用户名: 密码: 验证码:
水工弧形闸门流激振动的MR智能半主动控制仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水工弧形钢闸门由于结构轻巧,操作方便,得到了广泛的应用。但同时也因为刚度、阻尼小,容易振动。弧形钢闸门在侧止水漏水或失效和下游淹没出流的小开度组合情况下,将发生强烈的自激振动。对这种自激振动采用水力学条件优化和结构优化并不能较好地抑制闸门的强烈振动,而且这种优化只能在闸门建造前应用。智能材料的发展和振动控制技术的运用,为解决闸门的强烈自激振动问题提供了可能和新的途径,特别是对已建闸门,意义更大。本文主要致力于寻求一种能进一步解决闸门自激振动问题的有效控制装置和控制策略。本文以某水利枢纽的导流底孔弧形钢闸门为研究背景,根据简化三维模型和模拟的时程荷载,对MR智能阻尼器用于弧形闸门结构的流激振动反应减振控制进行了多种智能半主动控制研究。
     本文首先基于三维空间有限元模型的动力分析建立了弧形闸门结构动力等效的三维多自由度集中质量简化模型,并利用简化模型进行了结构的动力特性和振动反应分析。两种模型的动力特性和振动反应比较表明,弧形闸门的减振控制中可以采用本文建立的三维多自由度简化模型。
     然后,根据弧形闸门水弹性模型实验结果和相关实测结果用遗传算法模拟了产生破坏性振动的激振平稳脉动荷载和非平稳脉动荷载时程曲线,并提出了非平稳荷载时程的时变AR建模方法。该法假定时变参数按马尔可夫方式变化,采用最大似然估计、过滤和平滑的方法获得AR模型的时变参数。
     模糊逻辑控制是一种特别适用于无法得到准确数学模型、多输入、具有不确定因素、非线形系统的控制方法。基于多种群遗传算法的模糊系统的优化设计,把模糊控制和遗传算法结合起来,用遗传算法优化模糊控制的隶属度函数和控制规则,充分发挥了遗传算法强大的寻优能力,构成一种控制优化的设计思想,改善了模糊控制的效果。把遗传优化模糊控制和半主动控制结合起来,构成了本文的优化模糊半主动控制策略。
     根据水工弧形闸门的结构特点,建立了水工弧形闸门结构MR阻尼器智能减振系统模型,对智能控制系统模型采用LQ半主动控制策略和遗传优化模糊半主动控策略进行了仿真研究。研究结果表明,采用这两种半主动控策略的智能阻尼器均能有效地减小弧形闸门结构的振动反应,并且减振效果对平稳荷载和非
Hydraulic arch sluice is one of popular types of gates applied in hydraulic projects because of light structure and easily operation. But, meanwhile, arch sluice vibration can be easily excited by fluctant water pressure due to relative little stiffness and damp. In the case of small opening and submerged discharge, if rubber seal system of arch sluice damaged (the usual type of damage for arch sluice), the interaction between water and sluice may cause intensive structural vibration so as to result in arch sluice damage at last. Improving hydraulic boundary condition and optimizing arch sluice structure are very important measures to reduce the vibration, but these measures which can only be taken before construction are not enough for reduction of the vibration. Employing structure control method is a further possible and new way to solve the problem duo to the development of intelligent material and control technic. This method is significant for vibration mitigation of already existing arch sluice. In this paper, an arch sluice of a diversion bottom outlet in certain large hydro junction is taken into account. Based on simplified 3-dimension structural model and simulated time-history fluctuant pressure, several "on-off energy dissipation" intelligent semi-active control strategies are investigated in order to reduce the vibration of the arch sluice installed with MR dampers.
    Realization of vibration control of the harmful flow-inducinn vibration of arch sluice needs simplification of sluice model. Three-dimensional finite element method is used to calculate the structural dynamic properties, and the principle of equivalent dynamic properties is adopted to modify the simplified mechanical model of arch sluice. Three-dimensional simplified structure model and its system parameter of the equivalent arch sluice are determined. The results of analysis and calculation show that the simplified three dimensional mechanical model can reflect the dynamic properties of arch sluice structures and the vibration reaction of stochastic pulse pressure. Therefore, it can be used in the intellinent control desinn of arch sluice installed with dampers.
    One of the key problems in flow-Induced vibration analysis of radial hate is to determine the stochastic fluctuant pressure. According to experimental result and relative field surveying data, the genetic algorithm is applied to simulate stationary time-history fluctuant pressure which causes intensive vibration of the sluice. Meanwhile, time variable AR modeling of nonstationary time-history fluctuant pressure is developed. This modeling method assume that time variable parameters are Markov process. Time variable parameters can be obtained by employing maximum likelihood optimization, filtering and fixed interval smoothing algorithms. These jobs provide a condition for time-history analysis and further control analysis.
