak ranged between 0.2~1.0%, and RSD of relative areas of peaks ranged from 1.6 ~3.2%. The qualities of TGDGBX in different groups were stable and their qualities could be controlled by the HPLC finger print. Compared with the model group, the groups treated with TGDGBX (16-64 mg·kg-1) and cortisone group showed obvious reduction of lung index ((P<0.01). And histopathology observation of lung tissues indicated that there were considerable decreases in the severity of alveolitis and pulmonary fibrosis; TGDGGX(16-64 mg·kg-1) could effectively reduce the rising serum levels of HA,LN,PCⅢand CⅣin rats with pulmonary fibrosis induced by BLM, and evidently decrease the serum content of IL-13 in the PF rats. And this worked in three time points, d7, 14 and 28 after the setting up of the animal model. TGDGBX (16-64 mg·kg-1) could inhibit the expressions of MMP-1 mRNA、MMP-9 mRNA in different stages of pulmonary fibrosis in lung tissues of rats with pulmonary fibrosis induced by BLM, increase the expression of TIMP-1mRNA, and balance the expression of MMPs/TIMPs. Further studies found that TGDGBX (16-64 mg·kg-1) could effectively depress the levels of rising TGF-β1 and COLⅠin the serum of the rats with pulmonary fibrosis; TGDGBX (16-64 mg·kg-1) could evidently suppress the expressions ofα-SMA and TGF-β1 in lung tissues at the various stages of the pulmonary fibrosis and the elevated expressions ofα-SMA, TGF-β1, COLⅠmRNA and proteins; it could remarkably inhibit the elevated level of Smad3 and P-Smad3 proteins and Smad3 mRNA at the different stages of pulmonary fibrosis.
     Conclusions This simple, fast and feasible extracting technique shows favorable stability and reproducibility. TGDGBX prepared through this way has controllable quality, precise measuring method, plus good and accurate reproducibility. It can relieve the inflammatory edema of alveolus, retain the structure of alveolus and halt the formation of pulmonary fibrosis. It also can evidently reduce the development of ECM of rats with pulmonary fibrosis induced by bleomycin and demonstrates considerable effect on the treatment of the pulmonary fibrosis. There is great possibility that the resistance of the TGDGBX on PF has something to do its reducing the rising level of TGF-β1 in serum and promoting the decomposition of the COLⅠcollagen. TGDGBX may control the remodeling process of ECM by adjusting the expression of MMP1 and MMP9/TIMP1; it can down regulation the expression of Smad3 and P-Smad3 by the link of TGF-β1, decrease the expression of COLⅠto reduce the sedimentation of the ECM collagen and play a role in fighting against PF. However, the correlation between the change of TGF-β1/Smads and the level of MMPs/TIMPs is to be further explored in the future studies.
引文
1. Ask K, Martin GE, Kolb M, Gauldie J.Targeting genes for treatment in idiopathic pulmonary fibrosis: challenges and opportunities, promises and pitfalls.Proc Am Thorac Soc. 2006; 3(4):389-93. Review.