    Fuzzy logic control (FLC) is one of intelligent control methods in structural control, especially suitable for control system with no exact mathmetical model,
引文
[1] 严根华,阎诗武.水工弧形闸门振动分析及动力安全设计技术研究.金属结构,1998,1:21—33.
    [2] 谭秀娟.部分水电站水工钢闸门和起闭机安全状况分析.大坝与安全,2002,2:49—51.
    [3] 严根华,阎诗武.流激闸门振动及动态优化设计.水利水运科学研究,1999,(1):12-22.
    [4] 崔广涛,林继镛,彭新民,等.二滩拱坝泄洪振动水弹性模型研究.天津大学学报,1991,(1):1-10.
    [5] 练继建,彭新民,崔广涛,等.水工闸门振动稳定性研究.天津大学学报,1999,32(2):171-176.
    [6] 吴杰芳,张林让,陈敏中,等.三峡大坝导流底孔闸门流激振动水弹性模型试验研究.长江科学院院报,2001,18(5):76-79.
    [7] 张晓平,张林让,吴杰芳.三峡导流底孔弧形闸门泄洪振动与控制研究.长江科学院院报,2003,20(1):33-35.
    [8] 吴一红,刘之平,李长河,等.三峡导流底孔弧形工作闸门流激振动试验研究报告.2000.07
    [9] Yao J T P. Concept of Structural Control. Journal of the Structural Division, ASCE, 1972, 98(7): 1567-1574.
    [10] 周福霖.隔震、消能减震和结构控制技术的发展和应用(上、下).世界地震工程,1989 (4):17-20,1990(1):7-17.
    [11] 武田寿一.建筑物隔震防振与控制.(纪晓惠等译),北京:中国建筑工业出版社,1997.
    [12] 唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993.
    [13] 傅育安.基础隔震工程的回顾与展望.工程抗震,1987(3)。
    [14] Buckle I G and Mayers R L Seismic Isolation: History, Application and Performance-A World View. Earthquake Spectra, 1990, 6(2): 161-201.
    [15] 刘季,周云.结构抗震控制的研究与应用状况(上).哈尔滨建筑大学学报,1995,28(4):1-10
    [16] 朱力,程晓杰,何若全,张耀春.摩擦消能支撑的试验研究.哈尔滨建筑工程学院学报,1992,25(4):45-48.
    [17] 康晓飞,邹超英.高层建筑钢结构中带竖缝混凝土剪力墙板设计方法建议.哈尔滨建筑大学学报,1996,29(2):14-19
    [18] Pall A S and Marsh C. Response of Friction Damped Braced Frames. J of Struct Division, ASCE, Vol. 108, No. ST, 1982.
    [19] Y. F. Su. Aseismic Design of Building Structures with ADAS Devices. Report to the Sinotech Engineering Consultants, Inc. Su and Structural Engineers Corporation, Taiway, Oct. 1990.
    [20] C. Xia and R. D. Hanson. Influence of ADAS Element Parameters on Building Seismic Response. J. of Struct. Eng., ASCE, Vol. 118, No. 7, 1992.
    [21] I. D. Aiken, et al. Comparative Study on Four Passive Energy Dissipation Systems. Bull, N. Z. Nat, Soc. for Earthquake Eng. 25(3), Sept. 1992.
    [22] K. Xu and T. Igusa. Dynamic Characteistics of Multiple Sub-structures Under Closely Spaced Frequencies. Earthquake Engrg. and Struct. Dyn., 21, 1992: 1059-1070.
    [23] H. Yamaguchi and N. Harnpornchai. Fundamental Characteristics of Multiple Tuned Mass Dampers for Suppressing Harmonically Forced Oscillations. Earthquake Engrg. and Struct. Dyn., 22, 1993: 51-62.
    [24] A. J. Clark. Multiple passive Tuned Mass Damper for Reducing Earthquake Induced Building Motion. Proc., 9th World Conf. on Earthquake Engrg., Vol. 5, 1998: 779-784.
    [25] L. M. Sun. Semi-analytical Modeling of the Tuned Liquid Damper with Emphasis on Damping of Liquid Sloshing. Ph. D. Dissertation, University of Tokyo, Tokyo, Japan, 1991.
    [26] A. Kareem. The Next Generation of Tuned Liquid Dampers. Proc., First World Conf. on Struct. Control, FP5, 1994: 19-28.