    2.魏路清,董彦.肺纤维化发病机制及治疗策略的新观念.国外医学.呼吸系统分册2003,23(I):38-41;
    3.焦扬,关天宇,周平安.肺间质纤维化的病机特点与辨病论治.中国中医基础医学杂志, 2006,12: 897-898;
    4.徐志瑛.肺间质纤维化的辨证施治.浙江中西医结合杂志, 2008, 05:265-267;
    5.杨惠琴,李风森.试论益气活血法治疗肺间质纤维化.新疆医科大学学报, 2008,06: 737;
    6.刘毅波.血瘀证的病理及活血化瘀中药的临床应用.天津中医药, 2008,03:246-248;
    7.柴文戍,李永春,王洪新,郭敏,李艳勤.中药当归治疗肺间质纤维化的实验研究.中国药理学通报,2003,19(7):819-22。
    8.刘巨源,陈永凤,郭萍,高新平,路成吉.黄芪丹参甘草等中药对大鼠肺纤维化的影响.新乡医学院学报, 1999, 16 (4) : 292-95。
    9.许济群,王锦之.方剂学.[M]上海:上海科技出版社1995,121;
    10.刘伯成,刘良,王永禄,陈国广.韦萍.当归补血汤的药理学研究进展.甘肃中医学院学报, 2005,22(5): 48-50;
    11.国家药典委员会.中华人民共和国药典.[M]:一部.北京:化学工业出版社,2005, 142-143;
    12.国家药典委员会.中华人民共和国药典.[M]:一部.北京:化学工业出版社,2005, 249-250;
    13.高建,李俊,麻兵继,程文明,金涌,吕雄文,闫晨,王建青,邵旭,葛少祥.正交试验法优选玉屏风总苷的提取工艺.《中国实验方剂学杂志》2007,13(12) :15~17;
    14.谢秀琼.中药新制剂开发与应用.北京:人民卫生出版社(第2版),2002:136;
    15.高建,李俊,童成亮,金涌,吕雄文,过林,夏源.玉屏风散中总苷的制备及含量测定.《中国中药杂志》,2006,31(6):515~516。
    16.魏智勇,王俊华,边景,毕丽萍,刘芳,周晶,张庆伟.高效液相色谱法测定抗纤丸中芍药苷、阿魏酸和黄芩苷的含量.中国医院药学杂志, 2008, 19: 1631-1633;
    17.赵灵芝朱丹妮严永清HPLC-ELSD法测定黄芪中黄芪甲苷的含量药物分析杂志,1999,19(6):403-405
    18.熊义涛,蒋启明,陶福华.夕阳春口服液中黄芪总皂苷的含量测定.中国医院药学杂志,1995,15(12):553.
    19.张韻慧,蔡德富,张丹,王妍,肖莉,晋兴华,赵振宇.HPLC法同时测定速效心痛气雾剂中阿魏酸和丹皮酚含量.药物分析杂志, 2009,03: 378-380;
    20.江燕,晁若冰.黄芪药材中黄芪甲苷和总皂苷含量的比较.华西药学杂志,2007, 22 (3) : 322~324
    21.唐军.比色法测定黄芪中黄芪总皂苷含量.安徽中医学院学报2004;23(5):37-38;
    22.陈园,陶艳艳,刘成海.当归补血汤及其单味药抗肝纤维化研究进展.上海中医药杂志, 2008,5:92-94;
    23.王洋,陈涛,李进.黄芪药材指纹图谱的研究进展.时珍国医国药.2007,18(11):2718-2719;
    24.丰加涛,金郁,王金成,肖远胜,梁鑫淼.基于定量指纹图谱技术的中药质量控制.色谱.2008,26 (2):180~185;
    25.安卓玲.中药质量标准与现代分析技术在中药指纹图谱中的应用.黑龙江医药.2007,20(1):45-48。
    1. Noble PW, Homer RJ. Idiopathic pulmonary fibrosis: new insights into pathogenesis. Clin Chest Med. 2004; 25(4):749-58, vii. Review.
    2.魏路清,董彦.肺纤维化发病机制及治疗策略的新观念.国外医学.呼吸系统分册2003,23(I):38-41;
    3.柴文戍,李永春,王洪新,郭敏,李艳勤.中药当归治疗肺间质纤维化的实验研究.中国药理学通报,2003,19(7):819-22。
    4.刘巨源,陈永凤,郭萍,高新平,路成吉.黄芪丹参甘草等中药对大鼠肺纤维化的影响.新乡医学院学报, 1999, 16 (4) : 292-95。
    5.陈园,陶艳艳,刘成海.当归补血汤及其单味药抗肝纤维化研究进展.上海中医药杂志, 2008,5:92-94;
    6.Sullivan DE,Ferris M,Pociask D,Brody AR. Tumor necrosis factor-alpha induces transforming growth factor-β1 expression in lung fibroblasts through the extracellular signal -regulated kinase pathway. Am J Respir Cell Mol Biol. 2005; 32:342 - 49.
    7. Barbarin V, Xing Z, Delos M, Lison D, Huaux F. Pulmonary over expression of IL - 10 augments lung fibrosis and Th2 responses induced by silica particles. Am J Physiol Lung Cell Mol Physiol. 2005; 288 (5): L841 - L848.
    8. Ask K, Martin GE, Kolb M, Gauldie J.Targeting genes for treatment in idiopathic pulmonary fibrosis: challenges and opportunities, promises and pitfalls.Proc Am Thorac Soc. 2006; 3(4):389-93. Review.
    9. Noble PW, Homer RJ. Idiopathic pulmonary fibrosis: new insights into pathogenesis. Clin Chest Med. 2004; 25(4):749-58, vii. Review.
    10. Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005; 166(5): 1321 - 32.
    11. Saydain G, Islam A, Afessa B, Ryu JH, Scott JP, Peters SG. Outcome of patients with idiopathic pulmonary fibrosis admitted to the intensive care unit. Am J Respir Crit Care Med. 2002; 166(6):839-42
    12. Bhatt N, Baran CP, Allen J, Magro C, Marsh CB. Promising pharmacologic innovations in treating pulmonary Fibrosis. Current Opinion in Pharmacology, 2006;6: 284–92.
    13. Marchand-Adam S, Plantier L, Bernuau D, Legrand A, Cohen M, Marchal J, Soler P, Lesèche G, Mal H, Aubier M, Dehoux M, Crestani B. Keratinocyte growth factor expression by fibroblasts in pulmonary fibrosis: poor response to interleukin-1beta. Am J Respir Cell Mol Biol. 2005; 32 (5): 470 - 77.
    14. Kjetil Ask, Philippe Bonniaud, Katja Maass, Oliver Eickelberg, Peter J. Margetts, David Warburton, John Groffen, Jack Gauldie, Martin Kolb. Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1 but not TGF-beta 3. The International Journal of Biochemistry & Cell Biology. 2008; 40(3):484-95.
    15. Katerina M. Antoniou, Athanasia Pataka, Demosthenes Bouros, Nikolaos M. Siafakas. Pathogenetic pathways and novel pharmacotherapeutic targets in idiopathic pulmonary fibrosis. Pulmonary Pharmacology & Therapeutics.2007, 20 : 453–461.
    16. Xiuxia Zhou, Haizhen Hu, Mai-Lan N. Huynh, Chakradhar Kotaru, Silvana Balzar, John B. Trudeau, and Sally E. Wenzel, Pittsburgh,Pa, and Denver, Colo. Mechanisms of tissue inhibitor of metalloproteinase 1 augmentation by IL-13 on TGF- beta 1- stimulated primary human fibroblasts. J Allergy Clin Immunol. 2007; 119(6):1388-97.
    1. Sacco O, Silvestri M, Sabatini F, Sale R, Defilippi AC, Rossi GA. Epithelial cells and fibroblasts: structural repair and remodelling in the airways. Paediatr Respir Rev. 2004; 5(Suppl A):35-40.
    2. Antoniou KM, Alexandrakis MG, Siafakas NM, Bouros D. Cytokine network in the pathogenesis of idiopathic pulmonary fibrosis. Sarcoidosis Vase Diffuse Lung Dis. 2005; 22(2):91 -104. Review.
    3. Ask K, Martin GE, Kolb M, Gauldie J.Targeting genes for treatment in idiopathic pulmonary fibrosis: challenges and opportunities, promises and pitfalls.Proc Am Thorac Soc. 2006; 3(4):389-93. Review.
    4. Noble PW, Homer RJ. Idiopathic pulmonary fibrosis: new insights into pathogenesis. Clin Chest Med. 2004; 25(4):749-58, vii. Review.
    5. Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005; 166(5): 1321 - 32.
    6.Sullivan DE,Ferris M,Pociask D,Brody AR. Tumor necrosis factor-alpha induces transforming growth factor-β1 expression in lung fibroblasts through the extracellular signal -regulated kinase pathway. Am J Respir Cell Mol Biol. 2005; 32:342 - 49.
    7. Barbarin V, Xing Z, Delos M, Lison D, Huaux F. Pulmonary over expression of IL-10 augments lung fibrosis and Th2 responses induced by silica particles. Am J Physiol Lung Cell Mol Physiol. 2005; 288 (5): L841 - L848.
    8. Gail E.M. Martin, Kjetil Ask, Sarah E. Gilpin, Martin Kolb, Jack Gauldie.The transforming growth factor-beta family and pulmonary fibrosis.Drug discovery today.2006;1:99-103.
    9. Sheppard D.Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis.Proc Am Thorac Soc. 2006 ;3(5):413-7.
    10. Marchand-Adam S, Plantier L, Bernuau D, Legrand A, Cohen M, Marchal J, Soler P, Lesèche G, Mal H, Aubier M, Dehoux M, Crestani B. Keratinocyte growth factor expression by fibroblasts in pulmonary fibrosis: poor response to interleukin-1beta. Am J Respir Cell Mol Biol. 2005; 32 (5): 470 - 77.