    [27] Yu, Jinkyu and D. A. Reed. An Empirically-based Nonlinear Mechanical Model of the Tuned Liquid Damper. Proc., Second Europe and African Conf. on wind Engrg., 1997.
    [28] 李桂青,霍达,邹祖军著.结构控制理论及其应用.武汉:武汉工业大学出版社,1991.
    [29] 顾仲权,马扣根,陈卫东著.振动主动控制.北京:国防工业出版社,1997.
    [30] J. N. Yang, A. Akbarpour, E Ghaemmaghami. New Optimal Control Algorithms for Structural Control. J. Engrg. Mech., ASCE, 113(EMg), 1987: 1369-1386.
    [31] T. T. Soong. Active Structural Control: Theory and Practice. Longman Scientific and Technical, Essex, England, 1990.
    [32] Mohamed Adbel-Rohman and Horst H. Leipholz. Structural Control by Pole Assignment Method. J. of Engineering Mechanics, Vol. 104, 1978.
    [33] Mohamed Adbel-Rohman and Horst H. Leipholz. General Approach to Active Structural Control. J. of Engineering Mechanics, vol. 105, 1979.
    [34] Andre Preumont. Vibration Control of Active Structures. Kluwer Academic Publishers Dordrecht, Boston, London, 1997.
    [35] Michael George Safonov. Stability and Robustness of Multivariable Feedback Systems. The MIT Press Cambridge, Massachusetts, and London, England, 1980.
    [36] Li-Teh Lu, Wei-Ling Chiang and Jhy-Pyng Tang. LQG/LTR Control Methodology in Active Structural Control. J. Engrg. Mech. ASCE, 124(4), 1998: 446-454.
    [37] J. Suhardjo, B. F. Spencer, Jr. and A. Kareem. Frequency Domain Optimal Control of Wind Excited Buildings. J. Engrg. Mech., ASCE, Vol. 118, No. 12, 1992: 2463-2481.
    [38] B. F. Spencer, Jr., J. Suhardjo and M. K. Sain. Frequency Domain Optimal Control Strategies for Aseismic Protection. J. Engrg. Mech., ASCE, Vol. 120, No. 1, 1994: 135-159.
    [39] E Jabbari, W. E. Schmitendorf and J. N. Yang. H∞ Control for Seismic-Excited Buildings with Acceleration Feedback. J. Engrg. Mech., ASCE, Vol. 21, No. 9, 1995: 994-1002.
    [40] I. E. Kose, W. E. Schmitendorf, E Jabbari and J. N. Yang. H∞ Active Seismic Response Control Using Static Output Feedback. J. Engrg. Mech., ASCE, vol. 122, No. 7, 1996: 651-659.
    [41] K. Nonami, H. Nishimura and H. Tian. H∞/μ Control-Based Frequency-Shaped Sliding Mode Control for Flexible Structures. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: 110-119.
    [42] J. N. Yang, J. C. Wu and A. K. Agrawal. Sliding Mode Control for Seismically Excited Linear Structures. J. Engrg. Mech., ASCE, vol. 121, No. 12, 1995: 1386-1390.
    [43] R. Adhikari and H. Yamaguchi. Sliding Mode Control of Gust Response of Tall Buildings. Proc. 2rid Int. Workshop on Struct. Control, HongKong, December, 1996: 11-19.
    [44] M. P. Singh, E. Matheu and C. Beattie. Output-Feedback Sliding Mode Control for Civil Engineering Structures. Proc. 2nd Int. Workshop on Struct. Control, HongKong, December, 1996: 609-620.
    [45] S. Nagarajaiah. Fuzzy Controller for Structures with Hybrid Isolation System. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: TA2: 67-76.
    [46] R. S. Subramaniam, A. M. Reinhorn, M. A. Riley and S. Nagarajaiah. Hybrid Control of Structures Using Fuzzy Logic. Microcomputers in Civil Engrg., Vol. 11, No. 1, 1996: 1-17.
    [47] L. Faravelli and T. Yao. Use of Adaptive Network in Fuzzy Control of Civil Structures. Microcomputers in Civil Engrg., Vol. 11, 1996: 67-76.
    [48] P. Venini and Y. K. Wen. Hybrid Vibration Control of MDOF Hysteretic Structures with Neural Networks. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: TA3: 53-62.
    [49] J. Ghaboussi and A. Joghataie. Active Control of Structures Using Neural Networks. J. Engrg. Mech., ASCE, vol. 121, No. 4, 1995: 555-567.
    [50] D. P. Tomasula, B. F. Spencer, Jr. and M. K. Sain. Nonlinear Structural Control for Limiting Extreme Dynamic Responses. J. Engrg. Mech., ASCE, Vol. 122, No. 3, 1996: 218-229.
    [51] B. F. Spencer, Jr., T. L Timlin, M. K. Sain and S. J. Dyke. Series Solution of a Class of Nonlinear Optimal Regulators. J. Opt. Theory and Appl., Vol. 91, No. 5, 1996: 321-345.
    [52] J. N. Yang, A. K. Agrawal and S. Chen. Optimal Polynomial Control for Seismically Excited Non-linear and Hysteretic Structures. Earthquake Engrg. and Struct. Dyn., Vol. 25, No. 11, 1996: 1211-1230.
    [53] B. F. Spencer, Jr. and Michael K. Sain. Controlling Buildings: A New Frontier in Feedback. Special Issue of the IEEE Control Systems Maganize on Emerging Technology, Vol. 17, No. 6, December, 1997: 19-35.
    [54] K. Tanida, Y. Koike, K. Mutaguchi and N. Uno. Development of Hybrid Active-Passive Damper. Active and Passive Damping, ASME, PVP-Vol. 211, 1991: 21-26.
    [55] Y. Koike, T. Murata, K. Tanida, T. Kobori, K, Ishii and Y. Takenaka. Development of V-shaped Hybrid Mass Damper and Its Application to High-Rise Buildings. Proc. 1st World Conf. on Street. Control, Los Angeles, California, August, 1994: FA2: 3-12.
    [56] S. Yamazaki, N. Nagata and H. Abiru. Tuned Active Dampers Installed in the Minato Mirai(MM) 21 Landmark Tower in Yokohama. J. Wind Engrg. and Indust. Aerodyn., Vol. 43, 1992: 1937-1948.
    [57] S. Ohrui, T. Kobori, M. Sakamoto, N. Koshika, I. Nishimura, K. Sasaki, A. Kondo and I. Fukushima. Development of Astive-Passive Composite Tuned Mass Damper and an Application to the High Rise Building. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: TP1: 100-109.
    [58] S. Otsuka, I. Shimoda, N. Kawai, K. Inaba, M. Kurimoto, K. Yasui and M. Mochimaru. Development and Verification of Active/Passive Mass Damper. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: WP2: 72-79.
    [59] Morimasa Watakabe, Masanobu Tohdo, Osamu Chiba, Nobuyuki Izumi, Hiromichi Ebisawa and Takafumi Fujita. Response Control Performance of a Hybrid Mass Damper Applied to a Tall Building. Earthquake Engrg. Struct. Dyn. Vol. 30, 2001: 1655-1676.
    [60] Ichiro Nagashima, Ryota Maseki, Yutaka Asami, Jun Hirai and Hisanori Abiru. Performance of Hybrid Mass Damper System Applied to a 36-Story High-rise Building. Earthquake Engrg. Struct. Dyn., Vol. 30, 2001: 1615-1637.
    [61] A. M. Reinhorn and M. A. Riley. Control of Bridge Vibrations with Hybrid Devices. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: TA2: 50-59.
    [62] M. Q. Feng, M. Shinozuka and S. Fujii. Friction-Controllable Sliding Isolation System. J. Engrg. Mech., ASCE, Vol. 119, No. 9, 1993: 1845-1864.
    [63] J. N. Yang, J. C. Wu, K. Kawashima and S. Unjoh. Hybrid Control of Seismic-Excited Bridge Structures. Earthquake Engrg. And Struct. Dyn. Vol. 24, No. 11, 1995: 1437-1451.
    [64] 陈海泉,李忠献,李延涛.应用形状记忆合金的高层建筑结构智能隔震.天津大学学报,vol.35,No.6,2002:761-765.
    [65] 陈海泉,刘建涛,李忠献.应用形状记忆合金的桥梁结构振动控制研究及发展.世界地震工程,vol.18,No.2,2002:85-93.
    [66] 李忠献,陈海泉.应用SMA复合橡胶支座的桥梁隔震.地震工程与工程振动,vol.22,No 2.2002:143-148.
    [67] LI Zhong-Xian. Complete-Feedback Control for Tall Buildings Under Earthquake Excitations by Active Tuned Mass Damper (A-TMD). Proceedings of 2nd World Conference on StructuralControl, Kyoto, Japan, June, 1998.
    [68] 李忠献,张伟.高层建筑地震反应全反馈主动TMD控制理论研究.地震工程与工程振动,vol.17,No.3,1997:60-65.