    11. Yang K, Palm J, K?nig J, Seeland U, Rosenkranz S, Feiden W, Rübe C, Rübe CE.Matrix Metallo-Proteinases and their tissue inhibitors in radiation-induced lung injury.Int J Radiat Biol. 2007 Oct;83(10):665-76.
    12.Manoury B, Nénan S, Guénon I, Lagente V, Boichot E.Influence of early neutrophil depletion on MMPs/TIMP-1 balance in bleomycin-induced lung fibrosis.Int Immunopharmacol. 2007;7(7):900-11.
    13. Fu JH, Xue XD.Gene expressions and roles of matrix metalloproteinases-8 and tissue inhibitor of metalloproteinases-1 in hyperoxia-induced pulmonary fibrosis in neonatal rats.Zhongguo Dang Dai Er Ke Za Zhi. 2007;9(1):1-5.
    14. Saydain G, Islam A, Afessa B, Ryu JH, Scott JP, Peters SG. Outcome of patients withidiopathic pulmonary fibrosis admitted to the intensive care unit. Am J Respir Crit Care Med. 2002; 166(6):839-42
    15. Bhatt N, Baran CP, Allen J, Magro C, Marsh CB. Promising pharmacologic innovations in treating pulmonary Fibrosis. Current Opinion in Pharmacology, 2006;6: 284–92.
    16. Xiuxia Zhou, Haizhen Hu, Mai-Lan N. Huynh, Chakradhar Kotaru, Silvana Balzar, John B. Trudeau, and Sally E. Wenzel, Pittsburgh,Pa, and Denver, Colo. Mechanisms of tissue inhibitor of metalloproteinase 1 augmentation by IL-13 on TGF- beta 1- stimulated primary human fibroblasts. J Allergy Clin Immunol. 2007; 119(6):1388-97.
    17. Kjetil Ask, Philippe Bonniaud, Katja Maass, Oliver Eickelberg, Peter J. Margetts, David Warburton, John Groffen, Jack Gauldie, Martin Kolb. Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1 but not TGF-beta 3. The International Journal of Biochemistry & Cell Biology. 2008; 40(3):484-95.
    18. Torsten R. Dunkern, Daniel Feurstein, Giovanni A. Rossi,Federica Sabatini, Armin Hatzelmann.Inhibition of TGF-βinduced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase.European Journal of Pharmacology , 2007;572 :12-22.
    19. Yun Zhao and Dawn A. Geverd Regulation of Smad3 expression in bleomycin-induced pulmonary fibrosis: a negative feedback loop of TGF-b signaling.Biochemical and Biophysical Research Communications, 2002; 294: 319-323.
    20. Evans RA, Tian YC, Steadman R, Phillips AO. TGF-beta1 mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp Cell Res. 2003; 282(2):90-100.
    21. Antoniou KM, Pataka A, Bouros D, Siafakas NM. Pathogenetic pathways and novel pharmacotherapeutic targets in idiopathic pulmonary fibrosis. Pulmonary Pharmacology & Therapeutics.2007; 20(5):453-61.
    22. Jack Gauldie, Philippe Bonniaud, Peter Margetts,Patricia Sime, Kjetil Ask, Martin Kolb.TGFβand Smad3 link inflammation toprogressive fibrosis.International Congress Series, 2007;1302:103-113
    23.刘伯成,刘良,王永禄,陈国广.韦萍.当归补血汤的药理学研究进展.甘肃中医学院学报, 2005,22(5): 48-50;
    24.焦扬,关天宇,周平安.肺间质纤维化的病机特点与辨病论治.中国中医基础医学杂志, 2006,12: 897-898;
    25. Annie Pardo, Moisés Selman.Idiopathic pulmonary fibrosis: new insights in its pathogenesis. The International Journal of Biochemistry & Cell Biology . 2002;34 :1534–1538.
    26.Sergei P. Atamas, Barbara White.Cytokine regulation of pulmonary fibrosis in scleroderma. Cytokine & Growth Factor Reviews, 2003; 14 :537–550.