    [69] 李忠献.阻尼控制下高层建筑模态分析及试验研究.工程力学,vol.12,No.3,1995:107-114.
    [70] 李忠献,徐守泽.高层建筑水平地震反应阻尼器控制理论与试验研究.地震工程与工程振动,vol.14,No.3,1994:97-104.
    [71] 李忠献,何玉敖.高层建筑地震反应的优化阻尼器控制.建筑结构学报,vol.15,No.4,1994:53-61.
    [72] 李忠献,王森林.高层建筑地震反应最优多重TLD控制.地震工程与工程振动,vol.16,No.4.1996.68-77.
    [73] LI Zhong-Xian. Optimal Control for Tall Buildings Under Earthquake Excitations by Multiple Tuned Liquid Dampers(MTLDs), Proceedings of 12th Engineering Mechanics Conference, ASCE, San Diego, USA, May, 1998: 245-248.
    [74] T. Kobori, M. Takahashi, T. Nasu, N. Niwa and K. Ogasawara. Seismic Response Controlled Structure with Active Variable Stiffness System. Earthquake Engineering and Structural Dynamics, Vol. 22, 1993: 925-941.
    [75] K. Yamada and T. Kobori. Control Algorithm for Estimating Future Response of Active Variable Stiffness Structure. Earthquake Engineering and Structural Dynamics. Vol. 24, 1995: 1085-1099.
    [76] T. Kobori. Shaking Table Experiment of Multi-Story Seismic Response Controlled Structure with Active Variable Stiffness (AVS) System. The 8th Japan Earthquake Engineering Simposium, Dec. 1990.
    [77] Motoichi Takahashi, Takuji Kobori, Tadashi Nasu, Naoki Niwa and Narito Kurata. Active Response Control of Buildings for Large Earthquake-Seismic Response Control System with Variable Structural Characteristics. Smart Mater. Struct. 7, 1998: 522-529.
    [78] T. Nasu, T. Kobori, M. Takahashi and A. Kunisue. Analytical Study on the Active Variable Stiffness System Applied to a High-rise Building Subjected to the Records in Osaka Plain during the 1995 Hyogo-ken Nanbu Earthquake. Journalof Structural Engineering, 428, 1996: 1-8.
    [79] 刘季,李敏霞.变刚度半主动结构振动控制.振动工程学报,vol.12,No.2,1999:166-172.
    [80] 李敏霞,欧进萍.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动,vol.20,No.4,2000:96-100.
    [81] 阎维明,谭平.多自由度主动变刚度控制体系的振型控制.地震工程与工程振动,vol.19,No.1.1999:120-126.
    [82] 何玉敖,冯德平.主动变刚度结构体系(AVS)多模态优化控制研究.建筑结构学报。vol.21,No.3,2000:53-59.
    [83] 冯德平.继电型半主动结构控制体系理论与试验研究.天津大学博士学位论文,Dec.2000.
    [84] M. D. Symans and M. C. Constantinou. Semi-Active Control of Earthquake Induced Vibration. 11th World Conference on Earthquake Engineering, 1996, Paper NO. 95.
    [85] M. D. Symans and M. C. Constantinou. Development and Experiment Study of Semi-Active Fluid Damping Devices for Seismic Protection of Structures. Report NO. NCEER 95-0011, National Center for Earthquake Engineering Research, Buffalo, NY,
    [86] Z. Akbay and H. M. Aktan. Intelligent Energy Dissipation Devices. Proc. Fourth U. S. National Conf. on Earthquake Engrg., Vol. 3, No. 4, 1990: 427-435.
    [87] Z. Akbay and H. M. Aktan. Actively Regulated Friction Slip Devices. Proc. 6th Canadian Conf. on Earthquake Engrg., 1991: 367-374.
    [88] S. Kannan, H. M. Uras and H. M. Aktan. Active Control of Building Seismic Response by Energy Dissipation. Earthquake Engrg. And Struct. Dyn., Vol. 24, No. 5, 1995: 747-759.
    [89] 瞿伟廉,陈朝晖,徐幼麟.被动及半主动摩擦阻尼器对合肥翡翠电视塔地震发应的控制.地震工程与工程振动,vol.20,No.2,Jun.,2000:101-106.
    [90] 瞿伟廉,陈朝晖,徐幼麟.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制.地震工程与工程振动,vol.20,No.1,Mar.,2000:94-99.
    [91] N. Kurata, T. Kobori, M. Takahashi, N. Niwa and H. Kurino. Shaking Tabel Experiment of Active Variable Damping System. Proc. 1st World Conf. on Structural Control, Vol. 2, TP2, 1994: 108-117.