    27.徐志瑛.肺间质纤维化的辨证施治.浙江中西医结合杂志, 2008, 05:265-267;
    28.杨惠琴,李风森.试论益气活血法治疗肺间质纤维化.新疆医科大学学报, 2008,06: 737;
    29.刘毅波.血瘀证的病理及活血化瘀中药的临床应用.天津中医药, 2008,03:246-248;
    30.许济群,王锦之.方剂学.[M]上海:上海科技出版社1995,121;
    31.柴文戍,李永春,王洪新,郭敏,李艳勤.中药当归治疗肺间质纤维化的实验研究.中国药理学通报,2003,19(7):819-22。
    32.刘巨源,陈永凤,郭萍,高新平,路成吉.黄芪丹参甘草等中药对大鼠肺纤维化的影响.新乡医学院学报, 1999, 16 (4) : 292-95。
    33.陈园,陶艳艳,刘成海.当归补血汤及其单味药抗肝纤维化研究进展.上海中医药杂志, 2008,5:92-94;
    34.George J. Brewer, Robert Dick, Matthew R. Ullenbruch, Hong Jin,Sem H. Phan.Inhibition of key cytokines by tetrathiomolybdate in the bleomycin model of pulmonary fibrosis.Journal of Inorganic Biochemistry, 2004; 98:2160–2167.
    35.Tian XL, Yao W, Guo ZJ, Gu L, Zhu YJ.Low dose pirfenidone suppresses transforming growth factor beta-1 and tissue inhibitor of metalloproteinase-1, and protects rats from lung fibrosis induced by bleomycina.Chin Med Sci J. 2006 ;21(3):145-51.
    36.Wei LQ, Li ZH, Kang J, Hou XM, Yu RJ.Changes of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in the bronchoalveolar lavage fluid and the serum of patients with idiopathic pulmonary fibrosis.Zhonghua Jie He He Hu Xi Za Zhi. 2006 ;29(6):399-402.
    37.Manoury B, Caulet-Maugendre S, Guénon I, Lagente V, Boichot E.TIMP-1 is a key factor of fibrogenic response to bleomycin in mouse lung.Int J Immunopathol Pharmacol. 2006;19(3):471-87.
    38.Yang K, Liu L, Zhang T, Wu G, Ruebe C, Ruebe C, Hu Y.TGF-betal transgenic mouse model of thoracic irradiation: modulation of MMP-2 and MMP-9 in the lung tissue.J Huazhong Univ Sci Technolog Med Sci. 2006;26(3):301-4.
    39.Gueders MM, Foidart JM, Noel A, Cataldo DD.Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases.Eur J Pharmacol. 2006;533(1-3):133-44.
    40.Lagente V, Manoury B, Nénan S, Le Quément C, Martin-Chouly C, Boichot E.Role of matrix metalloproteinases in the development of airway inflammation and remodeling.Braz J Med Biol Res. 2005;38(10):1521-30.
    41.Li SQ, Zhang J, Li ZD, Li HZ, Qi HW.The changes of expression level of matrix metalloprotease 9 and its inhibitor (TIMP-1) in murine pulmonary fibrosis model.Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2004;20(6):723-6.
    42.曾鸣,范贤明.成纤维细胞、肌成纤维细胞与肺纤维化.国外医学(内科学分册),2006,33(11):485-88。
    43. Aline Lourenso Baptista,Edwin Roger Parra ?,Joa?o Valente Barbas Filho,Ronaldo Adib Kairalla ?,Carlos Roberto Ribeiro de Carvalho ?.Vera Luiza Capelozzi Structural Features of Epithelial Remodeling in Usual InterstitialPneumonia Histologic Pattern.Lung (2006) 184:239–244
    44. Oggionni T, Morbini P, Inghilleri S, Palladini G, Tozzi R, Vitulo P, Fenoglio C, Perlini S, Pozzi E.Time course of matrix metalloproteases and tissue inhibitors in bleomycin-induced pulmonary fibrosis. Eur J Histochem. 2006;50(4):317-25.
    45. Roberts AB, Piek E, B?ttinger EP, Ashcroft G, Mitchell JB, Flanders KC.Is Smad3 a major player in signal transduction pathways leading to fibrogenesis?Chest. 2001;120(1 ):43-47.
    46. Razzaque MS, Taguchi T.Pulmonary fibrosis: Cellular and molecular events. Pathol Int. 2003;53(3):133-45.
    47. Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M, Lavery C, Margetts PJ, Roberts AB, Gauldie J.Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis.J Immunol. 2004;173(3):2099-108.
    [1] Orme LM. Beyond BCG:the potential for a more effective TB vaccine[J]. Molecular Medicine Today, 1999, 5:487
    [2] Agostini C, Siviero M, Semenzato G. Immune effector cells in idiopathic pulmonary fibrosis[J]. Curr Opin Pulm Med, 1997, 3(5):348-355
    [3] SEMENZATO G, ADAM I F, MASCH IO N, et al. Immunemechanisms in interstitial lung disease[J]. Allergy, 2000, 55(12):1103-1120.
    [4]甘红英,刘学军.转化生长因子TGF-β及其受体在肺纤维化中的作用[J].估计呼吸杂志,2006,26(12):860-865
    [5] Border NA, Ruolanti E. Transforming growth foctor-βin disease: the tissue repair [J]. J Chin Invest,1992,90(1):1
    [6] HEDIN U, THYBERG J, ROY J, et al. Role of tyrosine kinases iextracellular matrix-mediated modulation of arterial smooth muscle cell phenotype [J]. Arterioscler Thromb Vasc Biol, 1997, 17(10):1977-1984.
    [7] Ebner R, ChenR H, Lawlers HU, et al. Determination of typeⅠreceptor specificity by the typeⅡreceptors for TGF-βor activin [J]. Science, 1993, 62(3):900
    [8] Chen C,Wang XF, Sun L. Expression of transforming growth factor beta (TGF-beta) typeⅢreceptor restores autocrineTGF beta 1 activity in human breast cancer MCF-7 cells[J].J Biol Chem, 1997,272:12862-12867
    [9]张平,王金泉.转化生长因子TGF-β族信号的转导[J].生物化学与生物物理进展,2000,27(4)375-378
    [10] Marimoto D, Kim H, Oyabu T. Effect of long-term inhalation of toner on extracellular matrix in the lung of rat invivo [J]. Inhal Toxical, 2005,17(3):153-159
    [11] Chen W, Fu X, Sheng Z.Review of current Progress in the structure and function of Smad Proteins[J]..Chin Med J (Engl),2002,115(3):446-450
    [12] Wrana J L, Attisano L.The Smad pathway Cytokine Growth Factor[J]. Rev, 2000, 11(1-2):5-13
    [13]Haysshi H,Abdollah s,Qiu Yet al.The MAD-related protein Smad7 associated with the TGF beta recoptor and functions as an antogonist of TGF beta signaling. Cell,1997,89(7):1165-1173
    [14] Zimmerman C M,Padgett R W. Transforming growth factorβSignaling mediators and modulators.Gene,2000,249(l-2):17-30
    [15]赵俊芳,刘成,刘成海. Smads蛋白及其介导的TGF-β胞内信号传导[J].生物化学与生物物理进展,2001,28(4):473
    [16] Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-β/SMAD signaling by the interferon-γ/STAT pathway[J].Nature, 1999,397(6721): 710-713
    [17] Xiao Hua, Zhang Ping. Transforming Growth Factor-beta Signaling Pathway and Its Therapy of Target Pulmonary Fibrosis[J]. Progress in Modern Biomedicine, 2008, 8(4):766-768
    [18] Flanders KC, Smads3 as a medator of fibrotic response[J]. International Journal of Experimental Pathology. 2004, 85(2):47-64
    [19] Roberts AB, Piek E, Bottinger EP, et al. Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? [J]. Chest, 2001, 120(Suppl 1):43S-47S
    [20] Nakao A,Fujii M, Matsumura R, et al. Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice[J]. Clin Invest, 1999,104(1):5-11
    [21] Massague J. TGF-βSignal Transduction[J]. Annu Rev Biochem, 1998,67:753-791
    [22] Furukawa F,Matsuzaki K,Mori S,Tahashi Y,et al.P38 MAPK mediates fibrogenic signal through Smad3 Phosphorylation in rat myofibroblasts [J]. Hepatology, 2003,38:879-889
    [23] Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage [J] . Nat Rev Mol Cell Biol,2004,5:875-885
    [24]冯莉,王献华.转化生长因子-β1介导的ERK/MAPK信号通路与肺纤维化[J].中国煤炭工业医学杂志,2008,11(10):1261-3261
    [25] Khalil N, Xu Y D, O′Connor R, et al. Proliferation of pulmonary interstitial fibroblasts ismediated by transforming growth factor- tal-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK[J]. J B iol Chem , 2005, 280 (52) : 43000 - 9.