    [92] N. Kurata, T. Kobori, M. Takahashi and N. Niwa. Active Variable Damping System in Large Earthquakes. Proc. 3rd Int. Conf. on Motion and Vibrational Control, Vol. 3, 1996: 285-290.
    [93] N. Markris, S. A. Burton, D. Hill and M. Jordan. Analysis and Design of ER Damper for Seismic Protection of Structures. Journal of Engineering Mechanics, ASCE, vol. 122, NO. 10, 1996: 1003-1011.
    [94] N. Markris, S. A. Burton, D. Hill and M. Jordan. An Electrorheological Damper with Annular Duct. Proceedings of Structures Congress XIV, Chicago, IL, 1996: 1197-1204.
    [95] 杨大智主编.智能材料与智能系统.天津:天津大学出版社,2000.12.
    [96] B. E Spencer, Jr., SJ. Dyke, M. K. Sain and J. D. Carlson. Phenomenological Model of a Maguetorheological Damper. J. Engrg. Mech., ASCE, vol. 123, No. 3, 1997: 230-238.
    [97] J. D. Carlson and B. F. Spencer, Jr.. Magneto-theological Fluid Dampers for Semi-Active Seismic Control. Proc. 3rd Int. Conf. on Motion and Vib. Control, China, Japan, Vol. Ⅲ, 1996: 35-40.
    [98] Ehrgott R C, Masri S E Modeling the oscillatory dynamic behavior of electrorheological materials in shear. Smart Materials and Structures, 1992, 1(4): 275-285
    [99] Gavin G P, Hanson R D, Filisko F E. Electrorheological dampers, part Ⅰ analysis and design. J Appl Mech, 1996, 63: 669-675.
    [100] Gavin G P, Hanson R D, Filisko F E. Electforheological dampers, part Ⅱ analysis and design. J Appl Mech, 1996, 63: 676-682.
    [101] Makris N, Burton S A, Taylor D P. Electrorhological dampr with annular ducts for seismic protection applications. Smart Mater. Struct., 1996, (5): 551-564
    [102] Gavin G P, Hoang D. Construction of multi-duct electrorheological dampers. SPIE, 3327: 214-224.
    [103] Gavin G P. Design method for high-force electrorheological dampers. Smart Mater Struct, 1998, (7): 664-673.
    [104] Makris N, Burton S A, Hill D et al. Analysis and design of ER damper for seismic protection of structures. ASCE, J of Engineering Mechanics, 1996, 122(10): 1003-.
    [105] Carlson J D, Weiss K D. A growing attraction to magnetic fluids. Machine Design, 1994, (8): 61-66.
    [106] Carlson J D, Spencer B F. Magnetorheological fluid dampers: scalability and design issues for application to dynamic hazard mitigation. In: Proceedings of the world international workshop on structureal control. Hongkong, 1996, 99-109,
    [107] Spencer B F, Dyke Sj, Sain M K et al. Phenomenological Model of a Magnetorheological Damper. Journal of Engineering Mechanics, ASCE, 1997, 123: 230-238
    [108] Dyke S J, Spencer B F and Carlson J D. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct, 1996, 5: 565-575
    [109] Dyke S J, Spencer B F, Sain M K et al. Aexperimental study of MR damper for seismic protection. Smart Mater Struct, 1998, 7: 693-703
    [110] Jansen L M, Dyke S J. Semiactive control strategies for MR dampers: comparative study. Journal of Engineering Mechanics, ASCE, 2000, 126(8): 795-803
    [111] Spencer B F, Yang G, Carlson J D et al. Smart dampers for seismic protection of structures: a full-scale study. In: Proceedings of 2nd world Conference on Structural Control. Kyoto, Japan, 1999: 417-426.
    [112] Yang G, Spencer B F and Calson J D et al. Large-scale MR fluid dampers: modeling, and dynamic performance considerations. In: Proceedings of Internagonal Conference on Advances in Structure Dynamics. Hong Kong, China, 2000: 341-348.
    [113] Wereley N M, Pang L, and Kamath G M. Idealized hystersis modeling of electroheological and magnetorheological dampers. Journal of Intelligent Material System and Structures, 1998, 9: 642-649
    [114] 欧进萍,关新春,磁流变耗能器及其性能,地震工程与工程振动,1998,18(3):74-81
    [115] 欧进萍,关新春,磁流变耗能器的性能试验研究,地震工程与工程振动,1999,19(4):76-81.
    [116] 关新春,欧进萍,磁流变耗能器的阻尼力模型及其参数确定,振动与冲击,2001,20 (1):5-9
    [117] 瞿伟廉,袁润章,项海帆,ER智能材料-减震结构体系的研究,振动工程学服,1999,12(2):193—201
    [118] Xu Y L, Qu W L and Chen Z H. Control of wind-excited truss tower using semi-active friction damper. ASCE Journal of Structure Engineering, 2001, 127(8):
    [119] Xu Y L, Qu W Land Ko J M. Seismic response control of frame structures using magnetorheological / electrorheological dampers. Earthquake Engineering and Structural Dynamics, 2000, 29: 557-575.
    [120] Qu W L, Xu Y L. Semi-active control of seismic response of tall building with podium structure using ER / MR dampers. The Structure Design of Tall Buildings, 2001, 10: 179-192.
    [121] Qu W L, Xu Y L and Lv M Y. Seismic response control of large-span machinery building top of ship lift towers using ER / MR moment controllers. Engineering structures 2002, 24: 517-527
    [122] 关新春.磁流变液及其智能结构减震驱动器的理论与试验研究:[博士学位论文].哈尔滨:哈尔滨建筑大学,2000
    [123] 阎诗武.水工弧形闸门的振动.金属结构,1985,(5).
    [124] K.J.巴特等(林公豫等译).有限元分析中的数值方法[M].北京:科学出版社.1985:339-342
    [125] 孙小鹏.脉动压力的随机数学模拟[J].水利学报,1991,5:52~56.
    [126] 愈载道.随机振动理论及应用[M].同济大学出版社,1988.
    [127] 李杰.随机结构系统[M].科学出版社,1996.
    [128] 陈亚勇等.MATLAB信号处理详解[M].人民邮电出版社,2001.
    [129] 潘正军,康立山,陈毓屏.演化计算[M].清华大学出版社,广西科学技术出版社,1998.
    [130] 吴杰芳,张林让等.三峡大坝导流底孔闸门流激振动水弹性模型试验研究[J].长江科学院院报,2001,18(5):76~79.
    [131] 吴一红等.三峡工程施工导流底孔6. 0m×8. 5m—90m弧形工作闸门流激振动试验研究.中国水利水电科学研究院水力学研究所,2000.
    [132] 张海勇.基于局域波法的非平稳随机信号分析中若干问题的研究[D].大连理工大学,2001.
    [133] 张海勇.一种新的时频分析方法[J].火力与指挥控制,2000,25(3):39—42.
    [134] 张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [135] 王宏禹.非平稳随机信号分析与处理[M].北京:国防工业出版社,1999.
    [136] 王宏禹.现代谱估计[M].南京:东南大学出版社,1991.
    [137] Martin N. An AR Spectral Analysis of Non-stationary Signal[J]. Signal Processing, 1986, 10(1): 61-74.
    [138] Djuric P M, Kay S M, Faye Boudreanx-Bartels G. Segmentation of Non-stationary Signals[J]. Proceedings of the IEEE ICASSP, San Francisco, U. S. A., 1992, 5: 161-164.
    [139] 王文华,王宏禹.分段平稳随机过程的参数估计方法[J].电子科学学刊,1997(3):311-317.
    [140] 杨叔子,吴雅,等.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992.
    [141] Pandit S M, Wu S M. Time Series and System Analysis with Applications[M]. New York: JohnWiley & Sons, 1983.
    [142] 吴雅,杨叔子,陶建华.灰色预测和时序的探讨[J].华中理工大学学报,1988,16(3):27-34.
    [143] 马孝江,余泊.一种新的时频分析方法—局域波法[J].振动工程学报,2000,13 (5):219-224.
    [144] Grenier Y. Time-Dependent ARMA Modeling of Non-Stationary Signals[J]. IEEE Trans. ASSP, 1983, 31: 899-911.
    [145] Rao T S. The Fitting of Non-Stationary Time-Series Models with Time Dependent Parameters[J]. J Royal Statist. Soc. Series B, 1970, 32(2).
    [146] Aboutajdine D, Najim N. Tune Varying Prediction: New Results. Morocco Workshop on Signal Processing and Its Applications[J]. Marrakech, Morocco, September 1984.
    [147] Hall M, Oppenheim A V, Willky A. Time-Varying Parametric Modeling of Speech[C]. Proc. IEEE Decision and Control Conf., New Orleans, U. S. A., 1977: 1085-1091.
    [148] Slepian D. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty[J]. Part Ⅴ: The Discrete Case. Bell System Tech. J., 1978, 57(5): 1371-1430.