    [26] Hashimoto S, Gon Y, Takeshita I,et al. Transforming growth factor beta 1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway [J]. Am J Respir Crit Care Med,2001 ,163(1):152-157
    [27] Robledo RF,Buder_Hoffmann SA,Cumminsa AB,et al. Increased phosphorylated extracellular signal-regulated kinase immunoreactivity associated with proliferative and morphologic lung alterations after chrysotile asbestos inhalation in mice[J]. Am J Pathol, 2000,156 (4):1307-1316.
    [28] Andreas A, Dagmar S, Thomas R, et al. Transforming growth factor-β1-induced activation of the raf-MEK-MAPK signaling pathway in rat lung fibroblasts via a PKC-dependent mechanism[J]. Biochem Biophys Res Commun, 1998, 249(2):456-460.
    [29] Mucsi I, Skorecki KL, Goldberg HJ. Extracellular signal regulated kinase and the small GTP-binding protein, rac, contribute to t he effects of transforming growth factor-β1 on gene expression[J]. J Biol Chem, 1996,271:16567– 16572
    [30] Ramirez AM , Shen Z , Ritzent haler JD , et al . Myofibroblast transdifferentiation in obliterative bronchiolitis : tgf-beta signaling through smad3-dependent and– independent pathways[J ] . Am J Transplant ,2006 ,6 (9) :2080 - 2088
    [31] Hu Y,Peng J ,Feng D ,et al . Role of ext racellular signal - regulated kinase , p38kinase , and activator protein - 1 in t ransforming growt h factor - beta1 - induced alpha smooth muscle actin expression in human fetal lung fibroblast s in vitro [ J ] . Lung ,2006 ,184 (1) :33 - 42
    [32] Liu Tao, Song Liang-Wen. Molecular mechanisms and early prevention and treatment of pulmonary fibrosis[J]. Bull Acad Mil Med Sci,2003,27(4):312-316
    [33] Kim OS, Park EJ, Joe EH, et al. JAK-STAT signaling mediates Gangliosides-induced inflammatory responses in brain microglial cells [J]. J Biol Chem, 2002, 277 (43) : 40594-40601.
    [34] Ogata H, Chinen T, Yoshida T,et al.Loss of SOCS3 in thel iver Promotes brosis by enhancing STAT3-mediated TGF-beta Production. Oncogene 200,25:2520-2530
    [35]吴晓玲,曾维政,蒋明德,等.肝纤维化的信号转倒通路[J].世界华人消化杂志,2006,14(22):2223-2228
    [36] Eitzman DT, McCoy RD, Zheng X, et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 Gene [J]. J Clin Invest,1996, 97 (1) : 232-237
    [37] Fan XM, Wang ZL, Li ZH. STAT1 activation and STAT1-depend- ent immune-response gene ICAM-1 expression in alveolarmacrophages of rats suffered from interstitial pulmonary fibrosis[J]. Chin JCell Mol Immunol, 2003, 19 (1):3-6
    [38]刘金苹,翟乃亮,范贤明,等.JAK/STAT1信号转导通路在博莱霉素致肺纤维化大鼠中的作用[J].山东医药,2008,48(34):4-6
    [39] Huang M, Sharma S, ZhuLX,et al.IL-7 inhibits fibroblast TGF_beta production and signaling in pulmonary fibrosis[J]. J Clin Invest,2002, 109(7):931-937
    [40]曾庆富,牛海艳.肺纤维化机制的研究进展[J].中华病理学杂志,2001,30(5):371-373
    [41]于红.核转录因子NF-κB与肺纤维化[J].中国实用内科杂志,22006,26(15):1203-1204
    [42] Rojanasakul Y, Ye J, Chen F,et al. Dependence of NF-kappaB activation and free radical generation on silica-induced TNF-alpha production in macrophages [J]. Mol Cell Biochem,1999 ,200:119-125
    [43] Kang JL, Pack IS, Hong SM, et al. Silica induces nuclear factor-kappaB activation through tyrosine phosphorylation of I kappa B-alpha in RAW264[J]. 7 macrophages. Toxicol Appl Pharmacol,2000, 169:59-65.
    [44] Porcile C,piccioli P,Stanzione S,et al. Proteasome inhibitors induce cerebellar granule cell death:inhibition of nuclear factor-κB activation[J]. Ann NY Acad Activation,2002,973:402-413
    [45] Zhang XY, Shimura S, Masuda T,et al. Antisense oligonucleotides to NF-kappaB improve survival in bleomycin-induced pneumopathy of the mouse. Am J Respir Crit Care Med,2000,162(1):1561-1568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700