    [149] Kayhan A S, EI-Jaroudi A, Chaparro L E Data-Adaptive Evolutionary Spectral Estimation[J]. IEEE Trans, on Signal Processing, 1995, 43(1): 204-213.
    [150] Hall M, Oppenheim A V, Willky A. Time-Varying Parametric Modeling of Speech[C]. Proc. IEEE Decision and Control Conf., New Orleans, U. S. A., 1977: 1085-1091.
    [151] Sharman K C, Friedlander B. Time-Varying Autoregressive Modeling of a Class of Non-Stationary Signals[C]. ICASSP, 1984: 22. 2. 1-22. 2. 4.
    [152] Alengrin G, Barlaud M, Menez J. Unbiased Parameter Estimation of Non-Stationary Signals in Noise[J]. IEEE Trans. Acoust., Speech, Signal Process., 1986, 34: 1319-1322.
    [153] Konzin F, Nakajima E The Order Determination Problem for Linear Time-Varying AR Models[J]. IEEETrans. on Automatic Contral, 1980, 25(2): 250-257.
    [154] Charbonnier R, Rarlaud M, Alengrin G, et al. Results on AR-Modelling of Non-Stationary Signals[J]. Signal Processing, 1987, (12): 143-151.
    [155] 王文华,王宏禹.一种非平稳随机信号模型的时变参数估计算法性能研究[J].大连理工大学学报,1997,37:97-102.
    [156] 王文华,王宏禹.非平稳信号的一种ARMA模型参数估计法[J].信号处理,1998,14(1):33-37.
    [157] Qiu I, Tsoi A C. The Relationship between a Time-Varying Model of Non-Stationary Signals and Its Wigner Distribution[J]. Signal Processing, 1993, 32: 305-314.
    [158] 王文华,王宏禹.非平稳随机信号ARMA模型与WVD的关系[J].大连理工大学学报,1997,37(6).
    [159] 吴延军,赵艳,吕维雪,小波包分解及其参数模型[J].应用声学,1998,17(3):25-29.
    [160] Zhang Haiyong, Ma Xiaojiang, Gai Qiang. A New Method for the Analysis of Non-Stationary Signal: The Tune-Varying AR Model Based on Intrinsic Mode Function[J]. Proc. of ISTM, Shanghai, 2001: 544-546.
    [161] Qian S, Chen D. Joint Time-Frequency Analysis, Methods and Applications. Prentice Hall PTR, 1996.
    [162] Jakeman, A. J. and Young, P. C. Recursive filtering and the inversion of iliposed causal problems. Utilitas Mathematica, 1984, 35: 351-376.
    [163] Young, P. C. and Ng, C. N. Variance intervention. Jnl. of Forecasting, 1989, 8: 399-416.
    [164] Young, P. C. and Runkle, D. E. Recursive estimation and modelling of nonstationary and nonlinear time series, Adaptive Systems in Control and Signal Processing 1, IFAC/Inst. Measurement and Control, 1989, London, 49-64.
    [165] Young, P. C., Ng, C. N. and Armitage, P. A systems approach to economic forecasting and seasonal adjustment. International Journal on Computers and Mathematics with Applications, 1989, 18: 481-501.
    [166] Ng, C. N. and Young, P. C. Recursive estimation and forecasting of nonstationary time-series. Jnl. of Forecasting, 1990, 9: 173-204.
    [167] Young, P. C. Stochastic, Dynamic Modelling and Signal Processing: Time Variable and StateDependent Parameter Estimation. In W. J. Fitzgerald, A. Walden, R. Smith, & P. C. Young (Eds. ), Nonstationary and Nonlinear Signal Processing. Cambridge: Cambridge University Press, 2000, 74-114.
    [168] 王伟民,陈绪春.三峡工程泄洪坝段弧形工作门动力检测.大坝与安全.2004, (4):44-47
    [169] 李桂清,霍达,邹祖军。结构控制理论及其应用[M].武汉工业大学出版社,1991.
    [170] 王晶,李玉兰,蔡自兴,沈理.基于遗传算法的模糊系统优化设计方法[J].控制理论与应用,1999, 16(5):700-704.
    [171] 何玉敖,郭婷.基于遗传算法的结构主动控制[J].振动工程学报,1996,12(2):182-187.
    [172] 张立芬,欧进萍.结构模糊控制规则优化生成的遗传算法[J].地震工程与工程振动,2001,21(4):47-53.
    [173] 李士勇.模糊控制.神经控制和智能控制论[M].哈尔冰工业大学出版社,1998.
    [174] 王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安交通大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700